首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Class I fructose-1,6-bis(phosphate) aldolase is a glycolytic enzyme that catalyzes the cleavage of fructose 1,6-bis(phosphate) through a covalent Schiff base intermediate. Although the atomic structure of this enzyme is known, assigning catalytic roles to the various enzymic active-site residues has been hampered by the lack of a structure for the enzyme-substrate complex. A mutant aldolase, K146A, is unable to cleave the C3-C4 bond of the hexose while retaining the ability to form the covalent intermediate, although at a greatly diminished rate. The structure of rabbit muscle K146A-aldolase A, in complex with its native substrate, fructose 1,6-bis(phosphate), is determined to 2.3 A resolution by molecular replacement. The density at the hexose binding site differs between subunits of the tetramer, in that two sites show greater occupancy relative to the other two. The hexose is bound in its linear, open conformation, but not covalently linked to the Schiff base-forming Lys-229. Therefore, this structure most likely represents the bound complex of hexose just after hemiketal hydrolysis and prior to Schiff base formation. The C1-phosphate binding site involves the three backbone nitrogens of Ser-271, Gly-272, and Gly-302, and the epsilon-amino group of Lys-229. This is the same binding site previously found for the analogous phosphate of the product DHAP. The C6-phosphate binding site involves three basic side chains, Arg-303, Arg-42, and Lys-41. The residues closest to Lys-229 were relatively unchanged in position when compared to the unbound wild-type structure. The major differences between the bound and unbound enzyme structures were observed in the positions of Lys-107, Arg-303, and Arg-42, with the greatest difference in the change in conformation of Arg-303. Site-directed mutagenesis was performed on those residues with different conformations in bound versus unbound enzyme. The kinetic constants of these mutant enzymes with the substrates fructose 1, 6-bis(phosphate) and fructose 1-phosphate are consistent with their ligand interactions as revealed by the structure reported here, including differing effects on k(cat) and K(m) between the two substrates depending on whether the mutations affect C6-phosphate binding. In the unbound state, Arg-303 forms a salt bridge with Glu-34, and in the liganded structure it interacts closely with the substrate C6-phosphate. The position of the sugar in the binding site would require a large movement prior to achieving the proper position for covalent catalysis with the Schiff base-forming Lys-229. The movement most likely involves a change in the location of the more loosely bound C6-phosphate. This result suggests that the substrate has one position in the Michaelis complex and another in the covalent complex. Such movement could trigger conformational changes in the carboxyl-terminal region, which has been implicated in substrate specificity.  相似文献   

2.
Pyrophosphate-dependent phosphofructokinase from the facultative anaerobic bacterium Propionibacterium freudenreichii and from the mung bean Phaseolus aureus has been purified to homogeneity. Potential utilization of carbohydrate substrate analogues for each enzyme was initially screened by using Fourier transform 31P NMR at pH 8 and 25 degrees C and monitoring the appearance of the phosphate resonance in the direction of D-fructose 6-phosphate phosphorylation (forward reaction direction) and, with the bisphosphate analogues, the appearance of the pyrophosphate resonance in the direction of phosphate phosphorylation (reverse reaction direction). Both enzymes are strict in their requirements for the sugar phosphate substrate, with only D-fructose 6-phosphate, D-sedoheptulose 7-phosphate, and 2,5-anhydro-D-mannitol 6-phosphate, or their respective bisphosphates in the reverse reaction direction, utilized as substrates at detectable levels. The dissociation constants for D-psicose 6-phosphate, D-tagatose 6-phosphate, and L-sorbose 6-phosphate are an order of magnitude larger than that for D-fructose 6-phosphate, indicating a stringent steric requirement for the D-threo (trans) configuration at the two nonanomeric furan ring hydroxyl groups. These results strongly suggest that the anomeric, epimeric, and tautomeric form of the sugar phosphate substrates favored by both enzymes is the beta-D-fructofuranose form. Dissociation constants for nonsubstrate analogues were used to provide information on the nature of the active site. Competitive inhibition patterns vs. fructose 1,6-bisphosphate were obtained for a series of 1,n-alkanediol bisphosphates (where n = 2-9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Adaptation to one environmental stressor sometimes provides protection against additional, more intensive type of stress, a phenomenon called cross-tolerance. We aimed to estimate theprotection provided by acute heat stress (AHS) over carbohydrate disturbances in streptozotocin-diabetic rats. We investigated changes in activity of some hepatic glycolitic and gluconeogenic enzymes, and concentration of some substrates in control and diabetic animals exposed to AHS (41±0.5°C / 1 h), with 1 h and 24 h recovery at room temperature before sacrifice or induction of streptozotocin (STZ)-diabetes, respectively. AHS with 1 h-recovery before sacrifice resulted in intensive glycogenolysis, directed to endogenous glucose production and further utilization of glucose by peripheral tissues, while 24 h recovery resulted in a slight tendency towards normalization of metabolic disturbances caused by AHS. Experimental diabetes caused a significant decrease of substrates and glycolytic enzymes, but an increase of gluconeogenic enzymes. In diabetic animals previously exposed to AHS we measured a less intensive decrease of liver glycogen and glucose-6-phosphate concentration and hexokinase activity, as well as less intensive increase of liver glucose concentration, glucose-6-phosphatase and fructose-1,6-bisphosphatase activity compared to control diabetic animals that had been maintained at room temperature. Prior AHS provided some protection over diabetes-induced alterations in carbohydrate-related parameters (see graphical apstract), indicating a possible development of cross-tolerance phenomenon between the two stressors, AHS and STZ-diabetes.  相似文献   

