首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple paternity occurs in most species and animal groups that have been studied. Because mating involves fitness costs to individual females, theory predicts that polyandrous females gain greater fitness benefits than costs, allowing the behavior to be maintained. Genetic, rather than material, benefits often occur in species where males provide females with little more than sperm and seminal fluid. We compared fitness correlates of single‐ and double‐sire clutches from female marbled salamanders (Ambystoma opacum) at the egg, hatchling, and metamorph stages of offspring development. Because clutches were collected from experimental breeding groups, strict paternity exclusion of offspring using microsatellite data allowed us to categorize each clutch as having either one or two fathers. Early offspring viability and size of hatchlings were not different between single‐ and multiple‐paternity clutches. Larvae from the two clutch types were allowed to develop together in field enclosures until metamorphosis. Although there was no difference in size at metamorphosis, survival to metamorphosis was significantly higher in multiple‐paternity clutches (44% vs. 40%) suggesting a benefit for females. The results were consistent with genetic benefits, although maternal effects could not be ruled out. The data did not support predictions of the genetic bet‐hedging and good sperm hypotheses for genetic benefits of polyandry.  相似文献   

2.
In polyandrous species, paternity may be influenced by the timingand frequency of mating. Female spiders possess 2 genital openingsthat lead to separate sperm-storage structures. Thus, even whenmating with a previously mated female, a male may reduce directsperm competition by inseminating the opposite opening to herfirst mate. Such morphology may provide females with greatercontrol over paternity. We examined simultaneously whether malesavoided already inseminated female genital openings and whetherthis behavior varied with the time between successive matings.To explore these questions, we mated female golden orb weaverspiders, Nephila edulis, each to 2 males and manipulated thetiming of their second mating. We documented male inseminationpatterns and explored the influence of male mating decisionson paternity success using the irradiated male technique. Wefound that 60% of males avoided sperm competition by discriminatingagainst inseminated genital openings. Moreover, male matingbehavior had a dramatic impact on the paternity success of irradiatedmales. When males inseminated the same genital opening, thecompetitive ability of the irradiated male's sperm was dramaticallyreduced resulting in lower paternity success. In contrast, whenthe 2 males inseminated opposite genital openings both malessired equal proportions of offspring regardless of their radiationstatus. There was no evidence that the timing of the secondmating affected patterns of paternity. Our data suggest thatdifferences in sperm quality may influence paternity successof N. edulis males under a sperm-competitive scenario. In contrast,females appear to have limited postmating control over paternity.  相似文献   

3.
We describe the patterns of paternity success from laboratory mating experiments conducted in Antechinus agilis, a small size dimorphic carnivorous marsupial (males are larger than females). A previous study found last‐male sperm precedence in this species, but they were unable to sample complete litters, and did not take male size and relatedness into account. We tested whether last‐male sperm precedence regardless of male size still holds for complete litters. We explored the relationship between male mating order, male size, timing of mating and relatedness on paternity success. Females were mated with two males of different size with either the large or the small male first, with 1 day rest between the matings. Matings continued for 6 h. In these controlled conditions male size did not have a strong effect on paternity success, but mating order did. Males mating second sired 69.5% of the offspring. Within first mated males, males that mated closer to ovulation sired more offspring. To a lesser degree, variation appeared also to be caused by differences in genetic compatibility of the female and the male, where high levels of allele‐sharing resulted in lower paternity success.  相似文献   

