首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP-dependent protein degradation in bacteria is carried out by barrel-shaped proteases architecturally related to the proteasome. In Escherichia coli, ClpP interacts with two alternative ATPases, ClpA or ClpX, to form active protease complexes. ClpAP and ClpXP show different but overlapping substrate specificities. ClpXP is considered the primary recipient of ssrA-tagged substrates while ClpAP in complex with ClpS processes N-end rule substrates. Notably, in its free form, but not in complex with ClpS, ClpAP also degrades ssrA-tagged substrates and its own chaperone component, ClpA. To reveal the mechanism of ClpAP-mediated ClpA degradation, termed autodegradation, and its possible role in regulating ClpAP levels, we dissected ClpA to show that the flexible C-terminus of the second AAA module serves as the degradation signal. We demonstrate that ClpA becomes largely resistant to autodegradation in the absence of its C-terminus and, conversely, transfer of the last 11 residues of ClpA to the C-terminus of green fluorescent protein (GFP) renders GFP a substrate of ClpAP. This autodegradation tag bears similarity to the ssrA-tag in its degradation behavior, displaying similar catalytic turnover rates when coupled to GFP but a twofold lower apparent affinity constant compared to ssrA-tagged GFP. We show that, in analogy to the prevention of ssrA-mediated recognition, the adaptor ClpS inhibits autodegradation by a specificity switch as opposed to direct masking of the degradation signal. Our results demonstrate that in the presence of ssrA-tagged substrates, ClpA autodegradation will be competitively reduced. This simple mechanism allows for dynamic reallocation of free ClpAP versus ClpAPS in response to the presence of ssrA-tagged substrates.  相似文献   

2.
In the bacterial cytosol, degradation of ssrA-tagged proteins is primarily carried out by the proteolytic machine ClpXP in a process which is stimulated by a ClpX-specific adaptor protein, SspB. Here we elucidate the steps required for binding and transfer of ssrA-tagged substrates from SspB to ClpX. The N-terminal region of SspB is essential for its interaction with ssrA-tagged substrates, while a short conserved region at the C terminus of SspB interacts specifically with the N domain of ClpX. A single point mutation within the conserved C-terminal region of SspB is sufficient to abolish the SspB-mediated degradation of ssrA-tagged proteins by ClpXP. We propose that this region represents a common motif for the recognition of ClpX as the C-terminal region of SspB shares considerable homology with the other ClpX-specific adaptor protein, RssB. Through docking of SspB to the N-terminal domain of ClpX, the substrate is delivered to the substrate binding site in ClpX.  相似文献   

3.
SspB dimers bind proteins bearing the ssrA-degradation tag and stimulate their degradation by the ClpXP protease. Here, E. coli SspB is shown to contain a dimeric substrate binding domain of 110-120 N-terminal residues, which binds ssrA-tagged substrates but does not stimulate their degradation. The C-terminal 40-50 residues of SspB are unstructured but are required for SspB to form substrate-delivery complexes with ClpXP. A synthetic peptide containing the 10 C-terminal residues of SspB binds ClpX, stimulates its ATPase activity, and prevents SspB-mediated delivery of GFP-ssrA for ClpXP degradation. This tripartite structure--an ssrA-tag binding and dimerization domain, a flexible linker, and a short peptide module that docks with ClpX--allows SspB to deliver tagged substrates to ClpXP without interfering with their denaturation or degradation.  相似文献   

4.
SspB homodimers deliver ssrA-tagged substrates to ClpXP for degradation. SspB consists of a substrate binding domain and an unstructured tail with a ClpX binding module (XB). Using computational design, we engineered an SspB heterodimer whose subunits did not form homodimers. Experiments with the designed molecule and variants lacking one or two tails demonstrate that both XB modules are required for strong binding and efficient substrate delivery to ClpXP. Assembly of stable SspB-substrate-ClpX delivery complexes requires the coupling of weak tethering interactions between ClpX and the SspB XB modules as well as interactions between ClpX and the substrate degradation tag. The ClpX hexamer contains three XB binding sites, one per N domain dimer, and thus binds strongly to just one SspB dimer at a time. Because different adaptor proteins use the same tethering sites in ClpX, those which employ bivalent tethering, like SspB, will compete more effectively for substrate delivery to ClpXP.  相似文献   