4.
Pyrophosphate-dependent 6-phosphofructo-1-kinase (PPi-PFK) from Propionibacterium freudenreichii was inactivated by low concentrations of the lysine-specific reagent pyridoxal phosphate (PLP) after sodium borohydride reduction. The substrates fructose 6-phosphate and fructose 1,6-bisphosphate protected against inactivation whereas inorganic pyrophosphate had little effect. An HPLC profile of a tryptic digest of PPi-PFK modified at low concentrations of PLP showed a single major peak with only a small number of minor peaks. The major peak peptide was isolated and sequenced to obtain IGAGXTMVQK, where X represents a modified lysine residue, corresponding to Lys-315. Lys-315 was protected from reaction with PLP by fructose 1,6-bisphosphate. As indicated by HPLC maps of PPi-PFK modified with varying concentrations of PLP, a direct correlation was observed between activity loss and the modification of Lys-315. Two of the minor peptide peaks were shown to contain Lys-80 and Lys-85, which were modified in a mutually exclusive manner. Partial protection against modification of these two residues was provided by MgPPi. The data were used to adjust the sequence alignment of the Propionibacterium enzyme with that of ATP-dependent PFK of Escherichia coli to identify homologous residues in the substrate binding site. It is suggested that Lys-315 interacts with the 6-phosphate of fructose 6-phosphate and that Lys-80 and -85 may be located near the pyrophosphate binding site.  相似文献   

5.
Membrane vesicles of Streptococcus lactis were used to characterize a novel anion exchange involving phosphate and sugar 6-phosphates. For vesicles loaded with 50 mM phosphate at pH 7, homologous phosphate:phosphate exchange had a maximal rate of 130 nmol/min/mg of protein and a Kt of 0.21 mM external phosphate; among phosphate analogues tested, only arsenate replaced phosphate. Heterologous exchange was studied by 2-deoxyglucose 6-phosphate entry into phosphate-loaded vesicles; this reaction had a maximal velocity of 31 nmol/min/mg of protein and a Kt of 26 microM external substrate. Sugar phosphate moved intact during this exchange, since its entry led to loss of internal 32Pi without transfer of 32P to sugar phosphate. Inhibitions of phosphate exchange suggested that the preferred sugar phosphate substrates were (Kiapp): glucose, 2-deoxyglucose, and mannose 6-phosphates (approximately 20 microM) greater than fructose 6-phosphate (150 microM) greater than glucosamine 6-phosphate (420 microM) greater than alpha-methylglucoside 6-phosphate (740 microM). Stoichiometry for phosphate:2-deoxyglucose 6-phosphate antiport was 2:1 at pH 7, and since initial rates of exchange were unaffected by charge carrying ionophores (gramicidin, valinomycin, a protonophore), this unequal stoichiometry indicated the electroneutral exchange of two monovalent phosphates for a single divalent sugar phosphate.  相似文献   

