首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Despite the widespread use of hCG to advance ovulation in the mare there is little information on efficacy of dose rates and any contraindications of its use. This study aims to investigate the effect of dose of hCG on ovulation within 48h and the effect of hCG on: ovulation, multiple ovulation (MO), pregnancy, multiple pregnancy (MP) rates and synchrony of MO; additionally whether any seasonal effect is evident. Sequential ultrasonic scanning was used to monitor the occurrence of ovulation, within 48h of treatment, in 1291 Thoroughbred mares treated with either 750iu hCG or 1500iu hCG s.c. Ovulation rate, type (single ovulations (SO), MO, synchronous, asynchronous) and subsequent pregnancy were then monitored in 1239 Thoroughbred mares on a commercial stud over 3 years, 536 of which were treated with 750iu hCG at mating, all mares were also allocated into groups according to month of mating. No significant difference existed between the two dose levels of hCG and no significant difference existed between treated and untreated mares in overall ovulations (1.32 and 1.28 respectively), MO (31.7% and 27.7%), pregnancy (65.1% and 65.6%) or MP rates (10.8% and 11.8%). There was no significant association between month of year and pregnancy or MP rates for either treated or control mares, nor for MO for untreated mares. A significant (p<0.05) association was evident between month and MO in treated mares, MO being lowest in April (22.3%). 95.9% of treated mares multiple ovulated within 48h compared with 90.7% controls, a near significant difference. In conclusion this study demonstrates that: (i) hCG dose of 750iu s.c. is just as effective in inducing ovulation within 48h as 1500iu, (ii) 750iu hCG has no significant effect on ovulation, MO, pregnancy or MP rates; (iii) a significant (p<0.05) association exists between season and MO in hCG treated mares; (iv) a tighter synchrony (ovulation within 48h) of MO is evident in hCG treated compared with control mares (p=0.052).  相似文献   

2.
One-minute continuous ultrasonic scans of longitudinal sections of the uterine body were videotaped, and contractility scores (1 to 5, minimal to maximal contractility) were assigned without knowledge of mare identity, day of the estrous cycle or pregnancy status. Contractility was assessed, and plasma progesterone concentrations were determined for each of 3 daily examinations (at 0800, 1600 and 2400 hours) from Day 9 to Day 19 (Day 0 = day of ovulation). For both the nonbred (n=11) and pregnant (n=11) mares, there was no effect of hour of scan on the extent of uterine contractility. When data for the nonbred mares were normalized to the onset of luteolysis (defined for each mare as the first >/=25% decrease in plasma progesterone concentrations between successive samples), there was an abrupt increase (P<0.05) in contractility 24 hours prior to the onset of luteolysis. Contractility was also assessed daily in 20 nonbred and 27 pregnant mares from Day 0 to Day 17. For the nonbred mares, a biphasic profile in contractility occurred during the estrous cycle as indicated by the following significant changes: a decrease between Days 0 and 2, an increase between Days 2 and 4, a plateau between Days 4 and 7, a decrease between Days 7 and 11, an increase between Days 11 and 13, and a decrease between Days 14 and 16. For pregnant mares, contractility increased (P<0.05) prior to the late-diestrous increase for nonbred mares. In addition, a significant reduction in contractility was detected on Day 5 in these mares compared with that in the nonbred mares. Contractility in the uterine body in 7 mares was assessed every 5 minutes after departure of the embryonic vesicle from the uterine body. Levels of contractility in the uterine body were lower (P<0.05) 55 minutes after the vesicle had exited the body than 相似文献   

