首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
材料是人类赖以生存与发展的物质基础,科技和社会的进步都离不开材料技术的发展,未来先进材料的合成和制备必然朝着绿色可持续、低耗高产出、精细可调控、高效多功能的方向发展。以"基因调控·工程设计"为核心的合成生物学技术从分子、细胞层面极大地推动了生命科学的发展,也已经并继续为材料科学的发展注入新的思路和活力。本文将围绕合成生物学技术在材料科学中的应用,以基因回路设计为核心,概念应用为线索,重点介绍合成生物学技术在高分子生物材料和无机纳米材料领域的开发和生产,细胞展示和蛋白定向进化战略对分子材料的筛选和优化,"活体"功能材料、工程菌调节的人工光合系统功能材料体系以及基因回路在材料科学中的应用。  相似文献   

2.
The prediction of the structure of biological macromolecules at the atomic level and the design of new meta-stable structures and secondary interactions are critical tests of our understanding of the structures and the inter-atomic forces that underlie molecular biology. The capacity to accurately predict and design new structures and interactions will allow us to create nucleic acid sequences that will fold in new and useful ways. Here, we present some results to demonstrate the progress we have made in designing and assembling new nucleic acid structures that will make an increasingly important contribution to biology and medicine. We call the reaction cycle that exemplifies our approach 'A handshake from a hairpin on the way to a double helix.'  相似文献   

3.
Enhanced understanding of the signals within the microenvironment that regulate cell fate has led to the development of increasingly sophisticated polymeric biomaterials for tissue engineering and regenerative medicine applications. This advancement is exemplified by biomaterials with precisely controlled scaffold architecture that regulate the spatio-temporal release of growth factors and morphogens, and respond dynamically to microenvironmental cues. Further understanding of the biology, qualitatively and quantitatively, of cells within their microenvironments and at the tissue-material interface will expand the design space of future biomaterials.  相似文献   

4.
The interface between evolutionary biology and the biomedical sciences promises to advance understanding of the origins of genetic and infectious diseases in humans, potentially leading to improved medical diagnostics, therapies, and public health practices. The biomedical sciences also provide unparalleled examples for evolutionary biologists to explore. However, gaps persist between evolution and medicine, for historical reasons and because they are often perceived as having disparate goals. Evolutionary biologists have a role in building a bridge between the disciplines by presenting evolutionary biology in the context of human health and medical practice to undergraduates, including premedical and preprofessional students. We suggest that students will find medical examples of evolution engaging. By making the connections between evolution and medicine clear at the undergraduate level, the stage is set for future health providers and biomedical scientists to work productively in this synthetic area. Here, we frame key evolutionary concepts in terms of human health, so that biomedical examples may be more easily incorporated into evolution courses or more specialized courses on evolutionary medicine. Our goal is to aid in building the scientific foundation in evolutionary biology for all students, and to encourage evolutionary biologists to join in the integration of evolution and medicine.  相似文献   