6.
1. Glyceraldehyde-3-phosphate dehydrogenase from bacillus stearothermophilus can be extensively succinylated in the presence of substrates and coenzyme without appreciable loss of activity. 2. The apoenzyme in the absence of substrates is rapidly inhibited by small amounts of succinic anhydride. NAD+, glyceraldehyde-3-phosphate and inorganic phosphate all afford protection from inhibition, and inhibition is slowly reversed in the presence of pyrophosphate at pH 8.5. 3. Kinetic and spectral studies have shown that the specific inhibition is associated with the succinylation of the aliphatic hydroxyl group of a serine or threonine residue. 4. The residue specifically succinylated has been identified as one of the two threonine residues, most probably Thr-150, adjacent to the activ-site cysteine residue in the primary structure. Its unusual reactivity is discussed in relation to the three-dimensional structure of the enzyme. 5. A second residue, a lysine homologous with Lys-212 in the pig muscle enzyme, can be succinylated in both holoenzyme and apoenzyme with no detectable effect upon the enzymic activity.  相似文献   

7.
Chemical modification of Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosate (N-phosphonomethylglycine), with pyridoxal 5'-phosphate suggested that Lys-22 (equivalent to Lys-23 of the Petunia hybrida enzyme) is a potential active site residue (Huynh, Q. K., Kishore, G. M., and Bild, G. S. (1988) J. Biol. Chem. 263, 735-739). To investigate the possible role of this residue in the reaction mechanism, we have used site-directed mutagenesis to replace Lys-23 of the P. hybrida enzyme with 3 other amino acid residues: Ala, Glu, and Arg. Analysis of these mutant enzymes indicates that of these only the Lys-23 to Arg mutant enzyme is active; the other two replacements (Ala and Glu) result in inactivation of the enzyme. Two of the mutant enzymes (Lys-23 to Arg and Ala) were purified to homogeneity and characterized. The purified Lys-23 to Arg mutant enzyme is less sensitive than the wild type enzyme to pyridoxal 5'-phosphate. It showed identical Km values for substrates and a 5-fold higher I50 value for glyphosate in comparison with those from the wild type enzyme. Binding studies using fluorescence measurements revealed that the substrate shikimate 3-phosphate and glyphosate were able to bind the purified Lys-23 to Arg mutant enzyme but not to the purified catalytically inactive Lys-23 to Ala mutant enzyme. The above results suggest that the cationic group at position 23 of the enzyme may play an important role in substrate binding.  相似文献   

8.
The activities of N-acetylneuraminate 9-phosphate synthase and N-acetylneuraminate 9-phosphatase, the two enzymes involved in the final steps of the biosynthetic pathway of N-acetylneuraminic acid, were measured with the substrates N-acetyl[14C]mannosamine 6-phosphate and N-acetyl[14C]neuraminic acid 9-phosphate respectively. Subcellular localization studies in rat liver indicated that both enzymes are localized in the cytosolic fraction after homogenization in sucrose medium. To test the possibility of misinterpretation due to the hydrolysis of N-acetylneuraminic acid 9-phosphate by non-specific phosphatases, the hydrolysis of various phosphate esters by the cytosolic fraction was tested. Only p-nitrophenyl phosphate was hydrolysed; however, competition studies with N-acetylneuraminic acid 9-phosphate and p-nitrophenyl phosphate indicated that two different enzymes were involved and that no competition existed between the two substrates. In various other rat tissues N-acetylneuraminate-9-phosphate synthase and N-acetylneuraminate 9-phosphatase activities were detected, suggesting that N-acetylmannosamine 6-phosphate is a general precursor for N-acetylneuraminic acid biosynthesis in all the tissues studied.  相似文献   

9.
G K Jarori  P K Maitra 《FEBS letters》1991,278(2):247-251
Glucose 6-phosphate dehydrogenase catalyzes the oxidation of glucose 6-phosphate, resulting in the formation of 6-phosphogluconolactone. As this compound is unstable, it has not been characterized directly. NMR provides a way to directly monitor all components of a reaction and study their structure. Here we report some results on the glucose 6-phosphate dehydrogenase reaction using 31P and 13C-NMR. Our results indicate that two different lactones, namely gamma (1-4) and delta (1-5) 6-phosphogluconolactones, are formed as products in this reaction. This is in contrast to an earlier suggestion that glucose 6-phosphate dehydrogenase produces only the delta-lactone. On the basis of these results, a new mechanisms for dehydrogenation of the sugar phosphate is proposed.  相似文献   

