首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular basis of microtubule dynamic instability is controversial, but is thought to be related to a "GTP cap." A key prediction of the GTP cap model is that the proposed labile GDP-tubulin core will rapidly dissociate if the GTP-tubulin cap is lost. We have tested this prediction by using a UV microbeam to cut the ends from elongating microtubules. Phosphocellulose-purified tubulin was assembled onto the plus and minus ends of sea urchin flagellar axoneme fragments at 21-22 degrees C. The assembly dynamics of individual microtubules were recorded in real time using video microscopy. When the tip of an elongating plus end microtubule was cut off, the severed plus end microtubule always rapidly shortened back to the axoneme at the normal plus end rate. However, when the distal tip of an elongating minus end microtubule was cut off, no rapid shortening occurred. Instead, the severed minus end resumed elongation at the normal minus end rate. Our results show that some form of "stabilizing cap," possibly a GTP cap, governs the transition (catastrophe) from elongation to rapid shortening at the plus end. At the minus end, a simple GTP cap is not sufficient to explain the observed behavior unless UV induces immediate recapping of minus, but not plus, ends. Another possibility is that a second step, perhaps a structural transformation, is required in addition to GTP cap loss for rapid shortening to occur. This transformation would be favored at plus, but not minus ends, to account for the asymmetric behavior of the ends.  相似文献   

2.
Effects of magnesium on the dynamic instability of individual microtubules   总被引:12,自引:0,他引:12  
We investigated the effect of magnesium ion (Mg) on the parameters of dynamic instability of individual porcine brain microtubules. Rates of elongation and rapid shortening were measured by using video-enhanced DIC light microscopy and evaluated by using computer-generated plots of microtubule length vs time. Increasing [Mg] from 0.25 to 6 mM increased the second-order association rate constant for elongation about 25% at each end. At plus ends, this resulted in a 1.5-2-fold increase in elongation rates over the tubulin concentrations explored. Rapid shortening rates were more dramatically affected by Mg. As [Mg] was increased from 0.25 to 6 mM, the average rate of rapid shortening increased about 3-fold at plus ends and 4-5-fold at minus ends. The ends had roughly equivalent average rates at low [Mg], of 30-45 microns/min. At any Mg concentration, rates of disassembly varied from one microtubule to another, and often an individual microtubule would exhibit more than one rate during a single shortening phase. Individual rates at 6 mM Mg varied from 12 to 250 microns/min. Over the concentration range explored, Mg affected the frequencies of transition from elongation to shortening and back only at minus ends. Minus ends were relatively stable at low [Mg], having 4 times the frequency of rescue than at high [Mg], and a lower frequency of catastrophe (particularly evident at low tubulin concentrations). Plus ends, surprisingly, were highly unstable at all Mg concentrations investigated, having about the same transition frequencies as did the least stable (high Mg) minus ends. Our results have implications for models of the GTP cap, again emphasizing that GTP caps cannot build up in proportion to elongation rate, and must be constrained to the tips of growing microtubules.  相似文献   

3.
Microtubules were assembled from purified tubulin in the buffer originally used to study dynamic instability (100 mM PIPES, 2 mM EGTA, 1 mM magnesium, 0.2 mM GTP) and then diluted in the same buffer to study the rate of disassembly. Following a 15-fold dilution, microtubule polymer decreased linearly to about 20% of the starting value in 15 sec. We determined the length distribution of microtubules before dilution, and prepared computer simulations of polymer loss for different assumed rates of disassembly. Our experimental data were consistent with a disassembly rate per microtubule of 60 microns/min. This is the total rate of depolymerization for microtubules in the rapid shortening phase, as determined by light microscopy of individual microtubules (Walker et al.: Journal of Cell Biology 107:1437-1448, 1988). We conclude, therefore, that microtubules began rapid shortening at both ends upon dilution. Moreover, since we could detect no lag between dilution and the onset of rapid disassembly, the transition from elongation to rapid shortening apparently occurred within 1 sec following dilution. Assuming that this transition (catastrophe) involves the loss of the GTP cap, and that cap loss is achieved by the sequential dissociation of GTP-tubulin subunits following dilution, we can estimate the maximum size of the cap based on the kinetic data and model interpretation of Walker et al. The cap is probably shorter than 40 and 20 subunits at the plus and minus ends, respectively.  相似文献   