4.
Charles W. Fox 《Oecologia》1993,96(1):139-146
Maternal age influences offspring quality of many species of insects. This observed maternal age influence on offspring performance may be mediated through maternal age effects on egg size, which in turn may be directly influenced by the female's nutritional state. Thus, behaviors that influence a female's nutritional status will indirectly influence egg size, and possibly offspring life histories. Because males provide nutrients to females in their ejaculate, female mating frequency is one behavior which may influence her nutritional status, and thus the size of her eggs and the performance of her offspring. In this paper, I first quantify the influences of maternal age on egg size and offspring performance of the bruchid beetle, Callosobruchus maculatus. I then examine whether nutrients transferred during copulation reduce the magnitude of maternal age effects on egg size and larval performance when mothers are nutrient-stressed. Egg size and egg hatchability decreased, and development time increased, with increasing maternal age. Multiple mating and adult feeding by females both resulted in increased egg size. This increase in egg size of females mated multiply did not translate into reduced development time or increased body size and egg hatchability, but did correlate with improved survivorship of offspring produced by old mothers. Thus, it appears that because the influence of mating frequency on egg size is small relative to the influence of maternal age, the influence of nutrients derived from multiple mating on offspring life history is almost undetectable (detected only as a small influence on survivorship). For C. maculatus, female multiple mating has been demonstrated to increase adult female survivorship (Fox 1993a), egg production (Credland and Wright 1989; Fox 1993a), egg size, and larval survivorship, but, contrary to the suggestion of Wasserman and Asami (1985), multiple mating had no detectable influence on offspring development time or body size.  相似文献   

5.
In animals in which the two sexes invest relatively similar amounts of resources in their young, the number of mates is expected to affect male and female reproductive success similarly and gender conflicts on the number of mates may not arise. Correspondingly, in non-selfing, simultaneous hermaphrodites with long-term monogamy, the two partners are expected to alternate repeatedly their sexual roles and invest similarly in their offspring. Therefore, the gender conflict on the number of mating partners should not arise. However, when >2 conspecifics are present, hermaphrodites are known to plastically adjust their behavior and sex allocation and compete for mating repeatedly in the male role. We tested whether this leads to multiple paternities of single egg clutches in experimental replicates of small and large groups of non-selfing, egg-trading, behaviorally monogamous polychaete worms (Ophryotrocha diadema) by using neutral genetic markers to estimate paternity. Multiply fertilized egg cocoons were common in these worms; two or more individuals succeeded in fertilizing the same egg cocoon and mate competition increased with group size. Multiply fertilized egg cocoons had a higher proportion of eggs developing into mature worms than singly fertilized egg cocoons. Possibly singly fertilized cocoons had a lower fertilization rate owing to low sperm counts and aflagellate sperm.  相似文献   

6.
In polyandrous mating systems, male fitness depends on success in premating, post-copulatory and offspring viability episodes of selection. We tracked male success across all of these episodes simultaneously, using transgenic Drosophila melanogaster with ubiquitously expressed green fluorescent protein (i.e. GFP) in a series of competitive and noncompetitive matings. This approach permitted us to track paternity-specific viability over all life stages and to distinguish true competitive fertilization success from differential early offspring viability. Relationships between episodes of selection were generally not present when paternity was measured in eggs; however, positive correlations between sperm competitive success and offspring viability became significant when paternity was measured in adult offspring. Additionally, we found a significant male × female interaction on hatching success and a lack of repeatability of offspring viability across a focal male's matings, which may underlay the limited number of correlations found between episodes of selection.  相似文献   

7.
The pattern of sperm predominance in doubly mated female crickets, Gryllodes supplicans, was investigated using a radiation-sterility technique. Female G. supplicans made significant use of sperm from both males in fertilizing eggs; overall, first males to mate enjoyed a small advantage, fertilizing about 60% of the offspring produced subsequent to the second mating. The combined use of the sperm of both males in fertilizing eggs occurred soon after the second mating; evidently, mixing of ejaculates within a female's spermatheca does occur. Male G. supplicans provide females with a nuptial gift, the spermatophylax, which influences the time at which a female removes the externally attached sperm-ampulla; this in turn determines the quantity of sperm that is transferred. Moreover, the degree of sperm precedence achieved by a male may be positively related to the time at which the female removes his sperm ampulla. Thus males, by feeding females, ensure not only that a sufficient number of sperm are transferred to fertilize all of a female's eggs, but also may increase the certainty of their paternity. In mating systems in which females control sperm transfer and paternity is influenced by numbers of sperm (i.e., numerical sperm competition), an increase in prezygotic investment in females may be an adaptive male response.  相似文献   