5.
Regeneration in medicine is a concept that has roots dating back to the earliest known records of medical interventions. Unfortunately, its elusive promise has still yet to become a reality. In the field of plastic surgery, we use the common tools of the surgeon grounded in basic operative principles to achieve the present day equivalent of regenerative medicine. These reconstructive efforts involve a broad range of clinical deformities, both congenital and acquired. Outlined in this review are comments on clinical conditions and the current limitations to reconstruct these clinical entities in the effort to practice regenerative medicine. Cleft lip, microtia, breast reconstruction, and burn reconstruction have been selected as examples to demonstrate the incredible spectrum and diverse challenges that plastic surgeons attempt to reconstruct. However, on a molecular level, these vastly different clinical scenarios can be unified with basic understanding of development, alloplastic integration, wound healing, cell–cell, and cell‐matrix interactions. The themes of current and future molecular efforts involve coalescing approaches to recapitulate normal development in clinical scenarios when reconstruction is needed. It will be a better understanding of stem cells, scaffolding, and signaling with extracellular matrix interactions that will make this future possible. Eventually, reconstructive challenge will utilize more than the current instruments of surgical steel but engage complex interventions at the molecular level to sculpt true regeneration. Immense amounts of research are still needed but there is promise in the exploding fields of tissue engineering and stem cell biology that hint at great opportunities to improve the lives of our patients. Birth Defects Research (Part C) 84:322–334, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
The integration of molecular biology tools in environmental engineering is a challenge. We discuss our views on the following four critical issues: (i) faculty career development, (ii) tool standardization, (iii) teaching, and (iv) the application of molecular biology tools in practice. For (i), we suggest that administrators and faculty need to understand the special challenges inherent to research and teaching within this highly interdisciplinary area. Furthermore, we suggest preparing two white papers aimed at educating administrators in universities and agencies. For (ii), we conclude that, because molecular biology tools are still in a state of rapid development, proposing standards at this time is premature. In the future, standards for widely applied tools should be in an on-line, peer-reviewed format. Concerning (iii), we believe that molecular biology should be taught only to the degree needed to achieve program goals. For example, environmental engineering practitioners only need to know the vocabulary and basic concepts of molecular biology tools, not be experts at doing them hands on. To help engineering students gain the right level and type of information, learning modules should be developed for them. Finally, although engineering successes applying molecular biology tools are available (iv), the biggest value will come when the tools are fully integrated with practice. Therefore, we encourage the creation of a demonstration project to document the value of applying molecular biology tools in environmental engineering. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
J Peccoud  M Isalan 《PloS one》2012,7(8):e43231
Since it was launched in 2006, PLOS ONE has published over fifty articles illustrating the many facets of the emerging field of synthetic biology. This article reviews these publications by organizing them into broad categories focused on DNA synthesis and assembly techniques, the development of libraries of biological parts, the use of synthetic biology in protein engineering applications, and the engineering of gene regulatory networks and metabolic pathways. Finally, we review articles that describe enabling technologies such as software and modeling, along with new instrumentation. In order to increase the visibility of this body of work, the papers have been assembled into the PLOS ONE Synthetic Biology Collection (www.ploscollections.org/synbio). Many of the innovative features of the PLOS ONE web site will help make this collection a resource that will support a lively dialogue between readers and authors of PLOS ONE synthetic biology papers. The content of the collection will be updated periodically by including relevant articles as they are published by the journal. Thus, we hope that this collection will continue to meet the publishing needs of the synthetic biology community.  相似文献   

8.
Microorganisms have been the main sources for the production of chemicals. Production of chemicals requires the development of low-cost and higher-yield processes. Towards this goal, microbial strains with higher levels of production should be first considered. Metabolic engineering has been used extensively over the past two to three decades to increase production of these chemicals. Advances in omics technology and computational simulation are allowing us to perform metabolic engineering at the systems level. By combining the results of omics analyses and computational simulation, systems biology allows us to understand cellular physiology and characteristics, which can subsequently be used for designing strategies. Here, we review the current status of metabolic engineering based on systems biology for chemical production and discuss future prospects.  相似文献   

9.
Microorganisms have been the main sources for the production of chemicals. Production of chemicals requires the development of low-cost and higher-yield processes. Towards this goal, microbial strains with higher levels of production should be first considered. Metabolic engineering has been used extensively over the past two to three decades to increase production of these chemicals. Advances in omics technology and computational simulation are allowing us to perform metabolic engineering at the systems level. By combining the results of omics analyses and computational simulation, systems biology allows us to understand cellular physiology and characteristics, which can subsequently be used for designing strategies. Here, we review the current status of metabolic engineering based on systems biology for chemical production and discuss future prospects.  相似文献   