4.
Although the mechanism of microtubule dynamic instability is thought to involve the hydrolysis of tubulin-bound GTP, the mechanism of GTP hydrolysis and the basis of microtubule stability are controversial. Video microscopy of individual microtubules and dilution protocols were used to examine the size and lifetime of the stabilizing cap. Purified porcine brain tubulin (7-23 microM) was assembled at 37 degrees C onto both ends of isolated sea urchin axoneme fragments in a miniature flow cell to give a 10-fold variation in elongation rate. The tubulin concentration in the region of microtubule growth could be diluted rapidly (by 84% within 3 s of the onset of dilution). Upon perfusion with buffer containing no tubulin, microtubules experienced a catastrophe (conversion from elongation to rapid shortening) within 4-6 s on average after dilution to 16% of the initial concentration, independent of the predilution rate of elongation and length. Based on extrapolation of catastrophe frequency to zero tubulin concentration, the estimated lifetime of the stable cap after infinite dilution was less than 3-4 s for plus and minus ends, much shorter than the approximately 200 s observed at steady state (Walker, R. A., E. T. O'Brien, N. K. Pryer, M. Soboeiro, W. A. Voter, H. P. Erickson, and E. D. Salmon. 1988. J. Cell Biol. 107:1437-1448.). We conclude that during elongation, both plus and minus ends are stabilized by a short region (approximately 200 dimers or less) and that the size of the stable cap is independent of 10-fold variation in elongation rate. These results eliminate models of dynamic instability which predict extensive "build-up" stabilizing caps and support models which constrain the cap to the elongating tip. We propose that the cell may take advantage of such an assembly mechanism by using "catastrophe factors" that can promote frequent catastrophe even at high elongation rates by transiently binding to microtubule ends and briefly inhibiting GTP-tubulin association.  相似文献   

5.
The current two-state GTP cap model of microtubule dynamic instability proposes that a terminal crown of GTP-tubulin stabilizes the microtubule lattice and promotes elongation while loss of this GTP-tubulin cap converts the microtubule end to shortening. However, when this model was directly tested by using a UV microbeam to sever axoneme-nucleated microtubules and thereby remove the microtubule's GTP cap, severed plus ends rapidly shortened, but severed minus ends immediately resumed elongation (Walker, R.A., S. Inoué, and E.D. Salmon. 1989. J. Cell Biol. 108: 931–937).

To determine if these previous results were dependent on the use of axonemes as seeds or were due to UV damage, or if they instead indicate an intermediate state in cap dynamics, we performed UV cutting of self-assembled microtubules and mechanical cutting of axoneme-nucleated microtubules. These independent methods yielded results consistent with the original work: a significant percentage of severed minus ends are stable after cutting. In additional experiments, we found that the stability of both severed plus and minus ends could be increased by increasing the free tubulin concentration, the solution GTP concentration, or by assembling microtubules with guanylyl-(α,β)-methylene-diphosphonate (GMPCPP).

Our results show that stability of severed ends, particularly minus ends, is not an artifact, but instead reveals the existence of a metastable kinetic intermediate state between the elongation and shortening states of dynamic instability. The kinetic properties of this intermediate state differ between plus and minus ends. We propose a three-state conformational cap model of dynamic instability, which has three structural states and four transition rate constants, and which uses the asymmetry of the tubulin heterodimer to explain many of the differences in dynamic instability at plus and minus ends.