8.
Success in sperm competition is of fundamental importance to males, yet little is known about what factors determine paternity. Theory predicts that males producing high sperm numbers have an advantage in sperm competition. Large spermatophore size (the sperm containing package) also correlates with paternity in some species, but the relative importance of spermatophore size and sperm numbers has remained unexplored. Males of the small white butterfly, Pieris rapae (Lepidoptera: Pieridae), produce large nutritious spermatophores on their first mating. On their second mating, spermatophores are only about half the size of the first, but with almost twice the sperm number. We manipulated male mating history to examine the effect of spermatophore size and sperm numbers on male fertilization success. Overall, paternity shows either first male or, more frequently, second male sperm precedence. Previously mated males have significantly higher fertilization success in competition with males mating for the first time, strongly suggesting that high sperm number is advantageous in sperm competition. Male size also affects paternity with relatively larger males having higher fertilization success. This may indicate that spermatophore size influences paternity, because in virgin males spermatophore size correlates with male size. The paternity of an individual male is also inversely correlated with the mass of his spermatophore remains dissected out of the female. This suggests that females may influence paternity by affecting the rate of spermatophore drainage. Although the possibility of female postcopulatory choice remains to be explored, these results clearly show that males maximize their fertilization success by increasing the number of sperm in their second mating.  相似文献   

9.
Polyandry is a widespread mating strategy, found in a broad number of taxa. Among amphibians, polyandry, and multiple paternity as its direct consequence, is quite common in salamanders, especially within Ambystomatidae and Plethodontidae. In the suborder Salamadroidea the existence of two different types of spermatheca allows several kinds of polyandry strategies to appear. We used multilocus microsatellite genotyping to investigate the presence of polyandry and its effects on the paternity in a previously unstudied species with a terrestrial habit, Salamandrina perspicillata. We collected gravid females in their natural habitat and analysed the paternity of the offspring by using the software COLONY and GERUD. We found that all the analysed clutches had been fertilized by 2–4 males and that in every clutch one male had sired most of the offspring. Our results confirmed that polyandry is an important component of the mating system of this species, suggesting that females are able to recognize the sperm of the male that will provide a genetic benefit for their offspring. We found evidence of female cryptic choice based on males' genetic dissimilarity: (1) males who sire most of the offspring of a given female tend to be genetically different from their sexual partner; (2) a same male, when mated with two females, sired a proportion of the offspring inversely correlated with his genetic similarity to the female; (3) genetic dissimilarity between mating partners is positively correlated with offspring heterozygosity. According to the genetic compatibility model, we hypothesized that in the observed non resource‐based mating system the indirect benefit for the offspring should reflect interactions between paternal and maternal genomes rather than the inheritance of the so‐called ‘good genes’. This study suggests a polygynandrous mating system for the study species and provides the first report in a salamandrid species in natural condition that reproductive success of males is correlated with genetic dissimilarity between mates. Moreover, we found evidence of an offspring benefit (higher heterozygosity) derived from the most genetically dissimilar father.  相似文献   