10.
d-Arabinose-5-phosphate and d-sedoheptulose-7-phosphate were found to be substrates, although not inducers, of the hexose phosphate transport system of Salmonella typhimurium. Transport of these two sugar phosphates by wild-type strains required preinduction of the hexose phosphate transport system. A mutant of S. typhimurium constitutive for this system also transported d-arabinose-5-phosphate and d-sedoheptulose-7-phosphate in a constitutive fashion. Glucose-6-phosphate was a potent competitor of the transport of both d-arabinose-5-phosphate and d-sedoheptulose-7-phosphate. The K(m) values for transport of d-glucose-6-phosphate, d-arabinose-5-phosphate, and d-sedoheptulose-7-phosphate were 0.13, 0.32 and 1.61 mM, respectively. The apparent V(max) values for transport of d-glucose-6-phosphate, d-arabinose-5-phosphate, and d-sedoheptulose-7-phosphate were 6.3, 13.2 and 3.0 nmol per min per 5 x 10(8) bacteria, respectively. d-Ribulose-5-phosphate and d-xylulose-5-phosphate did not inhibit transport of the above substrates, whereas d-ribose-5-phosphate was a weak inhibitor of d-sedoheptulose-7-phosphate transport.  相似文献   

11.
Lysine 356 has been implicated by protein modification studies as a fructose-2,6-bisphosphate binding site residue in the 6-phosphofructo-2-kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Kitajima, S., Thomas, H., and Uyeda, K. (1985) J. Biol. Chem. 260, 13995-14002). However, Lys-356 is found in the fructose-2,6-bisphosphatase domain (Bazan, F., Fletterick, R., and Pilkis, S. J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). In order to ascertain whether Lys-356 is involved in fructose-2,6-bisphosphatase catalysis and/or domain/domain interactions of the bifunctional enzyme, Lys-356 was mutated to Ala, expressed in Escherichia coli, and then purified to homogeneity. Circular dichroism experiments indicated that the secondary structure of the Lys-356-Ala mutant was not significantly different from that of the wild-type enzyme. The Km for fructose 2,6-bisphosphate and the Ki for the noncompetitive inhibitor, fructose 6-phosphate, for the fructose-2,6-bisphosphatase of the Lys-356-Ala mutant were 2700- and 2200-fold higher, respectively, than those of the wild-type enzyme. However, the maximal velocity and the Ki for the competitive product inhibitor, inorganic phosphate, were unchanged compared to the corresponding values of the wild-type enzyme. Furthermore, in contrast to the wild-type enzyme, which exhibits substrate inhibition, there was no inhibition by substrate of the Lys-356-Ala mutant. In the presence of saturating substrate, inorganic phosphate, which acts by relieving fructose-6-phosphate and substrate inhibition, is an activator of the bisphosphatase. The Ka for inorganic phosphate of the Lys-356-Ala mutant was 1300-fold higher than that of the wild-type enzyme. The kinetic properties of the 6-phosphofructo-2-kinase of the Lys-356-Ala mutant were essentially identical with that of the wild-type enzyme. The results demonstrate that: 1) Lys-356 is a critical residue in fructose-2,6-bisphosphatase for binding the 6-phospho group of fructose 6-phosphate/fructose 2,6-bisphosphate; 2) the fructose 6-phosphate binding site is responsible for substrate inhibition; 3) Inorganic phosphate activates fructose-2,6-bisphosphatase by competing with fructose 6-phosphate for the same site; and 4) Lys-356 is not involved in 6-phosphofructo-2-kinase substrate/product binding or catalysis.  相似文献   