  相似文献   

6.
SCG10 (superior cervical ganglia neural-specific 10 protein) is a neuron specific member of the stathmin family of microtubule regulatory proteins that like stathmin can bind to soluble tubulin and depolymerize microtubules. The direct actions of SCG10 on microtubules themselves and on their dynamics have not been investigated previously. Here, we analyzed the effects of SCG10 on the dynamic instability behavior of microtubules in vitro, both at steady state and early during microtubule polymerization. In contrast to stathmin, whose major action on dynamics is to destabilize microtubules by increasing the switching frequency from growth to shortening (the catastrophe frequency) at microtubule ends, SCG10 stabilized the plus ends both at steady state and early during polymerization by increasing the rate and extent of growth. For example, early during polymerization at high initial tubulin concentrations (20 microM), a low molar ratio of SCG10 to tubulin of 1:30 increased the growth rate by approximately 50%. In contrast to its effects at plus ends, SCG10 destabilized minus ends by increasing the shortening rate, the length shortened during shortening events, and the catastrophe frequency. Consistent with its ability to modulate microtubule dynamics at steady state, SCG10 bound to purified microtubules along their lengths. The dual activity of SCG10 at opposite microtubule ends may be important for its role in regulating growth cone microtubule dynamics. SCG10's ability to promote plus end growth may facilitate microtubule extension into filopodia, and its ability to destabilize minus ends could provide soluble tubulin for net plus end elongation.  相似文献   

7.
Stabilization of microtubules by tubulin-GDP-Pi subunits   总被引:5,自引:0,他引:5  
Microtubule dynamic instability has been accounted for by assuming that tubulin subunits at microtubule ends differ from the tubulin-GDP subunits that constitute the bulk of the microtubule. It has been suggested that this heterogeneity results because ends contain tubulin subunits that have not yet hydrolyzed an associated GTP molecule. Alternatively, in a recent model it was proposed that ends contain tubulin-GDP-Pi subunits from which Pi has not yet dissociated. The models differ in their predicted response to added ligands: because GDP in subunits in microtubules does not exchange with nucleotide in solution, the heterogeneity from a tubulin-GTP cap will not be eliminated by added GTP; however, the dissociability of Pi in tubulin-GDP-Pi subunits will allow a heterogeneity resulting from a tubulin-GDP-Pi cap to be eliminated by added excess Pi. Elimination of the heterogeneity is expected to be manifested by an elimination of dynamic instability behavior. Using video microscopy to study the kinetic behavior of individual microtubules under reaction conditions where dynamic instability is the dominant mechanism for microtubule length changes, we have determined the effects of 0.167 M Pi on the rate of subunit addition in the elongation phase, the rate of subunit dissociation in the rapid shortening phase, and the rates of the phase transitions from elongation to rapid shortening and from rapid shortening to growing. Since 0.167 M Pi did not decrease the subunit dissociation rate in the rapid shortening phase or the rate of the phase transition from growing to rapid shortening, our results provide no support for the hypothesis that tubulin-GDP-Pi subunits are responsible for dynamic instability behavior of microtubules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
M A Jordan  L Wilson 《Biochemistry》1990,29(11):2730-2739
We have investigated the effects of vinblastine at micromolar concentrations and below on the dynamics of tubulin exchange at the ends of microtubule-associated-protein-rich bovine brain microtubules. The predominant behavior of these microtubules at polymer-mass steady state under the conditions examined was tubulin flux, i.e., net addition of tubulin at one end of each microtubule, operationally defined as the assembly or A end, and balanced net loss at the opposite (disassembly or D) end. No dynamic instability behavior could be detected by video-enhanced dark-field microscopy. Addition of vinblastine to the microtubules at polymer-mass steady state resulted in an initial concentration-dependent depolymerization predominantly at the A ends, until a new steady-state plateau at an elevated critical concentration was established. Microtubules ultimately attained the same stable polymer-mass plateau when vinblastine was added prior to initiation of polymerization as when the drug was added to already polymerized microtubules. Vinblastine inhibited tubulin exchange at the ends of the microtubules at polymer-mass steady state, as determined by using microtubules differentially radiolabeled at their opposite ends. Inhibition of tubulin exchange occurred at concentrations of vinblastine that had very little effect on polymer mass. Both the initial burst of incorporation that occurs in control microtubule suspensions following a pulse of labeled GTP and the relatively slower linear incorporation of label that follows the initial burst were inhibited in a concentration-dependent manner by vinblastine. Both processes were inhibited to the same extent at all vinblastine concentrations examined. If the initial burst of label incorporation represents a low degree of dynamic instability (very short excursions of growth and shortening of the microtubules at one or both ends), then vinblastine inhibits both dynamic instability and flux to similar extents. The ability of vinblastine to inhibit tubulin exchange at microtubule ends in the micromolar concentration range appeared to be mediated by the reversible binding of vinblastine to tubulin binding sites exposed at the polymer ends. Determination by dilution analysis of the effects of vinblastine on the apparent dissociation rate constants for tubulin loss at opposite microtubule ends indicated that a principal effect of vinblastine is to decrease the dissociation rate constant at A ends (i.e., it produces a kinetic cap at A ends), whereas it has no effect on the D-end dissociation rate constant.  相似文献   