10.
Anthropology has a future and a very pertinent role to play, if we are sensitive to and aware of the new developments in the fields of medicine, biology and ecology which are undergoing dramatic changes. Most definitely these fields will need an anthropological dimension to be added. The natural history and diversity of Man remains the basis of anthropology, but it is time to reassess the training available to students today, in order to keep the discipline alive, growing and significant. Undoubtedly we must offer our students a broad, general basis of knowledge in the first years. Thereafter we must include biomedical disciplines such as anatomy, molecular biology, genetics, epidemiology, and other pertinent subjects, such as statistics, ecology, prehistory, etc. With these “tools” the future student would be well equipped to introduce anthropological aspects into many fields. As European universities cannot provide all these disciplines at a single institution at a level equivalent to PhD studies, we must work towards a tradition of exchange, co-operation and joint projects and universally acknowledged academic degrees such as a Masters and Ph.D. The Erasmus Biology Programme has already achieved some results in this respect and is ready with a proposal of a European Masters Degree in anthropology. The “tools” of modern science together with the more traditional training will enrich the discipline, but more importantly enable the anthropologist to address controversial and often frightening prospects left in the wake of for example gene technology and gene manipulation, in a competent and scientific manner. Many societies have allowed anthropologists to study their populations in detail. We, on the other hand, have an obligation to ensure that the data we have acquired and accumulated are not misused by those who practise racist, eugenic or nationalistic ideals. The ability to carry out these obligations lies to a great extent in a strong, dynamic and diverse organisation, such as an EAA which is open to renewal and willing to address future social and political issues. A fragmented EAA cannot cope with these. There must be room for all in our organisation, ranging from the traditional to the very specialised anthropologist. If we achieve the necessary unity, we will be able to participate in the challenges that the technology of the 20th and 21st centuries imposes on the daily lives of all of us. To err is characteristic of everyone but only idiots persevere in it (Cicero).  相似文献   

11.
Zoghbi HY  Warren ST 《Neuron》2010,68(2):165-173
There can be little doubt that genetics has transformed our understanding of mechanisms mediating brain disorders. The last two decades have brought tremendous progress in terms of accurate molecular diagnoses and knowledge of the genes and pathways that are involved in a large number of neurological and psychiatric disorders. Likewise, new methods and analytical approaches, including genome array studies and "next-generation" sequencing technologies, are bringing us deeper insights into the subtle complexities of the genetic architecture that determines our risks for these disorders. As we now seek to translate these discoveries back to clinical applications, a major challenge for the field will be in bridging the gap between genes and biology. In this Overview of Neuron's special review issue on neurogenetics, we reflect on progress made over the last two decades and highlight the challenges as well as the exciting opportunities for the future.  相似文献   

12.
Plant natural products have been extensively exploited in food,medicine,flavor,cosmetic,renewable fuel,and other industrial sectors.Synthetic biology has recently emerged as a promising means for the cost-effective and sustainable production of natural products.Compared with engineering microbes for the production of plant natural products,the potential of plants as chassis for producing these compounds is underestimated,largely due to challenges encountered in engineering plants.Knowledge in pl...  相似文献   

13.
Emerging technologies research often covers various perspectives in disciplines and research areas ranging from hard sciences, engineering, policymaking, and sociology. However, the interrelationship between these different disciplinary domains, particularly the physical and social sciences, often occurs many years after a technology has matured and moved towards commercialization. Synthetic biology may serve an exception to this idea, where, since 2000, the physical and the social sciences communities have increasingly framed their research in response to various perspectives in biological engineering, risk assessment needs, governance challenges, and the social implications that the technology may incur. This paper reviews a broad collection of synthetic biology literature from 2000–2016, and demonstrates how the co-development of physical and social science communities has grown throughout synthetic biology’s earliest stages of development. Further, this paper indicates that future co-development of synthetic biology scholarship will assist with significant challenges of the technology’s risk assessment, governance, and public engagement needs, where an interdisciplinary approach is necessary to foster sustainable, risk-informed, and societally beneficial technological advances moving forward.  相似文献   

14.
In this article we define vaccinomics as the integration of immunogenetics and immunogenomics with systems biology and immune profiling. Vaccinomics is based on the use of cutting edge, high-dimensional (so called "omics") assays and novel bioinformatics approaches to the development of next-generation vaccines and the expansion of our capabilities in individualized medicine. Vaccinomics will allow us to move beyond the empiric "isolate, inactivate, and inject" approach characterizing past vaccine development efforts, and toward a more detailed molecular and systemic understanding of the carefully choreographed series of biological processes involved in developing viral vaccine-induced "immunity." This enhanced understanding will then be applied to overcome the obstacles to the creation of effective vaccines to protect against pathogens, particularly hypervariable viruses, with the greatest current impact on public health. Here we provide an overview of how vaccinomics will inform vaccine science, the development of new vaccines and/or clinically relevant biomarkers or surrogates of protection, vaccine response heterogeneity, and our understanding of immunosenescence.  相似文献   

