首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rnr4p, a novel ribonucleotide reductase small-subunit protein.   总被引:11,自引:3,他引:8       下载免费PDF全文
Ribonucleotide reductases catalyze the formation of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. Eukaryotic ribonucleotide reductases are alpha2beta2 tetramers; each of the larger, alpha subunits possesses binding sites for substrate and allosteric effectors, and each of the smaller, beta subunits contains a binuclear iron complex. The iron complex interacts with a specific tyrosine residue to form a tyrosyl free radical which is essential for activity. Previous work has identified two genes in the yeast Saccharomyces cerevisiae, RNR1 and RNR3, that encode alpha subunits and one gene, RNR2, that encodes a beta subunit. Here we report the identification of a second gene from this yeast, RNR4, that encodes a protein with significant similarity to the beta-subunit proteins. The phenotype of rnr4 mutants is consistent with that expected for a defect in ribonucleotide reductase; rnr4 mutants are supersensitive to the ribonucleotide reductase inhibitor hydroxyurea and display an S-phase arrest at their restrictive temperature. rnr4 mutant extracts are deficient in ribonucleotide reductase activity, and this deficiency can be remedied by the addition of exogenous Rnr4p. As is the case for the other RNR genes, RNR4 is induced by agents that damage DNA. However, Rnr4p lacks a number of sequence elements thought to be essential for iron binding, and mutation of the critical tyrosine residue does not affect Rnr4p function. These results suggest that Rnr4p is catalytically inactive but, nonetheless, does play a role in the ribonucleotide reductase complex.  相似文献   

2.
3.
DNA damage induction of ribonucleotide reductase.   总被引:16,自引:6,他引:10       下载免费PDF全文
  相似文献   

4.
5.
Ribonucleotide reductase is responsible for providing the deoxyribonucleotide precursors for DNA synthesis. In most species the enzyme consists of a large and a small subunit, both of which are required for activity. In mammalian cells, the small subunit is the site of action of several antitumor agents, including hydroxyurea and 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone (MAIQ). The mRNA levels for the small subunit of ribonucleotide reductase (RNR2) and sensitivity to hydroxyurea and MAIQ were determined in four strains of the yeast, Saccharomyces cerevisiae. Two strains exhibited significantly different sensitivities to both hydroxyurea and MAIQ, which closely correlated with differences in the levels of RNR2 mRNA. These results are consistent with recent observations with mammalian cells in culture, and indicate that a common mechanism of resistance to hydroxyurea and related drugs occurs through the elevation in ribonucleotide reductase message levels. A transplason mutagenized strain with marked structural modifications in RNR2 DNA and mRNA showed an extreme hypersensitivity to hydroxyurea but not to MAIQ, providing evidence that the two drugs do not inhibit the RNR2 subunit by the same mechanism. In addition, a yeast strain isolated for low but reproducible resistance to MAIQ exhibited a sensitivity to hydroxyurea similar to the parental wild-type strain, supporting the idea that the two drugs inhibit the activity of RNR2 by unique mechanisms. These yeast strains provide a useful approach for further studies into the regulation of eucaryotic ribonucleotide reduction and drug resistance mechanism involving a key rate-limiting step in DNA synthesis.  相似文献   

6.
7.
Regulation of ribonucleotide reductase (RNR) is important for cell survival and genome integrity in the face of genotoxic stress. The Mec1/Rad53/Dun1 DNA damage response kinase cascade exhibits multifaceted controls over RNR activity including the regulation of the RNR inhibitor, Sml1. After DNA damage, Sml1 is degraded leading to the up-regulation of dNTP pools by RNR. Here, we probe the requirements for Sml1 degradation and identify several sites required for in vivo phosphorylation and degradation of Sml1 in response to DNA damage. Further, in a strain containing a mutation in Rnr1, rnr1-W688G, mutation of these sites in Sml1 causes lethality. Degradation of Sml1 is dependent on the 26S proteasome. We also show that degradation of phosphorylated Sml1 is dependent on the E2 ubiquitin-conjugating enzyme, Rad6, the E3 ubiquitin ligase, Ubr2, and the E2/E3-interacting protein, Mub1, which form a complex previously only implicated in the ubiquitylation of Rpn4.  相似文献   