3.
The viability of embryos before flushing from donor mares (n = 5) and after transfer to recipient mares (n = 7) was monitored in mare serum by detecting early pregnancy factor (EPF) using the rosette inhibition test (RIT). The EPF activity was measured in donor mares before and after natural mating at natural estrus; after ovulation on Days 2, 5 and 8; and after embryo flushing (Day 8) on Days 8, 9, 10 and 13 after ovulation. The collected embryos were transferred immediately after flushing. The EPF activity in recipient mares were measured on the day of transfer and after embryo transfer on Days 1, 2, 3 and 5. Pregnancy was confirmed on Day 12 to 14 after embryo transfer. The mean EPF activity of donor mares was increased to the pregnant level (> an RI titer score of 10) on Day 2 after ovulation. Two days after flushing the embryos, the EPF activity of donor mares had decreased to the nonpregnant level. Among the 7 recipient mares, 3 mares were diagnosed pregnant on Day 12 after embryo transfer with ultrasound. The EPF activity of the pregnant recipient mares was increased above the minimum level observed in pregnant mares on Days 2 to 3 after transfer. However, among the nonpregnant recipient mares after embryo transfer, the EPF activity of 3 mares remained at the pregnant level only 2 to 3 d and then declined to the nonpregnant level. In one recipient mare, EPF activity did not reach the pregnant level throughout the sample collection. The results of this study indicated that equine EPF can be detected in serum of pregnant mares as early as Day 2 after ovulation. From our observation, we conclude that the measurement of EPF activity is useful for monitoring the in vivo viability of equine embryos and early detection of embryonic death.  相似文献   

4.
Pycock JF  Newcombe JR 《Theriogenology》1996,46(6):1097-1101
Two trials involving 578 mares were performed to investigate the effect of a single intramuscular treatment of 40 microg buserelin, an analog of gonadotrophin releasing hormone, on pregnancy rate in mares. All mares were bred by natural mating and were allocated into pairs One mare in each pair was injected with buserelin either on Day 10 or 11 (Trial 1) or on Days 8 to 10 (Trial 2) after ovulation. Pregnancy status of mares was determined by transrectal ultrasonographic examination on Day 14 or 15 after the day of ovulation and was repeated between Days 28 and 30 of pregnancy. In Trial 1, buserelin treatment increased the pregnancy rate at Days 14 and 15 (72.5 vs 66.6%, P < 0.01). At the second pregnancy examination, pregnancy losses were lower in the treated group of mares (4.1 vs 7.4%; P < 0.05). In Trial 2, buserelin also improved the pregnancy rate (57.2 vs 53 5%; P < 0.05) at Days 14 and 15 Pregnancy losses between the first and second examinations were lower in the treated group of mares (6.5 vs 12.0%; P < 0.05). Buserelin increased pregnancy rates after breeding at the first estrus in both trials. In addition, buserelin treatment increased the pregnancy maintenance rate at Days 28 to 30.  相似文献   

5.
Transrectal color Doppler sonography was used for the noninvasive investigation of uterine blood flow in five mares. Both the left and right uterine arteries were scanned to obtain blood flow velocity waveforms during two consecutive estrous cycles and two early pregnancies in each mare. Blood flow was expressed as the time-averaged maximum velocity (TAMV) and the resistance index (RI). In all pregnancies the embryonic vesicle could be detected for the first time on Day 11 (day of ovulation: Day 0). No differences in mean TAMV and RI values of both uterine arteries were observed in comparison to the corresponding days of the estrous cycle until Day 11 of pregnancy (P>0.05). From Day 11 onwards, mean TAMV values were higher and mean RI values lower in pregnant mares than in cyclic mares (P<0.05). During the estrous cycle TAMV and RI values did not differ between the right and left uterine arteries (P>0.05). From Days 15 to 29 of pregnancy, TAMV values were consistently higher and RI values lower in the uterine artery ipsilateral to the conceptus and they had a more distinct rise and decline, respectively, compared to the contralateral uterine artery (P<0.05). The variance component estimates for the effect of mare on TAMV and RI values during pregnancy were 60 and 53%, respectively, and for the effect of day of pregnancy, they were 29 and 34%, respectively (P<0.0001). Within mares there were no significant differences between the two pregnancies with regard to blood flow (P>0.05). The results show that uterine blood supply increases in mares during the second week of pregnancy compared to cyclic mares. Furthermore there are individual variations in blood flow between mares.  相似文献   