15.
In order to complete its life cycle, a cyst nematode must stimulate the production of a specialized syncytial feeding site within host root tissues. This process is characterized by major changes in local root morphology, including enlargement of affected nuclei and nucleoli, cell wall degradation, and proliferation of subcellular organelles. At the molecular level very little is known about the processes involved in this host response, but recent evidence suggests that cyst nematodes are able to regulate specific host genes. The host-parasite model system provided by Arabidopsis thaliana and Heterodera schachtii will be fundamental to our future understanding of the formation of syncytia. Molecular biology now offers us the opportunity to study this complex host-parasite interaction in great detail. A better understanding of the host genes regulated by cyst nematodes and the mechanisms by which this regulation is achieved will facilitate the engineering of crop cultivars that possess novel forms of resistance to these adept parasites.  相似文献   

16.
Bone marrow-derived mesenchymal stem cells (BMSCs) are of particular interest in the field of tissue engineering because of their potential to differentiate into osteoblasts, chondrocytes, and neuronal cells. In order to promote the differentiation of BMSCs into specific cell types, appropriate scaffold biomaterials and bioactive molecules that can support the differentiation of BMSCs into specific cell types are needed. We hypothesized that β-mercaptoethanol (BME), which has been reported to induce the differentiation of BMSCs into neural-like cells, promotes BMSCs to differentiate into neural-like cells when BME is added to polymeric scaffolds containing the BMSCs. We fabricated biocompatible film shaped scaffolds composed of poly(lacti-co-glycolic) acid (PLGA) and various concentrations of BME to confirm that BME-promoted differentiation of BMSCs is concentration-dependent. Cell proliferation increased as the BME concentration in the films increased at the early stage, and the proliferation rate remained similar on the PLGA films for 3 weeks following the BMSC seeding. The expression of neuronal markers in differentiated BMSCs was assessed by RT-PCR. At 2- and 3-week time-points, mRNA expression of neurofilament and neuron specific enolase was significantly increased in PLGA/BME films containing 400 μM BME compared to PLGA films. Thus, we have identified BMSC-seeded PLGA/BME films with 200 μM and 400 μM BME as potentially useful candidates for neural tissue engineering applications by promoting BMSC proliferation and differentiation towards neural-like cells.  相似文献   

17.
This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was "student-oriented," ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experiencefirst-hand work in a research laboratory. Our philosophy is a "cradle-to-grave" approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research.  相似文献   

18.
Tissue engineering is a multidisciplinary field that combines engineering, physical sciences, biology, and medicine to restore or replace tissues and organs functions. In this review, enabling tools for tissue engineering are discussed in the context of four key areas or pillars: prediction, production, performance, and preservation. Prediction refers to the computational modeling where the ability to simulate cellular behavior in complex three-dimensional environments will be essential for design of tissues. Production refer imaging modalities that allow high resolution, non-invasive monitoring of the development and incorporation of tissue engineered constructs. Lastly, preservation includes biochemical tools that permit cryopreservation, vitrification, and freeze-drying of cells and tissues. Recent progress and future perspectives for development in each of these key areas are presented.  相似文献   

19.
A model for a central equipment pool managed by a clinical engineering department has been presented. The advantages to patient care and to the clinical engineering department are many. The distribution of portable technology that has been traditionally managed by the materials management function is a logical match to the expanding role of clinical engineering departments in technology management. Accurate asset management tools have allowed us to provide reliable measures of infusion pump utilization, permitting us to predict future needs as programs expand. Thus we are more actively involved in strategic technology planning. The central equipment pool is an excellent opportunity for the clinical engineering department to increase its technology management activities.  相似文献   

20.
Biological engineering will play a significant role in solving many of the world's problems in medicine, agriculture, and the environment. Recently the U.S. National Academy of Engineering (NAE) released a document "Grand Challenges in Engineering," covering broad realms of human concern from sustainability, health, vulnerability and the joy of living. Biological engineers, having tools and techniques at the interface between living and non-living entities, will play a prominent role in forging a better future. The 2010 Institute of Biological Engineering (IBE) conference in Cambridge, MA, USA will address, in part, the roles of biological engineering in solving the challenges presented by the NAE. This letter presents a brief outline of how biological engineers are working to solve these large scale and integrated problems of our society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号