8.
Ribonucleotide reductase (RNR) of the yeast Saccharomyces cerevisiae is a tetrameric protein complex, consisting of two large and two small subunits. The small subunits Y2 and Y4 form a heterodimer and are encoded by yeast genes RNR2 and RNR4, respectively. Loss of Y4 in yeast mutant rnr4Delta can be compensated for by up-regulated expression of Y2, and the formation of a small subunit Y2Y2 homodimer that allows for a partially functional RNR. However, rnr4Delta mutants exhibit slower growth than wild-type (WT) cells and are sensitive to many mutagens, amongst them UVC and photo-activated mono- and bi-functional psoralens. Cells of the haploid rnr4Delta mutant also show a 3- to 4-fold higher sensitivity to the oxidative stress-inducing chemical stannous chloride than those of the isogenic WT. Both strains acquired increased resistance to SnCl2 with age of culture, i.e., 24-h cultures were more sensitive than cells grown for 2, 3, 4, and 5 days in liquid culture. However, the sensitivity factor of three to four (WT/mutant) did not change significantly. Cultures of the rnr4Delta mutant in stationary phase of growth always showed higher frequency of budding cells (budding index around 0.5) than those of the corresponding WT (budding index <0.1), pointing to a delay of mitosis/cytokinesis.  相似文献   

9.
The ribonucleotide reductase system in Saccharomyces cerevisiae includes four genes (RNR1 and RNR3 encoding the large subunit and RNR2 and RNR4 encoding the small subunit). RNR3 expression, nearly undetectable during normal growth, is strongly induced by DNA damage. Yet an rnr3 null mutant has no obvious phenotype even under DNA damaging conditions, and the contribution of RNR3 to ribonucleotide reduction is not clear. To investigate the role of RNR3 we expressed and characterized the Rnr3 protein. The in vitro activity of Rnr3 was less than 1% of the Rnr1 activity. However, a strong synergism between Rnr3 and Rnr1 was observed, most clearly demonstrated in experiments with the catalytically inactive Rnr1-C428A mutant, which increased the endogenous activity of Rnr3 by at least 10-fold. In vivo, the levels of Rnr3 after DNA damage never reached more than one-tenth of the Rnr1 levels. We propose that heterodimerization of Rnr3 with Rnr1 facilitates the recruitment of Rnr3 to the ribonucleotide reductase holoenzyme, which may be important when Rnr1 is limiting for dNTP production. In complex with inactive Rnr1-C428A, the activity of Rnr3 is controlled by effector binding to Rnr1-C428A. This result indicates cross-talk between the Rnr1 and Rnr3 polypeptides of the large subunit.  相似文献   

10.
11.
12.
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides and thereby provides the precursors required for DNA synthesis and repair. In an attempt to test cell resistance to a permanent replicational stress, we constructed a mutant Saccharomyces cerevisiae strain containing exclusively nonrecyclable catalytic subunits of RNR that become inactivated following the reduction of one ribonucleoside diphosphate. In this rnr1C883A rnr3Δ mutant, the synthesis of each deoxyribonucleotide thus requires the production of one Rnr1C883A protein, which means that 26 million Rnr1C883A proteins (half the protein complement of a wild-type cell) have to be produced during each cell cycle. rnr1C883A rnr3Δ cells grow under constant replicational stress, as evidenced by the constitutive activation of the checkpoint effector Rad53, and their S phase is considerably extended compared to the wild type. rnr1C883A rnr3Δ mutants also display additional abnormalities such as a median cell volume increased by a factor of 8, and the presence of massive inclusion bodies. However, they exhibit a good plating efficiency and can be propagated indefinitely. rnr1C883A rnr3Δ cells, which can be used as a protein overexpression system, thus illustrate the robustness of S. cerevisiae to multiple physiological parameters.  相似文献   