12.
In order to identify the essential reactive amino acid residues of 5-enolpyruvoylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosphate (N-phosphonomethylglycine), chemical modification studies with o-phthalaldehyde were undertaken. Incubation of the enzyme with the reagent resulted in a time-dependent loss of enzyme activity. The inactivation followed first-order and saturation kinetics with a Kinact of 25 microM and a maximum rate constant of 0.34 min-1. The inactivation was prevented by preincubation of the enzyme with the substrates shikimate 3-phosphate, 5-enolpyruvoylshikimate 3-phosphate, or by a combination of shikimate 3-phosphate plus glyphosate, but not by phosphoenolpyruvate or glyphosate alone. Absorbance and fluorescence spectra studies indicate that complete inactivation of the enzyme resulted from the formation of two isoindole derivatives per molecule of enzyme. Tryptic mapping of the enzyme modified in the absence of shikimate 3-phosphate and glyphosate resulted in the isolation of two peptides which were not found for the enzyme modified in the presence of shikimate 3-phosphate and glyphosate. Analyses of these two peptides indicate that Lys-22 and Lys-340 were the modified sites. The amino acid sequences around these residues are conserved in bacterial, fungal, as well as plant enzymes, suggesting that these regions may constitute part of the enzyme active site.  相似文献   

13.
The 6-phosphate of 6-phosphogluconate (6PG) is proposed to anchor the sugar phosphate in the active site and aid in orientating the substrate for catalysis. In order to test this hypothesis, alanine mutagenesis was used to probe the contribution of residues in the vicinity of the 6-phosphate to binding of 6PG and catalysis. The crystal structure of sheep liver 6-phosphogluconate dehydrogenase shows that Tyr-191, Lys-260, Thr-262, Arg-287, and Arg-446 contribute a mixture of ionic and hydrogen bonding interactions to the 6-phosphate, and these interactions are likely to provide the majority of the binding energy for 6PG. All mutant enzymes, with the exception of T262A, exhibit an increase in K(6PG) that ranges from 5- to 800-fold. There is also a less pronounced increase in K(NADP), ranging from 3- to 15-fold, with the exception of T262A. The R287A and R446A mutant enzymes exhibit a dramatic decrease in V/E(t) (600- and 300-fold, respectively) as well as in V/K(6PG)E(t) (10(5) - and 10(4)-fold), and therefore no further characterization was carried out with these two mutant enzymes. No change in V/E(t) was observed for the Y191A mutant enzyme, whereas 20- and 3-fold decreases were obtained for the K260A and T262A mutant enzymes, respectively, resulting in a decrease in V/K(6PG)E(t) range from 3- to 120-fold. All mutant enzymes also exhibit at least an order of magnitude increase in 13C-isotope effect -1, indicating that the decarboxylation step has become more rate-limiting. Data are consistent with significant roles for Tyr-191, Lys-260, Thr-262, Arg-287, and Arg-446 in providing the binding energy for 6PG. In addition, these residues also likely ensure proper orientation of 6PG for catalysis and aid in inducing the conformation change that precedes, and sets up the active site for, catalysis.  相似文献   

14.
T Katsube  Y Kazuta  K Tanizawa  T Fukui 《Biochemistry》1991,30(35):8546-8551
The entire structural gene for potato tuber UDP-glucose pyrophosphorylase has been amplified from its cDNA by the polymerase chain reaction and inserted into the expression plasmid pTV118-N downstream from the lac promoter. Escherichia coli JM105 cells carrying thus constructed plasmid produced the enzyme to a level of about 5% of the total soluble protein upon induction with isopropyl beta-D-thiogalactopyranoside. The recombinant enzyme purified to homogeneity in two column chromatographic steps was structurally and catalytically identical with the enzyme purified from potato tuber except for the absence of an N-terminal-blocking acetyl group. To examine functional roles of the five lysyl residues that had been identified by affinity labeling studies to be located at or near the active site of the enzyme [Kazuta, Y., Omura, Y., Tagaya, M., Nakano, K., & Fukui, T. (1991) Biochemistry (preceding paper in this issue)], they were replaced individually by glutamine via site-directed mutagenesis. The Lys-367----Gln mutant enzyme was almost completely inactive, and the Lys-263----Gln mutant enzyme had significantly decreased Vmax values with perturbed Km values for pyrophosphate and alpha-D-glucose 1-phosphate. Lys-329----Gln also exhibited increased Km values for these substrates but exhibited Vmax values similar to those of the wild-type enzyme. The two mutant enzymes Lys-409----Gln and Lys-410----Gln showed catalytic properties almost identical with those of the wild-type enzyme. Thus, among the five lysyl residues, Lys-367 is essential for catalytic activity of the enzyme and Lys-263 and Lys-329 may participate in binding of pyrophosphate and/or alpha-D-glucose 1-phosphate.  相似文献   