6.
The equine embryonic vesicle is mobile on Days 12-14 (Day 0 = ovulation), when it is approximately 9-15 mm in diameter. Movement from one uterine horn to another occurs, on average, approximately 0.5 times per hour. Mobility ceases (fixation) on Days 15-17. Transrectal color Doppler ultrasonography was used to study the relationship of embryo mobility (experiment 1) and fixation (experiment 2) to endometrial vascular perfusion. In experiment 1, mares were bred and examined daily from Day 1 to Day 16 and were assigned, retrospectively, to a group in which an embryo was detected (pregnant mares; n = 16) or not detected (n = 8) by Day 12. Endometrial vascularity (scored 1-4, for none to maximal, respectively) did not differ on Days 1-8 between groups or between the sides with and without the corpus luteum. Endometrial vascularity scores were higher (P < 0.05) on Days 12-16 in both horns of pregnant mares compared to mares with no embryo. In pregnant mares, the scores increased (P < 0.05) between Day 10 and Day 12 in the horn with the embryo and were higher (P < 0.05) than scores in the opposite horn on Days 12-15. In experiment 2, 14 pregnant mares were examined from Day 13 to 6 days after fixation. Endometrial vascularity scores and number of colored pixels per cross-section of endometrium were greater (P < 0.05) in the endometrium surrounding the fixed vesicle than in the middle portion of the horn of fixation. Results supported the hypothesis that transient changes in endometrial vascular perfusion accompany the embryonic vesicle as the vesicle changes location during embryo mobility.  相似文献   

7.
The estimated embryonic loss rate between Days 4 and 14 after ovulation for young, normal mares (9%) was significantly lower (P less than 0.01) than the estimated embryonic loss rate for aged subfertile mares (62%). Fertilization rates, which were based on the recovery of embryos at Day 4 after ovulation, were 96% and 81% (P less than 0.1) for normal and subfertile mares, respectively. Day-4 embryos were collected from the oviducts of normal and subfertile donors mares. These embryos were transferred to the uteri of synchronized, normal recipient mares to test the hypothesis that the high incidence of embryonic loss in subfertile mares was related to embryonic defects. The hypothesis was supported because embryo survival rates were significantly higher (P less than 0.05) for Day-4 embryos from normal compared to subfertile mares. These defects may have been intrinsic to the embryo or might have arisen due to the influence of the oviducal environment before Day 4 after ovulation.  相似文献   

8.
Ovarian activity was monitored in 2181 oestrous cycles from 1136 thoroughbred brood mares to accurately determine overall ovulation rate, the relative distribution of ovulations between left and right ovary, whether mare age had an effect on these parameters and whether ovulation pattern in one cycle affected the pattern within the next. Ultrasonic scanning was used in preference to rectal palpation and slaughterhouse material due to its greater accuracy. Mare's ages ranged from 3 to 22 years. The results obtained indicated a similar incidence of ovulation occurring on the right (49.5% of all ovulations) or left ovary (50.5%). Multiple ovulations (MO) occurred in 22.4% of oestrous cycles. Significantly (P<0.01), more double ovulations (DO) were bilateral (57.2%) than unilateral (42.8%); 20.7% were unilateral right and 22.1% were unilateral left. There were 828 mares grouped into six age groups: A (3-5 years), B (6-8 years), C (9-11 years), D (12-14 years), E (15-18 years), F (18-22 years). The distribution of ovulation between the left and right ovary was not affected by age group, but significant association (P<0.01) was evident between age and MO. Group A had 15% of cycles resulting in MO compared to 19.4, 24.6, 25.8, 28.6 and 35.1% in groups B-F, respectively. A significant (P<0.01) association between MO in successive cycles was also demonstrated, with a greater chance (P<0.05) of successive single ovulations (SO) being on alternate ovaries. There was no significant repeatability of the classification of DO in one cycle compared to the next. We conclude that: (i) the mare is a symmetrical ovulator; (ii) 22.4% of cycles yield MO (ovulation rate 1.23); (iii) this MO incidence increased (P<0.01) with age; (iv) the exhibition of MO in one cycle was linked to an increased probability (P<0.01) of a MO occurring at the next one and (v) SO in one ovary was more likely (P<0.05) to be followed by a SO on the alternate ovary during the next cycle.  相似文献   