13.
Ribonucleotide reductase catalyzes the formation of deoxyribonucleotides from ribonucleoside diphosphate precursors, and is a rate-limiting step in the synthesis of DNA. The enzyme consists of two dissimilar subunits usually called M1 and M2. The antitumor agent, hydroxyurea, is a specific inhibitor of DNA synthesis and acts by destroying the tyrosyl free radical of the M2 subunit of ribonucleotide reductase. Two highly drug resistant cell lines designated HR-15 and HR-30 were isolated by exposing a population of mouse L cells to increasing concentrations of hydroxyurea. HR-15 and HR-30 cells contained elevated levels of ribonucleotide reductase activity, and were 68 and 103 times, respectively, more resistant than wild type to the cytotoxic effects of hydroxyurea. Northern and Southern blot analysis indicated that the two drug resistant lines contained elevated levels of M2 mRNA and M2 gene copy numbers. Similar studies with M1 specific cDNA demonstrated that HR-15 and HR-30 cell lines also contained increased M1 message levels, and showed M1 gene amplification. Mutant cell lines altered in expression and copy numbers for both the M1 and M2 genes are useful for obtaining information relevant to the regulation of ribonucleotide reductase, and its role in DNA synthesis and cell proliferation.  相似文献   

14.
15.
The β2 subunit of class Ia ribonucleotide reductase (RNR) contains a diferric tyrosyl radical cofactor (Fe2III-Tyr) that is essential for nucleotide reduction. The β2 subunit of Saccharomyces cerevisiae is a heterodimer of Rnr2 (β) and Rnr4 (β′). Although only β is capable of iron binding and Tyr formation, cells lacking β′ are either dead or exhibit extremely low Tyr levels and RNR activity depending on genetic backgrounds. Here, we present evidence supporting the model that β′ is required for iron loading and Tyr formation in β in vivo via a pathway that is likely dependent on the cytosolic monothiol glutaredoxins Grx3/Grx4 and the Fe-S cluster protein Dre2. rnr4 mutants are defective in iron loading into nascent β and are hypersensitive to iron depletion and the Tyr-reducing agent hydroxyurea. Transient induction of β′ in a GalRNR4 strain leads to a concomitant increase in iron loading and Tyr levels in β. Tyr can also be rapidly generated using endogenous iron when permeabilized Δrnr4 spheroplasts are supplemented with recombinant β′ and is inhibited by adding an iron chelator prior to, but not after, β′ supplementation. The growth defects of rnr4 mutants are enhanced by deficiencies in grx3/grx4 and dre2. Moreover, depletion of Dre2 in GalDRE2 cells leads to a decrease in both Tyr levels and ββ′ activity. This result, in combination with previous findings that a low level of Grx3/4 impairs RNR function, strongly suggests that Grx3/4 and Dre2 serve in the assembly of the deferric Tyr cofactor in RNR.  相似文献   

16.
Ribonucleotide reductase catalyzes the production of deoxyribonucleoside diphosphates, the precursors of deoxyribonucleoside triphosphates for DNA synthesis. Mammalian ribonucleotide reductase (RNR) is a tetramer consisting of two non-identical homodimers, R1 and either R2 or p53R2, which are considered to be involved in DNA replication and repair, respectively. We have demonstrated that DNA damage by doxorubicin and cisplatin caused a steady elevation of the R2 protein in p53(-/-) HCT-116 human colon carcinoma cells but induced degradation of the protein in p53(+/+) cells. To evaluate the involvement of R2 in response to DNA damage, p53(-/-) HCT-116 cells were stably transfected with an expression vector transcribing short hairpin/short interference RNA directed against R2 mRNA. Stably transfected clones exhibited a pronounced reduction of the R2 protein with no change in the cellular growth rate. Furthermore, short interference RNA-mediated reduction of the R2 protein caused a marked increase in sensitivity to the DNA-damaging agent cisplatin as well as to the RNR inhibitors Triapine and hydroxyurea. Ectopic expression of p53R2 partially reversed the cytotoxicity of cisplatin but not that of RNR inhibitors to R2 knockdown cells. The increase in sensitivity to cisplatin and RNR inhibitors was correlated with the suppression of dATP and dGTP levels caused by stable expression of R2-targeted short interference RNA. These results indicated that DNA damage resulted in elevated levels of the R2 protein and dNTPs and, consequently, enhanced the survival of p53(-/-) HCT-116 cells. The findings provide evidence that R2-RNR can be employed to supply dNTPs for the repair of DNA damage in cells with an impaired p53-dependent induction of p53R2.  相似文献   

