共查询到20条相似文献,搜索用时 15 毫秒
1.
The dependence of the conductance and lifetime of gramicidin channels on the thickness and tension of lipid bilayers 总被引:2,自引:0,他引:2
The lifetimes of channels formed by natural gramicidin and its dimeric analog in monoglyceride lipid bilayers of various compositions were investigated. The bilayer surface tension was altered by changing the length of the monoglycerides' fatty acid chain or the chain length of hydrocarbon solvent by isomerization or saturation of the lipid, by varying the amount of solvent in the bilayer, and by changing the salt composition of the aqueous solutions. The logarithms of mean channel lifetimes were found to be proportional to the surface tension of the membrane irrespective of how the surface tension was changed. In contrast, no simple relationship between channel conductance and surface tension or bilayer thickness was found. 相似文献
2.
Induction of conductance heterogeneity in gramicidin channels 总被引:8,自引:0,他引:8
In previous work from our laboratory, 5-10% of the channels formed by [Val1]gramicidin A have conductances that fall outside the narrow range that conventionally has defined the standard gramicidin channel [e.g., see Russell et al. (1986) Biophys. J. 49, 673]. Reports from other laboratories, however, show that up to 50% of [Val1]gramicidin channels have conductances that fall outside the range for standard channels [e.g., see Prasad et al. (1986) Biochemistry 25, 456]. This laboratory-to-laboratory variation in the distribution of gramicidin single-channel conductances suggests that the conductance variants are induced by some environmental factor(s) [Busath et al. (1987) Biophys. J. 51, 79]. In order to test whether extrinsic agents can induce such conductance heterogeneity, we examined the effects of nonionic or zwitterionic detergents upon gramicidin channel behavior. In phospholipid bilayers, detergent addition induces many changes in gramicidin channel behavior: all detergents tested increase the channel appearance rate and average duration; most detergents decrease the conductance of the standard channel; and all but one of the detergents increase the conductance heterogeneity. These results show that the conductance heterogeneity can result from environmental perturbations, thus providing a possible explanation for the laboratory-to-laboratory variation in the heterogeneity of gramicidin channels. In addition, the differential detergent effects suggest possible mechanisms by which detergents can induce the conformational perturbations that result in gramicidin single-channel conductance variations. 相似文献
3.
The 1000-1300 cm-1 region of the infrared spectrum of dipalmitoylphosphatidylcholine (DPPC) and other phosphate-containing molecules has been studied by the Fourier-transform technique. Three absorption bands have been assigned to various vibrational modes of the DPPC phosphate group, with maximum wavenumbers at 1060, 1086 and 1222 cm-1. These values are the same above and below Tc of the phospholipid. Dehydration produces band-shifts toward higher wavenumbers . 相似文献
4.
We have tested the hypothesis that peptide tryptophan groups can control the ionic conductance of transmembrane channels. We report here that single gramicidin A channels change conductance state when the peptide tryptophans are flash photolyzed with ultraviolet light. The current flow through planar lipid bilayers containing multiple gramicidin A channels decreases irreversibly when exposed to ultraviolet light. The current-loss action spectrum peaks sharply at the 280 nm absorption maximum of the gramicidin A tryptophans. Gramicidin channel sensitivity to ultraviolet light is found to be about 20-fold higher than that of frog node sodium channels which is even more than expected based on the high tryptophan content of gramicidin. Channels which survive an ultraviolet light exposure exist in a wide variety of different low-conductance forms. The broad distribution of the single channel conductance of these partially photolyzed channels is attributable to the loss of different combinations of the dimer's normal complement of eight tryptophans per channel. Flash photolysis of single channels results in discrete conductance state changes. Partially photolyzed single channels manifest a further conductance cascade when exposed to a second flash of ultraviolet light. Analysis of the photolysis conductance turn-off process indicates that gramicidin A is a multistate electrochemical unit where the peptide tryptophan groups can modulate the flow of ions through the transmembrane channel. 相似文献
5.