9.
Phelps KK  Walker RA 《Biochemistry》2000,39(14):3877-3885
Although microtubule (MT) dynamic instability is thought to depend on the guanine nucleotide (GTP vs GDP) bound to the beta-tubulin of the terminal subunit(s), the MT minus end exhibits dynamic instability even though the terminal beta-tubulin is always crowned by GTP-alpha-tubulin. As an approach toward understanding how dynamic instability occurs at the minus end, we investigated the effects of N-ethylmaleimide-modified tubulin (NTb) on elongation and rapid shortening of individual MTs. NTb preferentially inhibits minus end assembly when combined with unmodified tubulin (PCTb), but the mechanism of inhibition is unknown. Here, video-enhanced differential interference contrast microscopy was used to observe the effects of NTb on MTs assembled from PCTb onto axoneme fragments. MTs were exposed to mixtures of PCTb (25 microM) and NTb (labeled on approximately 1 Cys per monomer) in which the NTb/PCTb ratio varied from 0.025 to 1. The NTb/PCTb mixture had a slight inhibitory effect on the plus end elongation rate, but significantly inhibited or completely arrested minus end elongation. For the majority of mixtures that were assayed (0.1-1 NTb/PCTb ratio), minus end MT length remained constant until the NTb/PCTb mixture was replaced. Replacement with PCTb allowed elongation to proceed, whereas replacement with buffer or NTb caused minus ends to shorten. Taken together, the results indicate that NTb associates with both plus and minus ends and that NTb acts to reversibly cap minus ends only when PCTb is also present. Low-resolution mapping of labeled Cys residues, along with previous experiments with other Cys-reactive compounds, suggests that modification of beta-tubulin Cys(239) may be associated with the capping action of NTb.  相似文献   

10.
Stathmin is a ubiquitous microtubule destabilizing protein that is believed to play an important role linking cell signaling to the regulation of microtubule dynamics. Here we show that stathmin strongly destabilizes microtubule minus ends in vitro at steady state, conditions in which the soluble tubulin and microtubule levels remain constant. Stathmin increased the minus end catastrophe frequency approximately 13-fold at a stathmin:tubulin molar ratio of 1:5. Stathmin steady-state catastrophe-promoting activity was considerably stronger at the minus ends than at the plus ends. Consistent with its ability to destabilize minus ends, stathmin strongly increased the treadmilling rate of bovine brain microtubules. By immunofluorescence microscopy, we also found that stathmin binds to purified microtubules along their lengths in vitro. Co-sedimentation of purified microtubules polymerized in the presence of a 1:5 initial molar ratio of stathmin to tubulin yielded a binding stoichiometry of 1 mol of stathmin per approximately 14.7 mol of tubulin in the microtubules. The results firmly establish that stathmin can increase the steady-state catastrophe frequency by a direct action on microtubules, and furthermore, they indicate that an important regulatory action of stathmin in cells may be to destabilize microtubule minus ends.  相似文献   