17.
18.
Ribonucleotide reductase activity is required for generating deoxyribonucleotides for DNA replication. Schizosaccharomyces pombe cells lacking ribonucleotide reductase activity arrest during S phase of the cell cycle. In a screen for hydroxyurea-sensitive mutants in S. pombe, we have identified a gene, liz1+, which when mutated reveals an additional, previously undescribed role for ribonucleotide reductase activity during mitosis. Inactivation of ribonucleotide reductase, by either hydroxyurea or a cdc22-M45 mutation, causes liz1 cells in G2 to undergo an aberrant mitosis, resulting in chromosome missegregation and late mitotic arrest. liz1+ encodes a 514-amino acid protein with strong similarity to a family of transmembrane transporters, and localizes to the plasma membrane of the cell. These results reveal an unexpected G2/M function of ribonucleotide reductase and establish that defects in a transmembrane protein can affect cell cycle progression.  相似文献   

19.
M-phase checkpoints inhibit cell division when mitotic spindle function is perturbed. Here we show that the Saccharomyces cerevisiae MPS1 gene product, an essential protein kinase required for spindle pole body (SPB) duplication (Winey et al., 1991; Lauze et al., 1995), is also required for M-phase check-point function. In cdc31-2 and mps2-1 mutants, conditional failure of SPB duplication results in cell cycle arrest with high p34CDC28 kinase activity that depends on the presence of the wild-type MAD1 checkpoint gene, consistent with checkpoint arrest of mitosis. In contrast, mps1 mutant cells fail to duplicate their SPBs and do not arrest division at 37 degrees C, exhibiting a normal cycle of p34CDC28 kinase activity despite the presence of a monopolar spindle. Double mutant cdc31-2, mps1-1 cells also fail to arrest mitosis at 37 degrees C, despite having SPB structures similar to cdc31-2 single mutants as determined by EM analysis. Arrest of mitosis upon microtubule depolymerization by nocodazole is also conditionally absent in mps1 strains. This is observed in mps1 cells synchronized in S phase with hydroxyurea before exposure to nocodazole, indicating that failure of checkpoint function in mps1 cells is independent of SPB duplication failure. In contrast, hydroxyurea arrest and a number of other cdc mutant arrest phenotypes are unaffected by mps1 alleles. We propose that the essential MPS1 protein kinase functions both in SPB duplication and in a mitotic checkpoint monitoring spindle integrity.  相似文献   

20.
A key rate-limiting reaction in the synthesis of DNA is catalyzed by ribonucleotide reductase, the enzyme which reduces ribonucleotides to provide the deoxyribonucleotide precursors of DNA. The antitumor agent, hydroxyurea, is a specific inhibitor of this enzyme and has been used in the selection of drug resistant mammalian cell lines altered in ribonucleotide reductase activity. An unstable hydroxyurea resistant population of mammalian cells with elevated ribonucleotide reductase activity has been used to isolate three stable subclones with varying sensitivities to hydroxyurea cytotoxicity and levels of ribonucleotide reductase activities. These subclones have been analyzed at the molecular level with cDNA probes encoding the two nonidentical subunits of ribonucleotide reductase (M1 and M2). Although no significant differences in M1 mRNA levels or gene copy numbers were detected between the three cell lines, a strong correlation between cellular resistance, enzyme activity, M2 mRNA and M2 gene copies was observed. This is the first demonstration that reversion of hydroxyurea resistance is directly linked to a decrease in M2 mRNA levels and M2 gene copy number, and strongly supports the concept that M2 gene amplification is an important mechanism for achieving resistance to this antitumor agent through elevations in ribonucleotide reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号