Lipid surface charge does not influence conductance or calcium block of single sodium channels in planar bilayers. 下载免费PDF全文
We have studied the effects of membrane surface charge on Na+ ion permeation and Ca2+ block in single, batrachotoxin-activated Na channels from rat brain, incorporated into planar lipid bilayers. In phospholipid membranes with no net charge (phosphatidylethanolamine, PE), at low divalent cation concentrations (approximately 100 microM Mg2+), the single channel current-voltage relation was linear and the single channel conductance saturated with increasing [Na+] and ionic strength, reaching a maximum (gamma max) of 31.8 pS, with an apparent dissociation constant (K0.5) of 40.5 mM. The data could be approximated by a rectangular hyperbola. In negatively charged bilayers (70% phosphatidylserine, PS; 30% PE) slightly larger conductances were observed at each concentration, but the hyperbolic form of the conductance-concentration relation was retained (gamma max = 32.9 pS and K0.5 = 31.5 mM) without any preferential increase in conductance at lower ionic strengths. Symmetrical application of Ca2+ caused a voltage-dependent block of the single channel current, with the block being greater at negative potentials. For any given voltage and [Na+] this block was identical in neutral and negatively charged membranes. These observations suggest that both the conduction pathway and the site(s) of Ca2+ block of the rat brain Na channel protein are electrostatically isolated from the negatively charged headgroups on the membrane lipids. 相似文献
6.
The formation kinetics of gramicidin A channels in lipid bilayer membranes has been characterized as a function of voltage for different solution conditions and membrane composition. The frequency of channel events was measured during the application of voltage ramps and counted in given intervals, a procedure that eliminated the effects of drift in gramicidin concentration. The formation rate was found to increase strongly with voltages up to approximately 50 mV and then to level off slightly. The shape of the voltage dependence was independent of lipid solvent and ramp speed but differed for different ions and different solution concentrations. This suggested an ion occupancy effect on the formation rate that was further supported by the fact that the minimum of the formation rate was shifted toward the equilibrium potential in asymmetric solution concentrations. The effects are explained in terms of a model that contains two contributions to the voltage dependence, a voltage-dependent ion binding to the monomers and a polarization of monomers by the applied electric field and by the occupied ions. The theory is found to give a good fit to experimental data. 相似文献
7.
The influence of well-defined changes in the polar part of phospholipid molecules on the properties of black lipid membranes was studied using a series of phospholipids with identical hydrocarbon chains, but systematically changed polar groups. The hydrocarbon tails of the lipids under study were composed of 1,2-dipentadecylmethylidene glycerol. The polar parts differed in the degree of and comprised phosphocholine, , and ethanolamine. Stable black lipid membranes could be formed with the solvents octane, decane, dodecane, tetradecane and hexadecane. The properties of gramicidin-induced single ionic channels changed systematically in membranes from the phosphatidylcholine to the phosphatidylethanolamine analogue, as indicated by an increase in the amplitude A of the unit conductance step and a decrease in the average channel life-time or duration τ. The series of τ-values was opposite to that expected from hydrocarbon thickness (specific capacitance). It is suggested that the surface tension γ is a relevant parameter for the prediction of τ-values. 相似文献
8.
Guanidinium and acetamidinium, when added to the bathing solution in concentrations of approximately 0.1M, cause brief blocks in the single channel potassium currents from channels formed in planar lipid bilayers by gramicidin A. Single channel lifetimes are not affected indicating that the channel structure is not modified by the blockers. Guanidinium block durations and interblock times are approximately exponential in distribution. Block frequencies increase with guanidinium concentration whereas block durations are unaffected. Increases in membrane potential cause an increase in block frequency as expected for a positively charged blocker but a decrease in block duration suggesting that the block is relieved when the blocker passes through the channel. At low pH, urea, formamide, and acetamide cause similar blocks suggesting that the protonated species of these molecules also block. Arginine and several amines do not block. This indicates that only iminium ions which are small enough to enter the channel can cause blocks in gramicidin channels. 相似文献
9.
The influence of well-defined changes in the polar part of phospholipid molecules on the properties of black lipid membranes was studied using a series of phospholipids with identical hydrocarbon chains, but systematically changed polar groups. The hydrocarbon tails of the lipids under study were composed of 1,2-dipentadecylmethylidene glycerol. The polar parts differed in the degree of N-methylation and comprised phosphocholine, -N,N-dimethylethanolamine, -N-methylethanolamine and ethanolamine. Stable black lipid membranes could be formed with the solvents octane, decane, dodecane, tetradecane and hexadecane. The properties of gramicidin-induced single ionic channels changed systematically in membranes from the phosphatidylcholine to the phosphatidylethanolamine analogue, as indicated by an increase in the amplitude lambda of the unit conductance step and a decrease in the average channel life-time or duration tau. The series of tau-values was opposite to that expected from hydrocarbon thickness (specific capacitance). It is suggested that the surface tension gamma is a relevant parameter for the prediction of tau-values. 相似文献
10.