11.
Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability.  相似文献   

12.
M F Carlier  D Didry  D Pantaloni 《Biochemistry》1987,26(14):4428-4437
The tubulin concentration dependence of the rates of microtubule elongation and accompanying GTP hydrolysis has been studied over a large range of tubulin concentration. GTP hydrolysis followed the elongation process closely at low tubulin concentration and became gradually uncoupled at higher concentrations, reaching a limiting rate of 35-40 s-1. The kinetic parameters for microtubule growth were different at low and high tubulin concentrations. Elongation of microtubules has also been studied in solutions containing GDP and GTP in variable proportions. Only traces of GTP present in GDP were necessary to confer a high stability (low critical concentration) to microtubules. Pure GDP-tubulin was found unable to elongate microtubules in the absence of GTP but blocked microtubule ends with an equilibrium dissociation constant of 5-6 microM. These data were accounted for by a model within which, in the presence of GTP-tubulin at high concentration, microtubules grow at a fast rate with a large GTP cap; the GTP cap may be quite short in the region of the critical concentration; microtubule stability is linked to the strong interaction between GTP and GDP subunits at the elongating site; dimeric GDP-tubulin does not have the appropriate conformation to undergo reversible polymerization. These results are discussed with regard to possible role of GDP and GTP and of GTP hydrolysis in microtubule dynamics.  相似文献   

13.
In living cells microtubules (MTs) continuously grow and shorten. This feature of MTs was discovered in vitro and named dynamic instability. Comparison of dynamic instability of MTs in vitro and in vivo shows a number of differences. MTs in vivo rapidly grow (up to 20 microns/min), duration of their shortening is small (on average 15-20 s), and pauses are prominent. In different animal cells MTs grow from the centrosome and form a radial array. In such cells growth of MTs is persistent, i.e. undergo without interruptions until plus end of a MT reaches cell margin. Analysis of literature and original data shows that interconvertion between phases of growth, shortening and pause is asymmetric: growth often converts into pause, while shortening always converts into growth without pause. We suggest dynamic instability described near the cell margin in numerous publications results not only from intrinsic properties of MTs, but also because of the external obstacles for their growth. MT behavior in the cells with radial array of long MTs could be treated as dynamic instability with boundary conditions. One boundary is the centrosome responsible for rapid initiation of MT growth. Another boundary is cell margin limiting MT elongation. MT growth occurs with constant mean velocity, and potential duration of growth phase might exceed cell radius. MT shortening is usually smaller than MT length however velocity of shortening increases with time. Random episodes of rapid shortening are sufficient for the exchange of MTs in 10-20 min in the cells not more than 40-50 microns in diameter. Experimental data show that similar rate of exchange of MTs is in the large cells. This is achieved employing another mechanism, namely release of MTs and depolymerization from the minus end. In the minus end pathway time required for the exchange of MTs does not depend on cell radius and is determined primarily by the frequency of releases. Thus a small number of free MTs with metastable minus ends significantly reduce time required for the renovation of the radial MT array. Summarizing all experimental data we suggest the life cycle scheme for the MT in a cell. MT is initiated at the centrosome and grows rapidly until it reaches cell margin. At the margin the plus end oscillates, and finally MT depolimerizes. MT "death" comes from a random catastrophe (shortening from the plus end) in small cells or from release and depolymerization of the minus end in large cells.  相似文献   

14.
The EB1+TIP protein family and its binding partners track growing plus ends of microtubules in cells and are thought to regulate their dynamics. Here we determined the effects of EB1 and the N-terminal CAP-Gly domain (p150n) of one of its major binding partners, p150Glued, both separately and together, on the dynamic instability parameters at plus ends of purified steady-state microtubules. With EB1 alone, the shortening rate, the extent of shortening, and the catastrophe frequency were suppressed in the absence of significant effects on the growth rate or rescue frequency. The effects of EB1 on dynamics were significantly different when p150n was added together with EB1. The rate and extent of shortening and the catastrophe frequency were suppressed 3-4 times more strongly than with EB1 alone. In addition, the EB1-p150n complex increased the rescue frequency and the mean length the microtubules grew, parameters that were not significantly affected by EB1 alone. Similarly, deletion of EB1's C-terminal tail, which is a crucial binding region for p150n, significantly increased the ability of EB1 to suppress shortening dynamics. EB1 by itself bound along the length of the microtubules with 1 mol of EB1 dimer bound per approximately 12 mol of tubulin dimer. Approximately twice the amount of EB1 was recruited to the microtubules in the presence of p150n. Our results indicate that inactivation of EB1's flexible C-terminal tail significantly changes EB1's ability to modulate microtubule dynamics. They further suggest that p150Glued may activate and thereby facilitate the recruitment of EB1 to the tips of microtubules to regulate their dynamics.  相似文献   