9.
Pregnancy rates at Days 2 and 14 postovulation were determined for 15 normal mares and 15 subfertile mares. Embryonic loss rates were estimated by the difference in the Day 2 and Day 14 pregnancy rates. Mares were artificially inseminated with the pooled ejaculates from three stallions, and the embryonic vesicle was detected with ultrasonography at Days 9, 10, 12 and 14. Mares were short-cycled with prostaglandin F(2) alpha (PGF(2alpha)) and rebred to the same stallions, and the Day 2 pregnancy rates were determined by recovery of cleaved ova (embryos) from the surgically excised oviducts. Significantly more (P < 0.01) normal versus subfertile mares were pregnant at Day 14 (12 15 vs 3 15 ). There was no significant difference in the Day 2 pregnancy rate for normal versus subfertile mares (10 14 vs 11 14 ). There were no significant differences (P > 0.5) in the mean number of blastomeres per embryo or in the mean diameter of embryos recovered at Day 2 from normal or subfertile mares. The estimated embryonic loss rate was significantly lower (P < 0.01) for normal verusus subfertile mares (0 10 vs 8 11 ). Fertilization rates were similar for normal and subfertile mares; however, subfertile mares had a higher embryonic loss rate prior to Day 14 postovulation.  相似文献   

10.
In the present study, 638 embryo transfers conducted over 3 yr were retrospectively examined to determine which factors (recipient, embryo and transfer) significantly influenced pregnancy and embryo loss rates and to determine how rates could be improved. On Day 7 or 8 after ovulation, embryos (fresh or cooled/transported) were transferred by surgical or nonsurgical techniques into recipients ovulating from 5 to 9 d before transfer. At 12 and 50 d of gestation (Day 0 = day of ovulation), pregnancy rates were 65.7% (419 of 638) and 55.5% (354 of 638). Pregnancy rates on Day 50 were significantly higher for recipients that had excellent to good uterine tone or were graded as "acceptable" during a pretransfer examination, usually performed 5 d after ovulation, versus recipients that had fair to poor uterine tone or were graded "marginally acceptable." Embryonic factors that significantly affected pregnancy rates were morphology grade, diameter and stage of development. The incidence of early embryonic death was 15.5% (65 of 419) from Days 12 to 50. Embryo loss rates were significantly higher in recipients used 7 or 9 d vs 5 or 6 d after ovulation. Embryos with minor morphological changes (Grade 2) resulted in more (P<0.05) embryo death than embryos with no morphological abnormalities (Grade 1). Between Days 12 and 50, the highest incidence of embryo death occurred during the interval from Days 17 to 25 of gestation. Embryonic vesicles that were imaged with ultrasound during the first pregnancy exam (5 d after transfer) resulted in significantly fewer embryonic deaths than vesicles not imaged until subsequent exams. In the present study, embryo morphology was predictive of the potential for an embryo to result in a viable pregnancy. Delayed development of the embryo upon collection from the donor or delayed development of the embryonic vesicle within the recipient's uterus was associated with a higher incidence of pregnancy failure. Recipient selection (age, day after ovulation, quality on Day 5) significantly affected pregnancy and embryo loss rates.  相似文献   

11.
The uterine function and reproductive efficiency of 31 nonlactating pony mares were compared for two age groups: young (5 to 7 years, n=9) and old (>/=15 years, n=22). For pregnant mares, differences between age groups were not significant for the diameter of the largest follicle, cross-sectional area of the corpus luteum, growth profile of the embryonic vesicle or embryo mobility characteristics. Uterine contractility scores were lower (P<0.05), day of fixation of the embryonic vesicle was later (P<0.05), and uterine tone tended (P<0.10) to be lower in the old than the young mares. Endometrial biopsies in old mares had more (P<0.05) inflammatory cell infiltrations, more (P<0.05) fibrotic changes, and less dense (P<0.05) endometrial glands than in young mares. Ultrasonically detected intrauterine fluid collections were more extensive (P<0.05) in the old than the young mares. The pregnancy rate on Day 12 (Day 0=ovulation) was lower (P<0.05) and embryo-loss rate (Days 12 to 39) was greater (P<0.05) in old (32 and 62%, respectively) than in young (100 and 11%, respectively) mares. The results confirmed previous reports that old age was associated with increased endometrial inflammation, reduced pregnancy rate and increased embryo-loss rate. The results also indicated that uterine contractility and uterine tone were reduced and the fixation of the embryonic vesicle occurred later in old than in young mares.  相似文献   