5.
Complex biological networks are regulated via alterations in protein expression, degradation, and function. Synthetic control of these processes allows dissection of natural systems and the design of new networks. In E. coli, the adaptor SspB tethers ssrA-tagged substrates to the ClpXP protease, causing a modest increase in their rate of degradation. To engineer controlled degradation, we have designed a series of modified ssrA tags that have weakened interactions with ClpXP. When SspB is present, ClpXP degrades purified substrates bearing these engineered peptide tags 100-fold more efficiently. Importantly, substrates bearing these tags are stable in the absence of SspB in vivo but are rapidly degraded upon SspB induction. Our studies supply a conceptual foundation and working components for controllable degradation, improve mechanistic understanding of adaptor-mediated proteolysis, and demonstrate that the relative importance of adaptor proteins in degradation is correlated with the strength of protease-substrate contacts.  相似文献   

6.
SspB is a dimeric adaptor protein that increases the rate at which ssrA-tagged substrates are degraded by tethering them to the ClpXP protease. Each SspB subunit consists of a folded domain that forms the dimer interface and a flexible C-terminal tail. Ternary delivery complexes are stabilized by three sets of tethering interactions. The C-terminal XB peptide of each SspB subunit binds ClpX, the body of SspB binds one part of the ssrA-tag sequence, and ClpX binds another part of the tag. To test the functional importance of these tethering interactions, we engineered monomeric SspB variants and dimeric variants with different length linkers between the SspB body and the XB peptide and employed substrates with degradation tags that bind ClpX weakly and/or contain extensions between the binding sites for SspB and ClpX. We find that monomeric SspB variants can enhance ClpXP degradation of a subset of substrates, that doubling the number of tethering interactions stimulates degradation via changes in Km and Vmax, and that major alterations in the length of the 48-residue SspB linker cause only small changes in the efficiency of substrate delivery. These results indicate that the properties of the degradation tag and the number of SspB.ClpX tethering interactions are the major factors that determine the extent to which the substrate and ClpX are engaged in ternary delivery complexes.  相似文献   

7.
The SspB adaptor enhances ClpXP degradation by binding the ssrA degradation tag of substrates and the AAA+ ClpX unfoldase. To probe the mechanism of substrate delivery, we engineered a disulfide bond between the ssrA tag and SspB and demonstrated otherwise normal interactions by solving the crystal structure. Although the covalent link prevents adaptor.substrate dissociation, ClpXP degraded GFP-ssrA that was disulfide bonded to the adaptor. Thus, crosslinked substrate must be handed directly from SspB to ClpX. The ssrA tag in the covalent adaptor complex interacted with ClpX.ATPgammaS but not ClpX.ADP, suggesting that handoff occurs in the ATP bound enzyme. By contrast, SspB alone bound ClpX in both nucleotide states. Similar handoff mechanisms will undoubtedly be used by many AAA+ adaptors and enzymes, allowing assembly of delivery complexes in either nucleotide state, engagement of the recognition tag in the ATP state, and application of an unfolding force to the attached protein following hydrolysis.  相似文献   

8.
The degradation of ssrA(AANDENYALAA)-tagged proteins in the bacterial cytosol is carried out by the ClpXP protease and is markedly stimulated by the SspB adaptor protein. It has previously been reported that the amino-terminal zinc-binding domain of ClpX (ZBD) is involved in complex formation with the SspB-tail (XB: ClpX-binding motif). In an effort to better understand the recognition of SspB by ClpX and the mechanism of delivery of ssrA-tagged substrates to ClpXP, we have determined the structures of ZBD alone at 1.5, 2.0, and 2.5 A resolution in each different crystal form and also in complex with XB peptide at 1.6 A resolution. The XB peptide forms an antiparallel beta-sheet with two beta-strands of ZBD, and the structure shows a 1:1 stoichiometric complex between ZBD and XB, suggesting that there are two independent SspB-tail-binding sites in ZBD. The high-resolution ZBD:XB complex structure, in combination with biochemical analyses, can account for key determinants in the recognition of the SspB-tail by ClpX and sheds light on the mechanism of delivery of target proteins to the prokaryotic degradation machine.  相似文献   