15.
Evidence that 13 or 14 contiguous tubulin-GTP subunits are sufficient to cap and stabilize a microtubule end and that loss of only one of these subunits results in the transition to rapid disassembly(catastrophe) was obtained using the slowly hydrolyzable GTP analogue guanylyl-(a,b)-methylene-diphosphonate (GMPCPP). The minus end of microtubules assembled with GTP was transiently stabilized against dilution-induced disassembly by reaction with tubulin-GMPCPP subunits for a time sufficient to cap the end with an average 40 subunits. The minimum size of a tubulin-GMPCPP cap sufficient to prevent disassembly was estimated from an observed 25- to 2000-s lifetime of the GMPCPP-stabilized microtubules following dilution with buffer and from the time required for loss of a single tubulin-GMPCPP subunit from the microtubule end (found to be 15 s). Rather than assuming that the 25- to 2000-s dispersion in cap lifetime results from an unlikely 80-fold range in the number of tubulin-GMPCpP subunits added in the 25-s incubation, it is proposed that this results because the minimum stable cap contains 13 to 14 tubulin-GMPCPP subunits. As a consequence, a microtubule capped with 13-14 tubulin-GMPCPP subunits switches to disassembly after only one dissociation event (in about 15 s), whereas the time required for catastrophe of a microtubule with only six times as many subunits (84 subunits) corresponds to 71 dissociation events (84-13). The minimum size of a tubulin-GMPCPP cap sufficient to prevent disassembly was also estimated with microtubules in which a GMPCPP-cap was formed by allowing chance to result in the accumulation of multiple contiguous tubulin-GMPCPP subunits at the end, during the disassembly of microtubules containing both GDP and GMPCPP. Our observation that the disassembly rate was inhibited in proportion to the 13-14th power of the fraction of subunits containing GMPCPP again suggests that a minimum cap contains 13-14 tubulin-GMPCPP subunits. A remeasurement of the rate constant for dissociation of a tubulin-GMPCPP subunit from the plus-end of GMPCPP microtubules, now found to be 0.118 s-1, has allowed a better estimate of the standard free energy for hydrolysis of GMPCPP in a microtubule and release of Pi: this is +0.7 kcal/mol, rather than -0.9 kcal/mol, as previously reported.  相似文献   

16.
We have used video-enhanced DIC microscopy to examine the effects of XMAP, a Mr 215,000 microtubule-associated protein from Xenopus eggs (Gard, D.L., and M. W. Kirschner. 1987. J. Cell Biol. 105:2203-2215), on the dynamic instability of microtubules nucleated from axoneme fragments in vitro. Our results indicate that XMAP substantially alters the parameters of microtubule assembly at plus ends. Specifically, addition of 0.2 microM XMAP resulted in (a) 7-10-fold increase in elongation velocity, (b) approximately threefold increase in shortening velocity, and (c) near elimination of rescue (the switch from rapid shortening to elongation). Thus, addition of XMAP resulted in the assembly of longer, but more dynamic, microtubules from the plus ends of axonemes which upon catastrophe disassembled back to the axoneme nucleation site. In agreement with previous observations (Gard, D.L., and M. W. Kirschner. 1987. J. Cell Biol. 105:2203-2215), the effects of XMAP on the minus end were much less dramatic, with only a 1.5-3-fold increase in elongation velocity. These results indicate that XMAP, unlike brain MAPs, promotes both polymer assembly and turnover, and suggests that the interaction of XMAP with tubulin and the function of XMAP in vivo may differ from previously characterized MAPs.  相似文献   

17.
We have studied the capture of microtubules by isolated metaphase chromosomes, using microtubules stabilized with taxol and marked with biotin tubulin to distinguish their plus and minus ends. The capture reaction is reversible at both the plus and minus ends. The on rate of capture is the same for both polarities but the dissociation rate from the kinetochore is seven times slower with microtubules captured at their plus ends than those captured at their minus ends. At steady state this disparity in off rates leads to the gradual replacement of microtubules captured at their minus ends with those captured at their plus ends. These results suggest that the kinetochore makes a lateral attachment near the end of the microtubule in the initial capture reaction and shows a structural specificity that may be important in proper bipolar attachment of the chromosome to the spindle.  相似文献   