10.
Why do females mate multiply? A review of the genetic benefits   总被引:14,自引:0,他引:14  
The aim of this review is to consider the potential benefits that females may gain from mating more than once in a single reproductive cycle. The relationship between non-genetic and genetic benefits is briefly explored. We suggest that multiple mating for purely non-genetic benefits is unlikely as it invariably leads to the possibility of genetic benefits as well. We begin by briefly reviewing the main models for genetic benefits to mate choice, and the supporting evidence that choice can increase offspring performance and the sexual attractiveness of sons. We then explain how multiple mating can elevate offspring fitness by increasing the number of potential sires that compete, when this occurs in conjunction with mechanisms of paternity biasing that function in copula or post-copulation. We begin by identifying cases where females use pre-copulatory cues to identify mates prior to remating. In the simplest case, females remate because they identify a superior mate and 'trade up' genetically. The main evidence for this process comes from extra-pair copulation in birds. Second, we note other cases where pre-copulatory cues may be less reliable and females mate with several males to promote post-copulatory mechanisms that bias paternity. Although a distinction is drawn between sperm competition and cryptic female choice, we point out that the genetic benefits to polyandry in terms of producing more viable or sexually attractive offspring do not depend on the exact mechanism that leads to biased paternity. Post-copulatory mechanisms of paternity biasing may: (1) reduce genetic incompatibility between male and female genetic contributions to offspring; (2) increase offspring viability if there is a positive correlation between traits favoured post-copulation and those that improve performance under natural selection; (3) increase the ability of sons to gain paternity when they mate with polyandrous females. A third possibility is that genetic diversity among offspring is directly favoured. This can be due to bet-hedging (due to mate assessment errors or temporal fluctuations in the environment), beneficial interactions between less related siblings or the opportunity to preferentially fertilise eggs with sperm of a specific genotype drawn from a range of stored sperm depending on prevailing environmental conditions. We use case studies from the social insects to provide some concrete examples of the role of genetic diversity among progeny in elevating fitness. We conclude that post-copulatory mechanisms provide a more reliable way of selecting a genetically compatible mate than pre-copulatory mate choice. Some of the best evidence for cryptic female choice by sperm selection is due to selection of more compatible sperm. Two future areas of research seem likely to be profitable. First, more experimental evidence is needed demonstrating that multiple mating increases offspring fitness via genetic gains. Second, the role of multiple mating in promoting assortative fertilization and increasing reproductive isolation between populations may help us to understand sympatric speciation.  相似文献   

11.
Multiple matings result in varying paternity share based on mating interval and order. Thus, assessing the effect of mating interval and order on patterns of sperm usage and paternity is crucial. We designed consecutive and delayed double-mating experiments to investigate paternity variation in ladybird, Menochilus sexmaculatus (Fabricius) (Coleoptera: Coccinellidae), using two distinct morphs of the species as phenotypic markers of paternity. The time to commence mating, copulation duration and reproductive output were recorded. The morphs of the offspring from the two setups were taken as a measure of paternity accumulated by the males. The time to commence mating decreased for the second mating in the consecutive mating treatment, while the reverse was observed in the delayed mating treatment. Consecutive double matings reduced the mating duration. Fecundity increased when second mating occurred after a few days, though percent egg viability remained unaffected. The second male accrued higher paternity (P2?=?0.61) than the first male (P1?=?0.39) in the consecutive mating treatment, while in the delayed mating treatment, the overall paternity share of the first 0.49 (P1) and last male was equal 0.51 (P2). Thus, our study revealed that both mating order and the time interval between successive matings regulate the male paternity share. This finding is reported for the first time in this ladybird species.  相似文献   

12.
Polyandry is widespread and influences patterns of sexual selection, with implications for sexual conflict over mating. Assessing sperm precedence patterns is a first step towards understanding sperm competition within a female and elucidating the roles of male- and female-controlled factors. In this study behavioural field data and genetic data were combined to investigate polyandry in the chokka squid Loligo reynaudii. Microsatellite DNA-based paternity analysis revealed multiple paternity to be the norm, with 79% of broods sired by at least two males. Genetic data also determined that the male who was guarding the female at the moment of sampling was a sire in 81% of the families tested, highlighting mate guarding as a successful male tactic with postcopulatory benefits linked to sperm deposition site giving privileged access to extruded egg strings. As females lay multiple eggs in capsules (egg strings) wherein their position is not altered during maturation it is possible to describe the spatial / temporal sequence of fertilisation / sperm precedence There were four different patterns of fertilisation found among the tested egg strings: 1) unique sire; 2) dominant sire, with one or more rare sires; 3) randomly mixed paternity (two or more sires); and 4) a distinct switch in paternity occurring along the egg string. The latter pattern cannot be explained by a random use of stored sperm, and suggests postcopulatory female sperm choice. Collectively the data indicate multiple levels of male- and female-controlled influences on sperm precedence, and highlights squid as interesting models to study the interplay between sexual and natural selection.  相似文献   