9.
Formation and degradation of SsrA-tagged proteins enable ribosome recycling and elimination of defective products of incomplete translation. We produced an antibody against the SsrA peptide and used it to measure the amounts of SsrA-tagged proteins in Escherichia coli cells without interfering with tagging or altering the context of the tag added at the ends of nascent polypeptides. SsrA-tagged proteins were present in very small amounts unless a component of the ClpXP protease was missing. From the levels of tagged proteins in cells in which degradation is essentially blocked, we calculate that > or =1 in 200 translation products receives an SsrA tag. ClpXP is responsible for > or =90% of the degradation of SsrA-tagged proteins. The degradation rate in wild type cells is > or =1.4 min(-1) and decreases to approximately 0.10 min(-1) in a clpX mutant. The rate of degradation by ClpXP is decreased approximately 3-fold in mutants lacking the adaptor SspB, whereas degradation by ClpAP is increased 3-5-fold. However, ClpAP degrades SsrA-tagged proteins slowly even in the absence of SspB, possibly because of interference from ClpA-specific substrates. Lon protease degrades SsrA-tagged proteins at a rate of approximately 0.05 min(-1) in the presence or absence of SspB. We conclude that ClpXP, together with SspB, is uniquely adapted for degradation of SsrA-tagged proteins and is responsible for the major part of their degradation in vivo.  相似文献   

10.
Energy-dependent proteases often rely on adaptor proteins to modulate substrate recognition. The SspB adaptor binds peptide sequences in the stress-response regulator RseA and in ssrA-tagged proteins and delivers these molecules to the AAA+ ClpXP protease for degradation. The structure of SspB bound to an ssrA peptide is known. Here, we report the crystal structure of a complex between SspB and its recognition peptide in RseA. Notably, the RseA sequence is positioned in the peptide-binding groove of SspB in a direction opposite to the ssrA peptide, the two peptides share only one common interaction with the adaptor, and the RseA interaction site is substantially larger than the overlapping ssrA site. This marked diversity in SspB recognition of different target proteins indicates that it is capable of highly flexible and dynamic substrate delivery.  相似文献   

11.
ClpA and ClpX function both as molecular chaperones and as the regulatory components of ClpAP and ClpXP proteases, respectively. ClpA and ClpX bind substrate proteins through specific recognition signals, catalyze ATP-dependent protein unfolding of the substrate, and when in complexes with ClpP translocate the unfolded polypeptide into the cavity of the ClpP peptidase for degradation. To examine the mechanism of interaction of ClpAP with dimeric substrates, single round binding and degradation experiments were performed, revealing that ClpAP degraded both subunits of a RepA homodimer in one cycle of binding. Furthermore, ClpAP was able to degrade both protomers of a RepA heterodimer in which only one subunit contained the ClpA recognition signal. In contrast, ClpXP degraded both subunits of a dimeric substrate only when both protomers contained a recognition signal. These data suggest that ClpAP and ClpXP may recognize and bind substrates in significantly different ways.  相似文献   

12.
ClpXP, an ATP-dependent protease, degrades hundreds of different intracellular proteins. ClpX chooses substrates by binding peptide tags, typically displayed at the N or C terminus of the protein to be degraded. Here, we identify a ClpX mutant that displays a 300-fold change in substrate specificity, resulting in decreased degradation of ssrA-tagged substrates but improved degradation of proteins with other classes of degradation signals. The altered-specificity mutation occurs within "RKH" loops, which surround the entrance to the central pore of the ClpX hexamer and are highly conserved in the ClpX subfamily of AAA+ ATPases. These results support a major role for the RKH loops in substrate recognition and suggest that ClpX specificity represents an evolutionary compromise that has optimized degradation of multiple types of substrates rather than any single class.  相似文献   

13.
ClpXP, an AAA+ protease, plays key roles in protein‐quality control and many regulatory processes in bacteria. The N‐terminal domain of the ClpX component of ClpXP is involved in recognition of many protein substrates, either directly or by binding the SspB adaptor protein, which delivers specific classes of substrates for degradation. Despite very limited sequence homology between the E. coli and C. crescentus SspB orthologs, each of these adaptors can deliver substrates to the ClpXP enzyme from the other bacterial species. We show that the ClpX N domain recognizes different sequence determinants in the ClpX‐binding (XB) peptides of C. crescentus SspBα and E. coli SspB. The C. crescentus XB determinants span 10 residues and involve interactions with multiple side chains, whereas the E. coli XB determinants span half as many residues with only a few important side chain contacts. These results demonstrate that the N domain of ClpX functions as a highly versatile platform for peptide recognition, allowing the emergence during evolution of alternative adaptor‐binding specificities. Our results also reveal highly conserved residues in the XB peptides of both E. coli SspB and C. crescentus SspBα that play no detectable role in ClpX‐binding or substrate delivery.  相似文献   