Proton transfer in gramicidin channels is modulated by the thickness of monoglyceride bilayers 下载免费PDF全文
The thickness of monoglyceride planar bilayers has significant effects on the transfer of protons in both native gramicidin A (gA) and in covalently linked SS- and RR-dioxolane-linked gA proteins. Planar bilayers with various thicknesses were formed from an appropriate combination of monoglyceride with various fatty acid lengths and solvent. Bilayer thicknesses ranged from 25 A (monoolein in squalene) to 54 A (monoeicosenoin in decane). Single-channel conductances to protons (g(H)) were measured in the concentration range of 10-5000 mM HCl. In native gA as well as in RR channels, the shape of the log(g(H))-log([H(+)]) relationships was nonlinear and remained basically unaltered in monoglyceride bilayers with various thicknesses. For both native gA and RR channels, g(H) values were systematically and significantly larger in thin than in thick bilayers. By contrast, the shape of the log(g(H))-log([H(+)]) relationships in the SS channel was linear (with a slope considerably smaller than 1) in thick (>37 A) bilayers. However, in thin (<37 A) bilayers these plots became nonlinear and g(H) values approached those obtained in native gA channels. The linearization of the log-log plots in the SS channel in thick bilayers is a consequence of a dramatic increase (instead of a decrease as in native gA and RR channels) of g(H) in these bilayers in [H(+)] <1 M. The gating characteristics of the various gA channels as a function of bilayer thickness followed the same pattern as described previously. It was noticed, however, that in the thickest monoglyceride bilayer used in this study, both the SS- and RR-dioxolane-linked channels opened in a mode of bursting activity instead of remaining in the open state as in thin bilayers. It is proposed that the thickness of monoglyceride bilayers modulates proton transfer in native gA channels by a combination of factors including the access resistances of channels to H(+), and fluctuations in both the structure of the lipid bilayer and in the distance between gA monomers. The differential effects of relatively thick monoglyceride bilayers on proton transfer in both dioxolane-linked gA channels must relate to distinct interactions between the bilayers and the SS and RR dioxolanes. 相似文献
11.
The ion permeability of transmembrane channels formed by the linear gramicidins is altered by amino acid sequence substitutions. We have previously shown that the polarity of the side chain at position one is important in modulating a channel's conductance and ion selectivity [Russel et al. (1986) Biophys. J. 49, 673-686]. Changes in polarity could alter ion permeability by (through-space) ion-dipole interactions or by (through-bond) inductive electron shifts. We have addressed this question by investigating the permeability characteristics of channels formed by gramicidins where the NH2-terminal amino acid is either phenylalanine or one of a series of substituted phenylalanines: p-hydroxy-, p-methoxy-, o-fluoro-, m-fluoro-, or p-fluorophenylalanine. The electron-donating or -withdrawing nature, as quantified by the Hammett constant, ranges from -0.37 to +0.34 for these side chains. Channels formed by these gramicidins show a more than 2.5-fold variation in their Na+ conductance, but the conductance variations do not rank in the order of the Hammett constants of the side chains. Inductive effects cannot therefore be of primary importance in the modulation of the gramicidin single-channel conductance by these side chains. The results support previous suggestions that electrostatic interactions between side chain dipoles and permeating ions can modify the energy profile for ion movement through the gramicidin channel and thus alter the conductance. 相似文献
12.
Four natural trichorzianin analogues, channel-forming peptaibols, differing in their C-terminal residues (Gln or Glu, Trpol or Pheol) were tested for their macroscopic and single-channel conductances in planar lipid bilayers. The results indicate that, as regards to the voltage threshold, the most efficient analogue is the charged Trpol-bearing one. In addition, Trpol brings about a drastic lengthening of the open channel life-times. This behaviour is attributed to the dipole moment of the end residues and to the bulkiness and hydrogen bonding ability of Trpol. 相似文献
13.