13.
In the Australian redback spider, Latrodectus hasselti, males typically use their paired copulatory organs (palps) to copulate twice with a single female then sacrifice themselves to their cannibalistic mates in a strategy that increases their paternity in that one mating, but leads to death. This type of terminal investment in one mating is predicted only if the expected value of future matings is low for males relative to the value of repeated mating with the same female. In this laboratory study, we quantified the reproductive value of mating more than once with the same female (repeated mating) and mating with more than one female (multiple mating) for male redback spiders. We tested two natural selection hypotheses for repeated mating, sperm limitation and reproductive insurance, but found no support for either hypothesis. We show that, in the absence of sperm competition or cannibalism, male lifetime reproductive output is the same whether a male copulates once, twice, or several times with a given female. Repeated mating does not increase the probability of successful fertilization, nor does it increase the number of offspring produced in successful matings. Although male repeated mating is not favoured because of increased fertility of mates, other studies suggest it may be important in sperm competition. Here we show that the relative reproductive value of the first two copulations is very high for redback males because they are functionally sterile after each palp has been used once; nonvirgin males are unable to father offspring. Functional sterility and repeated mating by male redbacks may be favoured by the same factors that lead to male sacrifice behaviour: ecological constraints on multiple mating combined with competitive benefits of maximal investment in the first mating. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

14.
Post-copulatory paternity biases after female multiple mating are major constraints on both male and female reproductive systems. The outcome of paternity in certain situations is only controlled directly by male sperm stock. This was tested experimentally in the parasitoid wasp Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae), in which sperm stocks are small (several hundred) and the fertilizing efficiency of stored sperm is high (the ratio of sperm stored/fertilized eggs is about 0.75). Sperm in seminal vesicles and paternity of males of different status (virgin young, virgin old, or young previously mated) were measured after female single and double mating. The amount of sperm in the seminal vesicle differed according to male status (increasing from previously mated males to old males), but there was no difference in sperm stored by females after a single mating. In double mating experiments with two males of different status, paternity increased linearly with the relative amount of sperm in seminal vesicles. Paternity distribution conforms to 'a fair raffle' of sperm from both donors following complete mixing of sperm prior to fertilization. Thus, in a female multiple mating context, male fitness depends principally on their sperm stock, which in turn depends on life history parameters, such as age and previous mating.  相似文献   

15.
Although theory generally predicts that males should reduce paternal care in response to cues that predict increased sperm competition and decreased paternity, empirical patterns are equivocal. Some studies have found the predicted decrease in male care with increased sperm competition, while even more studies report no effect of paternity or sperm competition on male care. Here, we report the first example, to our knowledge, of paternal care increasing with the risk and intensity of sperm competition, in the ocellated wrasse (Symphodus ocellatus). Theory also predicts that if paternal care varies and is important to female fitness, female choice among males and male indicators traits of expected paternal care should evolve. Despite a non-random distribution of mating success among nests, we found no evidence for female choice among parental males. Finally, we document the highest published levels of extra-pair paternity for a species with exclusive and obligate male care: genetic paternity analyses revealed cuckoldry at 100 per cent of nests and 28 per cent of all offspring were not sired by the male caring for them. While not predicted by any existing theory, these unexpected reproductive patterns become understandable if we consider how male and female mating and parental care interact simultaneously in this and probably many other species.  相似文献   