12.
Transrectal ultrasonography was used to quantitate uterine contractile activity during the estrous cycle and early pregnancy in pony mares (nonbred, n = 9; pregnant, n = 16). Continuous 1-min scans of longitudinal sections of the uterine body were videotaped, and uterine activity scores (1=minimal activity, 5=maximal activity) were assigned to each tape segment. There was a tendency (P<0.06) for a main effect of reproductive status (nonbred versus pregnant), a main effect of day (P<0.0001), and a reproductive status by day interaction (P<0.006). Uterine activity scores were higher (P<0.05) in pregnant mares on Days 1, 11, 12, and 17 (Day 0=day of ovulation) than in nonbred mares. Maximal activity in pregnant mares occurred on Days 11 to 14 during the reported period of maximal embryo mobility. Activity scores decreased (P<0.05) between the day prior to and the day of fixation (mean = Day 15) of the embryonic vesicle. Activity scores were maintained at an intermediate level for several days following fixation before declining to minimal levels by 7 d postfixation. A postovulatory decrease (P<0.04) in activity scores was observed in nonbred mares, but not in pregnant mares, between Days 0 and 1 followed by a progressive increase (P<0.03) between Days 2 and 4. Maximal activity in nonbred mares occurred during the late luteal phase (Days 13 to 14), corresponding temporally to the reported onset of luteolysis.  相似文献   

13.
A 15-mm diameter degenerating embryonic vesicle and a normal, 200-u early blastocyst were recovered in a uterine flush of a mare 7 d after ovulation. From its size, the degenerating vesicle appeared to be 13 to 14 d of age. The mare had been bred during a previous cycle and then treated with prostaglandin 9 days after ovulation. The advanced vesicle that was recovered suggests that a conceptus from the previous cycle continued to grow for about 5 d after prostaglandin administration, and remained in the uterus during estrus, when plasma progesterone concentrations were below 1 ng/ml. From the estimated age of the conceptus, its development stopped at about the time the mare was inseminated. Had this conceptus survived through estrus and insemination, superfetation would have occurred.  相似文献   

14.
Intrauterine mobility patterns of the embryonic vesicle were characterized on Days 9 to 17 after ovulation in pony mares using real-time ultrasonography (n=5 or 7 mares per day). The location of the vesicle was determined by dividing the uterus into right horn, left horn, and body. Each uterine horn was further divided into three approximately equal portions (cranial third, middle third, caudal third), yielding seven segments (body plus three portions of each horn). Location of the vesicle within the uterus was recorded every five minutes for two consecutive hours (25 location determinations per trial). The number of times the vesicle was found in the uterine body versus one of the uterine horns was greater for the body on Day 9 (15.2 vs 9.8; not significant) and Day 10 (17.3 vs 7.7 P<0.05) and greater (P<0.05) for the horns on Days 12 (7.3 vs 17.7) through 17 (0.0 vs 25.0). Averaged over all days, when the vesicle was in one of the uterine horns it was present 56% of the time in the caudal third, 30% of the time in the middle third, and 14% of the time in the cranial third. Mobility was determined by the number of times the vesicle changed locations during successive examinations. On Day 9, the mean number of location changes per trial was minimal (horn to horn, 0.2; body to horn or vice versa, 1.8; between two segments, 4.2). The extent of mobility increased on Day 10 and reached an apparent plateau from Day 11 to Day 14. The mean number of location changes per trial during the plateau was as follows: horn to horn, 1.6; body to horn or vice versa, 5.6; between two segments, 10.7. Fixation (cessation of mobility) occurred in one of the horns in 5 7 mares on Day 15 and in 7 7 mares by Day 16. Mobility was present on the earliest day the embryonic vesicle was detected (Day 9), but Days 11 to 14 were characterized as the days of maximum mobility.  相似文献   