14.
Substrate selection by AAA+ ATPases that function to unfold proteins or alter protein conformation is often regulated by delivery or adaptor proteins. SspB is a protein dimer that binds to the ssrA degradation tag and delivers proteins bearing this tag to ClpXP, an AAA+ protease, for degradation. Here, we describe the structure of the peptide binding domain of H. influenzae SspB in complex with an ssrA peptide at 1.6 A resolution. The ssrA peptides are bound in well-defined clefts located at the extreme ends of the SspB homodimer. SspB contacts residues within the N-terminal and central regions of the 11 residue ssrA tag but leaves the C-terminal residues exposed and positioned to dock with ClpX. This structure, taken together with biochemical analysis of SspB, suggests mechanisms by which proteins like SspB escort substrates to AAA+ ATPases and enhance the specificity and affinity of target recognition.  相似文献   

15.
Song HK  Eck MJ 《Molecular cell》2003,12(1):75-86
In prokaryotes, incomplete or misfolded polypeptides emanating from a stalled ribosome are marked for degradation by the addition of an 11 residue peptide (AANDENYALAA) to their C terminus. Substrates containing this conserved degradation signal, the SsrA tag, are targeted to specific proteases including ClpXP and ClpAP. SspB was originally characterized as a stringent starvation protein and has been found to bind specifically to SsrA-tagged proteins and to enhance recognition of these proteins by the ClpXP degradation machine. Here, we report the crystal structures of SspB alone and in complex with an SsrA peptide. Unexpectedly, SspB exhibits a fold found in Sm-family RNA binding proteins. The dimeric SspB structures explain the key determinants for recognition of the SsrA tag and define a hydrophobic channel that may bind unfolded substrates.  相似文献   

16.
ClpX requires ATP to unfold protein substrates and translocate them into the proteolytic chamber of ClpP for degradation. The steady-state parameters for hydrolysis of ATP and ATPgammaS by ClpX were measured with different protein partners and the kinetics of degradation of ssrA-tagged substrates were determined with both nucleotides. ClpX hydrolyzed ATPgammaS to ADP and thiophosphate at a rate (6/min) significantly slower than ATP hydrolysis (140/min), but the hydrolysis of both nucleotides was increased by ssrA-tagged substrates and decreased by ClpP. K(M) and k(cat) for hydrolysis of ATP and ATPgammaS were linearly correlated over a 200-fold range, suggesting that protein partners largely affect k(cat) rather than nucleotide binding, indicating that most bound ATP leaves the enzyme by hydrolysis rather than dissociation, and placing an upper limit of approximately 15 micro M on K(D) for both nucleotides. Competition studies with ClpX and fluorescently labeled ADP gave inhibition constants for ATPgammaS ( approximately 2 micro M) and ADP ( approximately 3 micro M) under the reaction conditions used for steady-state kinetics. In the absence of Mg(2+), where hydrolysis does not occur, the inhibition constant for ATP ( approximately 55 micro M) was weaker but very similar to the value for ATPgammaS ( approximately 45 micro M). Compared with ATP, ATPgammaS supported slow but roughly comparable rates of ClpXP degradation for two Arc-ssrA substrates and denatured GFP-ssrA, but not of native GFP-ssrA. These results show that the processing of protein substrates by ClpX is closely coupled to the maximum rate of nucleotide hydrolysis.  相似文献   