The helical polypeptide, gramicidin A has been widely studied as a model for the interactions of hydrophobic proteins with lipid bilayer membranes. Many reports are now available of the physical effects of mixing gramicidin A with phospholipid membranes, however, the interpretation of these data remains unclear. The purpose of this communication is to examine the controversial claim that high concentrations of gramicidin A cause disorder within the L
phase of phosphatidylcholine-water dispersions. Solid-state nuclear magnetic resonance (NMR), density gradient and X-ray diffraction techniques are used to confirm the existence of such an effect and mechanisms are discussed which account for the known effects of gramicidin A on lipid bilayers. 相似文献
14.
Borisenko V Lougheed T Hesse J Füreder-Kitzmüller E Fertig N Behrends JC Woolley GA Schütz GJ 《Biophysical journal》2003,85(1):612-622
We report here an approach for simultaneous fluorescence imaging and electrical recording of single ion channels in planar bilayer membranes. As a test case, fluorescently labeled (Cy3 and Cy5) gramicidin derivatives were imaged at the single-molecule level using far-field illumination and cooled CCD camera detection. Gramicidin monomers were observed to diffuse in the plane of the membrane with a diffusion coefficient of 3.3 x 10(-8) cm(2)s(-1). Simultaneous electrical recording detected gramicidin homodimer (Cy3/Cy3, Cy5/Cy5) and heterodimer (Cy3/Cy5) channels. Heterodimer formation was observed optically by the appearance of a fluorescence resonance energy transfer (FRET) signal (irradiation of Cy3, detection of Cy5). The number of FRET signals was significantly smaller than the number of Cy3 signals (Cy3 monomers plus Cy3 homodimers) as expected. The number of FRET signals increased with increasing channel activity. In numerous cases the appearance of a FRET signal was observed to correlate with a channel opening event detected electrically. The heterodimers also diffused in the plane of the membrane with a diffusion coefficient of 3.0 x 10(-8) cm(2)s(-1). These experiments demonstrate the feasibility of simultaneous optical and electrical detection of structural changes in single ion channels as well as suggesting strategies for improving the reliability of such measurements. 相似文献
15.
R E Koeppe L L Providence D V Greathouse F Heitz Y Trudelle N Purdie O S Andersen 《Proteins》1992,12(1):49-62
In order to resolve whether gramicidin A channels are formed by right- or left-handed beta-helices, we synthesized an optically reversed (or mirror image) analogue of gramicidin A, called gramicidin A-, to test whether it forms channels that have the same handedness as channels formed by gramicidin M- (F. Heitz et al., Biophys. J. 40:87-89, 1982). In gramicidin M- the four tryptophan residues have been replaced with phenylalanine, and the circular dichroism (CD) spectrum therefore reflects almost exclusively contributions from the polypeptide backbone. The CD spectrum of gramicidin M- in dimyristoylphosphatidylcholine vesicles is consistent with a left-handed helical backbone folding motif (F. Heitz et al., Biophys. Chem. 24:149-160, 1986), and the CD spectra of gramicidins A and A- are essentially mirror images of each other. Based on hybrid channel experiments, gramicidin A- and M- channels are structurally equivalent, while gramicidin A and A- channels are nonequivalent, being of opposite helix sense. Gramicidin A- channels are therefore left-handed, and natural gramicidin A channels in phospholipid bilayers are right-handed beta 6.3-helical dimers. 相似文献
16.
O. Fröhlich 《The Journal of membrane biology》1979,48(4):365-383
Summary Gramicidin-doped asymmetric bilayers made by the Montal-Mueller method exhibited an asymmetric current-voltage relationship. The asymmetric conductance was shown to be the product of two components, a rectifying single-channel conductance and an asymmetric voltage dependence of the reaction which leads to the conducting channel. The single-channel conductance was asymmetric in both asymmetric bilayers made of charged lipids and asymmetric bilayers made only of neutral lipids. The single-channel asymmetry decreased with increasing ion concentration. From the comparison of the singlechannel conductance in symmetric and asymmetric bilayers and the dependence of the asymmetry on the solution ion concentrations, it was concluded that (1) the rate of ion entry into the channel is dependent on the lipid composition of the membrane and is asymmetric in asymmetric bilayers; (2) the entry step is rate determining at low ion concentrations; and (3) at higher ion concentrations the rate-determining step is the translocation across the main barrier in the membrane; and this translocation appears insensitive to lipid asymmetry. 相似文献
17.