16.
Male parental care and paternity assurance are often associatedwith long-duration pair bonds. The mating system of the pineengraver beetle, Ips pini, includes an association between themale and female that persists for most of the prolonged oppositionperiod. The male beetles remove frass that arnmmlatn as thefemales lay their eggs in die phloem tissue of the host tree.Experiments and field observations were done to test possiblebenefits to males that stay in the galleries removing frasswhile die females are ovipositing. Two hypotheses were thatclearing frass (1) provides some form of care that results inmore offspring being produced and (2) is part of a paternityassurance mechanism. Male removal experiments in the field producedno evidence that male presence significantly influenced anyof five measures of offspring production. Laboratory experimentsin which virgin females were bred reciprocally to sterile andfertile males showed that, while there is no strong patternof last-male pr, last-male paternity does increase over time.Field observations revealed that female pine engravers oftencarry sperm from previous maringi when they solicit entry toa male's breeding gallery. The pattern of paternity and thefemale's sperm storage capacity suggest that males must maintainprolonged mating access to females in order to ensure high paternity.Hence, frass clearing is necessary to maximize paternity  相似文献   

17.
Sexual selection is a major force driving the evolution of diverse reproductive traits. This evolutionary process is based on individual reproductive advantages that arise either through intrasexual competition or through intersexual choice and conflict. While classical studies of sexual selection focused mainly on differences in male mating success, more recent work has focused on the differences in paternity share that may arise through sperm competition or cryptic female choice whenever females mate with multiple males. Thus, an integrative view of sexual selection needs to encompass processes that occur not only before copulation (pre-mating), but also during copulation (peri-mating), as well as after copulation (post-mating), all of which can generate differences in reproductive success. By encompassing mechanisms of sexual selection across all of these sequential reproductive stages this review takes an integrative approach to sexual selection in Tribolium flour beetles (Coleoptera: Tenebrionidae), a particularly well-studied and economically important model organism. Tribolium flour beetles colonize patchily distributed grain stores, and juvenile and adult stages share the same food resources. Adults are highly promiscuous and female reproduction is distributed across an adult lifespan lasting approximately 1 year. While Tribolium males produce an aggregation pheromone that attracts both sexes, there appears to be little pre-mating discrimination among potential mates by either sex. However, recent work has revealed several peri-mating and post-mating mechanisms that determine how offspring paternity is apportioned among a female's mates. During mating, Tribolium females reject spermatophore transfer and limit sperm numbers transferred by males with low phenotypic quality. Although there is some conflicting evidence, male copulatory leg-rubbing appears to be associated with overcoming female resistance to insemination and does not influence a male's subsequent paternity share. Evidence suggests that Tribolium beetles have several possible post-mating mechanisms that they may use to bias paternity. Male sperm precedence has been extensively studied in Tribolium spp. and the related Tenebrio molitor, and several factors influencing male paternity share among a female's progeny have been identified. These include oviposition time, inter-mating interval, male strain/genotype, the mating regimen of a male's mother, male starvation, and tapeworm infection. Females exert muscular control over sperm storage, although there is no evidence to date that females use this to differentiate among mates. Females could also influence offspring paternity by re-mating with additional males, and T. castaneum females more readily accept spermatophores when they are re-mating with more attractive males. Additional work is needed to examine the possible roles played by both male and female accessory gland products in determining male paternity share. Sexual selection during pre-mating episodes may be reinforced or counteracted by peri- and post-copulatory selection, and antagonistic coevolution between the sexes may be played out across reproductive stages. In Tribolium, males' olfactory attractiveness is positively correlated with both insemination success and paternity share, suggesting consistent selection across different reproductive stages. Similar studies across sequential reproductive stages are needed in other taxa to provide a more integrative view of sexual selection.  相似文献   