17.
The Escherichia coli ATP-dependent ClpAP and ClpXP proteases are composed of a single proteolytic component, ClpP, complexed with either of the two related chaperones, ClpA or ClpX. ClpXP and ClpAP complexes interact with different specific substrates and catalyze ATP-dependent protein unfolding and degradation. In vitro in the presence of ATP or ATPgammaS, ClpA and ClpX form homomeric rings of six subunits, which bind to one or both ends of the double heptameric rings of ClpP. We have observed that, when equimolar amounts of ClpA and ClpX hexamers are added to ClpP in vitro in the presence of ATP or ATPgammaS, hybrid complexes in which ClpX and ClpA are bound to opposite ends of the same ClpP are readily formed. The distribution of homomeric and heteromeric complexes was consistent with random binding of ClpA and ClpX to the ends of ClpP. Direct demonstration of the functionality of the heteromeric complexes was obtained by electron microscopy, which allowed us to visualize substrate translocation into proteolytically inactive ClpP chambers. Starting with hybrid complexes to which protein substrates specific to ClpX or ClpA were bound, translocation of both types of substrates was shown to occur without significant redistribution of ClpA or ClpX. The stoichiometric ratios of the ClpA, ClpX, and ClpP oligomeric complexes in vivo are consistent with the predominance of heteromeric complexes in growing cells. Thus, ClpXAP is a bifunctional protease whose two ends can independently target different classes of substrates.  相似文献   

18.
The Clp family of proteases is responsible for controlling both stress responses and normal growth. In Caulobacter crescentus, the ClpXP protease is essential and drives cell cycle progression through adaptor‐mediated degradation. By contrast, the physiological role for the ClpAP protease is less well understood with only minor growth defects previously reported for ΔclpA cells. Here, we show that ClpAP plays an important role in controlling chromosome content and cell fitness during extended growth. Cells lacking ClpA accumulate aberrant numbers of chromosomes upon prolonged growth suggesting a defect in replication control. Levels of the replication initiator DnaA are elevated in ΔclpA cells and degradation of DnaA is more rapid in cells lacking the ClpA inhibitor ClpS. Consistent with this observation, ClpAP degrades DnaA in vitro while ClpS inhibits this degradation. In cells lacking Lon, the protease previously shown to degrade DnaA in Caulobacter, ClpA overexpression rescues defects in fitness and restores degradation of DnaA. Finally, we show that cells lacking ClpA are particularly sensitive to inappropriate increases in DnaA activity. Our work demonstrates an unexpected effect of ClpAP in directly regulating replication through degradation of DnaA and expands the functional role of ClpAP in Caulobacter.  相似文献   