Summary Monoolein lipid bilayers were formed using a monolayer transfer technique and from dispersions of monoolein in squalene, triolein, 1-chlorodecane and 1-bromodecane. Measurements of optical reflectance and electrical capacitance were used to determine the thickness and dielectric constant of the bilayers. The thickness of the hydrocarbon region of the five bilayer systems ranged from 2.5 to 3.0 nm. Two of the bilayer systems (made from 1-chlorodecane and 1-bromodecane solvents) had a high dielectric constant (2.8 to 2.9) whereas the other bilayer systems had dielectric constants close to that of pure hydrocarbons (2.2). The charge-pulse technique was used to study the transport kinetics of three lipophilic ions and two ion carrier complexes in the bilayers. For the low dielectric constant bilayers, the transport of the lipophilic ions tetraphenylborate, tetraphenylarsonium and dipicrylamine was governed mainly by the thickness of the hydrocarbon region of the bilayer whereas the transport of the ion-carrier complexes proline valinomycin-K+ and valinomycin-Rb+ was nearly independent of thickness. This is consistent with previous studies on thicker monoolein bilayers. The transport of lipophilic anions across bilayers with a high dielectric constant was 20 to 50 times greater than expected on the basis of thickness alone. This agrees qualitatively with predictions based on Born charging energy calculations. High dielectric constant bilayers were three times more permeable to the proline valinomycin-K+ complex than were low dielectric constant bilayers but were just as permeable as low dielectric constant bilayers to the valinomycin-Rb+ complex. 相似文献
18.
Rózycka-Roszak B Przyczyna A Misiak P Pruchnik H 《Zeitschrift für Naturforschung. C, Journal of biosciences》2006,61(3-4):302-308
Effects of N-dodecyl-N,N-dimethyl-N-benzylammonium halides (DBeAX) on thermotropic phase behavior of phosphatidylcholine/cholesterol bilayers as well as on 1H NMR spectra were studied. The surfactants were added either to the water phase or directly to the lipid phase (a mixed film was formed). The benzyl group, opposite to liposomes without cholesterol, is not incorporated into the bilayer in the gel state but only in the liquid state. All the halides DBeAX (particularly the chloride DBeAC) showed greater ability to destabilize the membrane structure in the presence than in the absence of cholesterol. The interaction of DBeAX with DPPC/cholesterol bilayers and subsequent changes in the phospholipid bilayer organization depended on the kind of counterion. The strongest effects were observed for chloride (most electronegative ion) and for iodide (largest ion). The effects of chloride and bromide on phase transition and 1H NMR spectra in the presence and absence of cholesterol were opposite. This is discussed in terms of the influence of counterions on the pair cholesterol-DPPC interactions. 相似文献
19.
The effects of the channel-forming peptide gramicidin D (gD) on the conductance and electroporation thresholds of planar bilayer lipid membranes, made of the synthetic lipid 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC), was studied. High-amplitude ( approximately 200-900 mV) rectangular voltage pulses of 15 ms duration were used to perturb the bilayers and monitor the transmembrane conductance. Electroporation voltage thresholds were found, and conductance was recorded before and after electroporation. Gramicidin was added to the system in peptide/lipid ratios of 1:10, 000, 1:500, and 1:15. The addition of gD in a ratio of 1:10,000 had no effect on electroporation, but ratios of 1:500 and 1:15 significantly increased the thresholds by 16% (p < 0.0001) and 40% (p < 0.0001), respectively. Membrane conductance before electroporation was measurable only after the addition of gD and increased monotonically as the peptide/lipid ratio increased. The effect of gD on the membrane area expansivity modulus (K) was tested using giant unilamellar vesicles (GUVs). When gD was incorporated into the vesicles in a 1:15 ratio, K increased by 110%, consistent with the increase in thresholds predicted by an electromechanical model. These findings suggest that the presence of membrane proteins may affect the electroporation of lipid bilayers by changing their mechanical properties. 相似文献