15.
Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PD) was isolated in high yield and purified to homogeneity from a newly constructed strain of Escherichia coli which lacks its own glucose 6-phosphate dehydrogenase gene. Lys-21 is one of two lysyl residues in the enzyme previously modified by the affinity labels pyridoxal 5'-phosphate and pyridoxal 5'-diphosphate-5'-adenosine, which are competitive inhibitors of the enzyme with respect to glucose 6-phosphate (LaDine, J.R., Carlow, D., Lee, W.T., Cross, R.L., Flynn, T.G., & Levy, H.R., 1991, J. Biol. Chem. 266, 5558-5562). K21R and K21Q mutants of the enzyme were purified to homogeneity and characterized kinetically to determine the function of Lys-21. Both mutant enzymes showed increased Km-values for glucose 6-phosphate compared to wild-type enzyme: 1.4-fold (NAD-linked reaction) and 2.1-fold (NADP-linked reaction) for the K21R enzyme, and 36-fold (NAD-linked reaction) and 53-fold (NADP-linked reaction) for the K21Q enzyme. The Km for NADP+ was unchanged in both mutant enzymes. The Km for NAD+ was increased 1.5- and 3.2-fold, compared to the wild-type enzyme, in the K21R and K21Q enzymes, respectively. For the K21R enzyme the kcat for the NAD- and NADP-linked reactions was unchanged. The kcat for the K21Q enzyme was increased in the NAD-linked reaction by 26% and decreased by 30% in the NADP-linked reaction from the values for the wild-type enzyme. The data are consistent with Lys-21 participating in the binding of the phosphate group of the substrate to the enzyme via charge-charge interaction.  相似文献   

16.
X Xu  E R Kantrowitz 《Biochemistry》1991,30(31):7789-7796
Escherichia coli alkaline phosphatase catalyzes the hydrolysis of a wide variety of phosphomonoesters at similar rates, and the reaction proceeds through a phosphoenzyme intermediate. The active site region is highly conserved between the E. coli and mammalian alkaline phosphatases. The three-dimensional structure of the E. coli enzyme indicates that Lys-328, which is replaced by histidine in all mammalian alkaline phosphatases, is bridged to the phosphate through a water molecule. This water molecule is also hydrogen bonded to Asp-327, a bidendate ligand of the one of the two zinc atoms. Here we report the use of site-specific mutagenesis to convert Lys-328 to both histidine and alanine. Steady-state kinetic studies above pH 7.0 indicate that both mutant enzymes have altered pH versus activity profiles compared to the profile for the wild-type enzyme. At pH 10.3, in the presence of Tris, the Lys-328----Ala enzyme is approximately 14-fold more active than the wild-type enzyme. At the same pH in the absence of Tris the Lys-328----Ala enzyme is still 6-fold more active than the wild-type enzyme. Both mutant enzymes have lower phosphate affinities than the wild-type enzyme at all pH values investigated. Pre-steady-state kinetics at pH 5.5 reveal that the Lys-328----Ala enzyme behaves very similar to the phosphate-free wild-type enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Extracts of Pseudomonas citronellolis cells grown on glucose or gluconate possessed all the enzymes of the Entner-Doudoroff pathway. Gluconokinase and either or both 6-phosphogluconate dehydratase and KDPG aldolase were induced by growth on these substrates. Glucose and gluconate dehydrogenases and 6-phosphofructokinase were not detected. Thus catabolism of glucose proceeds via an inducible Entner-Doudoroff pathway. Metabolism of glyceraldehyde 3-phosphate apparently proceeded via glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase. These same enzymes plus triose phosphate isomerase were present in lactate-grown cells indicating that synthesis of triose phosphates from gluconeogenic substrates also occurs via this pathway. Extracts of lactate grown-cells possessed fructose diphosphatase and phosphohexoisomerase but apparently lacked fructose diphosphate aldolase thus indicating either the presence of an aldolase with unusual properties or requirements or an alternative pathway for the conversion of triose phosphate to fructose disphosphate. Cells contained two species of glyceraldehyde 3-phosphate dehydrogenase, one an NAD-dependent enzyme which predominated when the organism was grown on glycolytic substrates and the other, an NADP-dependent enzyme which predominated when the organism was grown on gluconeogenic substrates.  相似文献   