19.
Facile control of targeted intracellular protein degradation has many potential uses in basic science and biotechnology. One promising approach to this goal is to redesign adaptor proteins, which can regulate proteolytic specificity by tethering substrates to energy-dependent AAA+ proteases. Using the ClpXP protease, we have probed the minimal biochemical functions required for adaptor function by designing and characterizing variant substrates, adaptors, and ClpX enzymes. We find that substrate tethering mediated by heterologous interaction domains and a small bridging molecule mimics substrate delivery by the wild-type system. These results show that simple tethering is sufficient for synthetic adaptor function. In our engineered system, tethering and proteolysis depend on the presence of the macrolide rapamycin, providing a foundation for engineering highly specific degradation of target proteins in cells. Importantly, this degradation is regulated by a small molecule without the need for new adaptor or enzyme biosynthesis.Targeted proteolytic degradation plays important roles in protein quality control and in regulating cellular circuitry in organisms ranging from bacteria to humans (14). In some instances, substrates are recognized directly by a protease enzyme via a degradation tag (Fig. 1A) (see Refs. 5 and 6). In other cases, adaptor proteins or multiple types of substrate sequences are also required to ensure efficient degradation (Fig. 1, B and C) (see Refs. 7 and 8).Open in a separate windowFIGURE 1.A, the ClpX component of the ClpXP protease recognizes some substrates via a degradation tag, denatures the substrate, and then translocates the unfolded protein into ClpP for degradation. B, adaptor-assisted binding of a substrate to ClpXP. C, self-tethering of a substrate to ClpXP.Experimentally induced degradation can be used as a tool to probe the role of specific proteins in cellular processes. For example, a protein that is normally stable can be modified to make its degradation conditionally dependent on the presence of an adaptor, allowing studies of the consequences of depletion after induction of adaptor synthesis (7, 9). Such systems complement methods, such as RNA interference, that rely upon repressing biosynthesis of the target protein but offer significant advantages when rapid depletion of otherwise long-lived proteins is the goal (1012). We are interested in engineering synthetic adaptor systems to control targeted intracellular degradation.ClpXP is a AAA+ protease present in bacteria and mitochondria that consists of two components, ClpX and ClpP. Hexamers of ClpX recognize degradation tags in specific substrate proteins, unfold them in a reaction that requires ATP hydrolysis, and then use additional cycles of ATP hydrolysis to translocate the unfolded polypeptide into an interior chamber of ClpP, where proteolysis takes place (see Fig. 1A). The simplest way in which an adaptor could stimulate degradation is by tethering a specific substrate to a protease, thereby increasing its effective concentration and facilitating proteolysis (see Fig. 1B; for review, see Ref. 3). The SspB adaptor, for example, appears to function by this mechanism. SspB enhances ClpXP degradation of certain substrates, including N-RseA and proteins bearing the ssrA-degradation tag (2, 8, 13). ClpXP degrades these substrates in the absence of SspB, but Km for degradation is substantially lower when this adaptor is present. Two features of SspB are consistent with a tethering mechanism. It has a substrate-binding domain with a groove that binds a portion of the ssrA tag or a sequence in N-RseA, and it contains a flexible C-terminal extension terminating with a peptide motif (XB) that binds to the N-terminal domain of ClpX (1419). Mutations that prevent SspB binding to ClpX or block substrate binding to SspB eliminate stimulation of degradation (13, 16, 20).It has not been rigorously established, however, that tethering per se is sufficient for the activity of any adaptor. Based on biochemical experiments, for instance, Thibault et al. (21) proposed that the adaptor activity of SspB is mediated, in part, by its ability to direct the movement of the N-terminal domains of ClpX, and thereby to regulate the delivery of tagged substrates to ClpXP. For some adaptors, tethering of the substrate to the protease is not sufficient for degradation. For example, the ClpS adaptor tethers N-end rule substrates to the AAA+ ClpAP protease (2224), but some ClpS mutants mediate efficient substrate tethering to ClpAP without facilitating degradation (25). In such cases, more complicated transactions between the adaptor and the protease appear to be needed to ensure that the substrate is properly delivered to the protease. Moreover, in some instances, adaptors play roles in substrate delivery but are also required for assembly of the active protease (26).The studies reported here were motivated by two major goals. First, we wished to test if a completely synthetic adaptor system could be used to regulate substrate degradation. Second, we sought to design a proteolysis system that could be controlled by the presence or absence of a small molecule. To define the minimal biochemical properties required for adaptor-protein function, we engineered and characterized synthetic variants of adaptors, substrates, and the ClpXP protease. We reasoned that if specialized interactions between SspB and the N-terminal domain of ClpX were a requisite part of substrate delivery, then replacing either component would preclude efficient degradation. By contrast, we found that rapid degradation of an otherwise poor substrate was possible in the absence of SspB and the N-domain as long as substrate·enzyme tethering was maintained by other interaction domains. These results show that tethering alone is sufficient for synthetic- adaptor function. We were also able to control degradation in vitro and in vivo using systems in which a small molecule, rapamycin, drives assembly of tethered proteolytic complexes. Thus, targeted degradation can be engineered to depend, in a conditional fashion, on the presence of a small molecule. In principle, degradation under small molecule control has many of the advantages of chemical genetics (27), but should be even simpler and more widely applicable as a method of functional inhibition. In addition, controlling degradation in this fashion is possible even when biosynthesis of new macromolecules is precluded.  相似文献   

20.
DNA replication initiation proteins (Reps) are subjected to degradation by cellular proteases. We investigated how the formation of nucleoprotein complex, involving Rep and a protease, affects Rep degradation. All known Escherichia coli AAA+ cytosolic proteases and the replication initiation protein TrfA of the broad-host-range plasmid RK2 were used. Our results revealed that DNA influences the degradation process and that the observed effects are opposite and protease specific. In the case of ClpXP and ClpYQ proteases, DNA abolishes proteolysis, while in the case of ClpAP and Lon proteases it stimulates the process. ClpX and ClpY cannot interact with DNA-bound TrfA, while the ClpAP and Lon activities are enhanced by the formation of nucleoprotein complexes involving both the protease and TrfA. Lon has to interact with TrfA before contacting DNA, or this interaction can occur with TrfA already bound to DNA. The TrfA degradation by Lon can be carried out only on DNA. The absence of Lon results with higher stability of TrfA in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号