18.
Whether polarized treadmilling is an intrinsic property of microtubules assembled from pure tubulin has been controversial. We have tested this possibility by imaging the polymerization dynamics of individual microtubules in samples assembled to steady-state in vitro from porcine brain tubulin, using a 2% glycerol buffer to reduce dynamic instability. Fluorescence speckled microtubules were bound to the cover-glass surface by kinesin motors, and the assembly dynamics of plus and minus ends were recorded with a spinning-disk confocal fluorescence microscopy system. At steady-state assembly, 19% of the observed microtubules (n = 89) achieved treadmilling in a plus-to-minus direction, 34% in a minus-to-plus direction, 37% grew at both ends, and 10% just shortened. For the population of measured microtubules, the distribution of lengths remained unchanged while a 20% loss of original and 27% gain of new polymer occurred over the 20-min period of observation. The lack of polarity in the observed treadmilling indicates that stochastic differences in dynamic instability between plus and minus ends are responsible for polymer turnover at steady-state assembly, not unidirectional treadmilling. A Monte Carlo simulation of plus and minus end dynamics using measured dynamic instability parameters reproduces our experimental results and the amount of steady-state polymer turnover reported by previous biochemical assays.  相似文献   

19.
Background: Microtubules polymerized from pure tubulin show the unusual property of dynamic instability, in which both growing and shrinking polymers coexist at steady state. Shortly after its addition to a microtubule end, a tubulin subunit hydrolyzes its bound GTP. Studies with non-hydrolyzable analogs have shown that GTP hydrolysis is not required for microtubule assembly, but is essential for generating a dynamic polymer, in which the subunits at the growing tip have bound GTP and those in the bulk of the polymer have bound GDP. It has been suggested that loss of the ‘GTP cap’ through dissociation or hydrolysis exposes the unstable GDP core, leading to rapid depolymerization. However, evidence for a stabilizing cap has been very difficult to obtain.Results We developed an assay to determine the minimum GTP cap necessary to stabilize a microtubule from shrinking. Assembly of a small number of subunits containing a slowly hydrolyzed GTP analog (GMPCPP) onto the end of dynamic microtubules stabilized the polymer to dilution. By labeling the subunits with rhodamine, we measured the size of the cap and found that as few as 40 subunits were sufficient to stabilize a microtubule.Conclusion On the basis of statistical arguments, in which the proportion of stabilized microtubules is compared to the probability that when 40 GMPCPP-tubulin subunits have polymerized onto a microtubule end, all protofilaments have added at least one GMPCPP-tubulin subunit, our measurements of cap size support a model in which a single GTP subunit at the end of each of the 13 protofilaments of a microtubule is sufficient for stabilization. Depolymerization of a microtubule may be initiated by an exposed tubulin–GDP subunit at even a single position. These results have implications for the structure of microtubules and their means of regulation.  相似文献   

20.
Structural plugs at microtubule ends may regulate polymer dynamics in vitro   总被引:1,自引:0,他引:1  
Microtubules contain in their lumens distinct structures (plugs) that influence their dynamic behavior in vitro. As observed by electron microscopy, plugs are stain-occluding structures 10-30 nm in length that occur along the lengths and at the ends of microtubules. Plugs occur at a frequency of 20-40% at the ends of microtubules assembled from cycled microtubule protein containing MAPs. While the composition of plugs is not known, preliminary evidence suggests that they are accretions of tubulin, that they are labile, and that they are more common in preparations containing MAPs. When polymers are induced to depolymerize by endwise subunit dissociation, the frequency of plugged microtubule ends increases transiently, suggesting that plugs temporarily stabilize microtubules. The functional significance of plugs may be that they prevent the sudden complete loss of microtubules through catastrophic disassembly. It is possible that plugs, by slowing the rate of disassembly, enable a polymer to add GTP-tubulin subunits, thereby forming a stabilizing GTP-cap. These observations suggest that plugs may stabilize polymers and account for the frequent transitions from shortening to growing phases that characterize dynamic instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号