18.
The roles of particular amino acids in substrate and coenzyme binding and catalysis of glucose-6-phosphate dehydrogenase of Leuconostoc mesenteroides have been investigated by site-directed mutagenesis, kinetic analysis, and determination of binding constants. The enzyme from this species has functional dual NADP(+)/NAD(+) specificity. Previous investigations in our laboratories determined the three-dimensional structure. Kinetic studies showed an ordered mechanism for the NADP-linked reaction while the NAD-linked reaction is random. His-240 was identified as the catalytic base, and Arg-46 was identified as important for NADP(+) but not NAD(+) binding. Mutations have been selected on the basis of the three-dimensional structure. Kinetic studies of 14 mutant enzymes are reported and kinetic mechanisms are reported for 5 mutant enzymes. Fourteen substrate or coenzyme dissociation constants have been measured for 11 mutant enzymes. Roles of particular residues are inferred from k(cat), K(m), k(cat)/K(m), K(d), and changes in kinetic mechanism. Results for enzymes K182R, K182Q, K343R, and K343Q establish Lys-182 and Lys-343 as important in binding substrate both to free enzyme and during catalysis. Studies of mutant enzymes Y415F and Y179F showed no significant contribution for Tyr-415 to substrate binding and only a small contribution for Tyr-179. Changes in kinetics for T14A, Q47E, and R46A enzymes implicate these residues, to differing extents, in coenzyme binding and discrimination between NADP(+) and NAD(+). By the same measure, Lys-343 is also involved in defining coenzyme specificity. Decrease in k(cat) and k(cat)/K(m) for the D374Q mutant enzyme defines the way Asp-374, unique to L. mesenteroides G6PD, modulates stabilization of the enzyme during catalysis by its interaction with Lys-182. The greatly reduced k(cat) values of enzymes P149V and P149G indicate the importance of the cis conformation of Pro-149 in accessing the correct transition state.  相似文献   

19.
Enzyme-substrate complexes of phosphomannomutase/phosphoglucomutase (PMM/PGM) reveal the structural basis of the enzyme's ability to use four different substrates in catalysis. High-resolution structures with glucose 1-phosphate, glucose 6-phosphate, mannose 1-phosphate, and mannose 6-phosphate show that the position of the phosphate group of each substrate is held constant by a conserved network of hydrogen bonds. This produces two distinct, and mutually exclusive, binding orientations for the sugar rings of the 1-phospho and 6-phospho sugars. Specific binding of both orientations is accomplished by key contacts with the O3 and O4 hydroxyls of the sugar, which must occupy equatorial positions. Dual recognition of glucose and mannose phosphosugars uses a combination of specific protein contacts and nonspecific solvent contacts. The ability of PMM/PGM to accommodate these four diverse substrates in a single active site is consistent with its highly reversible phosphoryl transfer reaction and allows it to function in multiple biosynthetic pathways in P. aeruginosa.  相似文献   

20.
We describe a liquid chromatography tandem mass spectrometry (LC-MS/MS) method to quantify pentose phosphate pathway intermediates (triose-3-phosphates, tetrose-4-phosphate, pentose-5-phosphate, pentulose-5-phosphates, hexose-6-phosphates and sedoheptulose-7-phosphate (sed-7P)) in bloodspots, fibroblasts and lymphoblasts. Liquid chromatography was performed using an ion pair loaded C(18) HPLC column and detection of the sugar phosphates was carried out by tandem mass spectrometry using an electron ion spray source operating in the negative mode and multiple reaction monitoring. Reference values for the pentose phosphate pathway intermediates in blood spots, fibroblasts and lymphoblasts were established. The method was applied to cells from patients affected with a deficiency of transaldolase. The transaldolase-deficient cells showed an increased concentration of sedoheptulose-7-phosphate. (Bloodspots: 5.19 and 5.43 micromol/L [0.49-3.33 micromol/L]; fibroblasts 7.43 and 26.46 micromol/mg protein [0.31-1.14 micromol/mg protein]; lymphoblasts 16.03 micromol/mg protein [0.61-2.09 micromol/mg protein].) The method was also applied to study enzymes of the pentose phosphate pathway by incubating fibroblasts or lymphoblasts homogenates with ribose-5-phosphate or 6-phosphogluconate and the subsequent analysis of the formed sugar phosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号