18.
In many animal species, mating behaviour is highly ritualised, which may allow us to relate some of its consequences, e.g. male paternity and female receptivity, to the progression of phases in the mating sequence; at the same time, ritualisation raises the question of to what extent the partners, especially the males, are able to influence the outcome of mating for their own benefit. We studied the linyphiid spider Linyphia triangularis in which mating follows a strict sequence during which the male inducts two droplets of sperm and transfers them to the female. We performed sperm competition experiments (sterile-male technique) including four treatments, in which the copulation of the first male was interrupted at prescribed phases of the mating sequence, while the second male was allowed a complete mating. Second males spent a shorter time than first males on the behaviours prior to sperm transfer, but the amount of sperm (2 droplets) and the time spent in sperm transfer were independent of the females’ mating status. The proportion of females accepting the second male depended on the mating duration of the first male, i.e. whether the first male had transferred one or two sperm droplets. After a complete first mating, most females accepted no further males. A last-male sperm precedence was apparent if only half of the first sperm droplet had been transferred by the first male, but this switched to a first male precedence if one full sperm droplet had been transferred. Thus, even in the face of sperm competition, it is sufficient for the first male to transfer one sperm droplet. The second sperm droplet and the extended copulatory courtship associated with its transfer may serve to induce a lack of receptivity in the female, but the males seem unable to enhance their reproductive success through variable copulatory tactics.  相似文献   

19.
The accessory gland protein (Acp) ejaculate molecules of male Drosophila melanogaster mediate sexual selection and sexual conflict at the molecular level. However, to date no studies have comprehensively measured the timing and magnitude of fitness benefits to males of transferring specific Acps. This is an important omission because without this information it is not possible to fully understand the strength and form of selection acting on adaptations such as Acps. Here, we measured the fitness benefits to males of ejaculate sex peptide (SP) transfer. SP is of interest because it is a candidate for mediating sexual conflict: its frequent receipt reduces female fitness. In single matings with virgin females SP is known to increase egg laying and decrease receptivity. Hence, we predicted that SP could: (i) boost a male’s absolute paternity by increasing offspring production and delaying female remating and/or (ii) boost relative paternity share. We tested these predictions using two different lines of SP‐lacking males, in both two‐mating and free‐mating assay conditions. SP transfer conferred higher absolute, but not relative, male reproductive success. In matings with virgin females, SP transfer increased mating productivity and delayed remating and hence the onset of sperm competition. In already mated females, SP transfer did not elevate absolute progeny production, but did increase intermating intervals and hence the period over which a male could gain paternity. Consistent with this, under free‐mating conditions over an extended period, we detected a ‘per‐mating’ fitness benefit for males transferring SP. These benefits are consistent with a role for SP in mediating conflict, with SP acting to maximize short‐term fitness benefits for males.  相似文献   

20.
Molecular techniques have substantially improved our knowledge of postcopulatory sexual selection. Nevertheless, studies examining sperm utilization in natural populations of nonsocial insects are rare, support for sperm selection (biased use of stored sperm, e.g. to match offspring genotypes to prevailing environmental conditions) is elusive, and its relevance within natural populations unknown. We performed an oviposition site choice experiment in the field where female yellow dung flies Scathophaga stercoraria could deposit eggs into three different microenvironments on a dung pat (the east–west ridge, north- or south-exposed side), and genotyped the offspring and sperm remaining in storage after oviposition. Females exhibited plasticity in the number of eggs deposited according to pat age. Additionally, temperature strongly influenced egg placement: the warmer the temperature, the higher the proportion of eggs laid into the north-exposed side of dung. The number of ejaculates in storage differed amongst spermathecae, and females stored sperm from more males than fathered their offspring (2.11 sires vs. 2.84 males within sperm stores). Mean last male paternity was 83.4%, roughly matching previous laboratory estimates. Importantly, we found no evidence that females selectively lay eggs of different genotypes, by biasing paternity towards certain males, depending on offspring’s microclimate. Thus, while we show female choice over number of eggs and where these are deposited, there was no evidence for sperm selection. We further revealed positive effects of multiple mating on total number of offspring and proportion of offspring emerging from the dung. We argue that the integration of field studies and laboratory experiments is essential to promote our understanding of polyandry and cryptic female choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号