15.
The pregnancy rate achieved with frozen semen using two packaging methods was compared in two separate experiments. The sperm-rich fraction of the semen was collected and immediately extended in an egg-yolk based extender to a final concentration of 100 x 10(6) sperm/ml. Half of each ejaculate was packaged in 4.0-ml plastic straws and the other half in 10-to 12-ml flattened aluminum tubes. After detection of a 35-mm follicle, mares were inseminated daily until ovulation. Pregnancy was detected, and embryonic vesicle size was measured by ultrasonic echography Days 14 to 26 after ovulation. The one-cycle pregnancy rate achieved using both packaging methods was 50% overall (23 46 ), with 46% (12 26 ) and 55% (11 20 ) rates achieved, respectively, using straws and aluminum tubes. These rates were not significantly different.  相似文献   

16.
Seasonally anovulatory mares were injected, i.m., twice daily with a GnRH analogue (GnRH-A), and hCG was given when the largest follicle reached 35 mm in diameter. In Exp. 1, treatment was initiated on 23 December when the largest follicle per mare was less than or equal to 17 mm. An ovulatory response (ovulation within 21 days) occurred in 17 of 30 (57%) GnRH-A-treated mares on a mean of 15.8 days. The shortest interval to ovulation in control mares (N = 10) was 57 days. The diameter of the largest follicle first increased significantly 6 days after start of treatment. In Exp. 2, treatment was begun on 15 January and mares were categorized according to the largest follicle at start of treatment. The proportion of mares ovulating within 21 days increased significantly according to initial diameter of largest follicle (less than or equal to 15 mm, 9/25 mares ovulated; 15-19 mm, 13/21; 20-24 mm, 20/24; greater than 25 mm, 3/3). The multiple ovulation rate was greater (P less than 0.01) for treated mares (27/86 mares had multiple ovulations) than for control mares (2/35). Treated mares in which the largest follicle at start of treatment was greater than or equal to 25 mm had a higher (P less than 0.01) multiple ovulation rate (9/14) than did mares in which the largest follicle was less than 25 mm (18/72). The pregnancy rate for single ovulators was not different between control mares (26/30 pregnant mares) and treated mares (43/54).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Delayed uterine involution is a major cause of early reproductive failure in mares. Involution is affected by mare age, and foaling to covering interval. Involution rates vary between the previously non-gravid horn (PNGH), which recovers the quicker, and the previously gravid horn (PGH). Location of a pregnancy and its likely success may, therefore, be affected by its location relative to the previous pregnancy. This study aimed to determine: (i) the location of concepti in consecutive pregnancies; (ii) whether this varies with mare age or foaling to conception interval; (iii) whether location in relation to the previous pregnancy affects success. 1383 Thoroughbred mares were monitored by ultrasonic scanning during oestrus and early pregnancy. Significantly (p < 0.01) more pregnancies were located in the PNGH (79.2%) than the PGH (20.8%). The number of pregnancies in PGH significantly increased with mare age (p < 0.01) and foaling to conception interval (p < 0.05). Significantly (p < 0.001) more pregnancies located in the PGH (16.5%) failed, than those in the PNGH (4.6%). It can be concluded that most pregnancies locate in the PNGH where their chances of success are greatest. The larger number of pregnancies locating in the PGH in older mares and those with shorter foaling to conception intervals may in part account for the higher conceptus mortality rates in such mares. Hence breeding older mares on alternate years and maximising foaling to conception interval may improve reproductive success. Alternatively termination of pregnancies located in the PGH followed by timely recovering may be justifiable as might ET in older mares covered close to foaling.  相似文献   

18.
The effects of grazing endophyte-infected tall fescue on luteal function, pregnancy rates, and embryonic loss rates were compared between treated mares (n=18) and untreated controls (endophyte-free, n=12). Mares grazing endophyte-infected fescue demonstrated significantly (P<0.01) prolonged luteal function (22.9 vs 15.8 d) than those grazing endophyte-free fescue. Continuous grazing of endophyte-infected fescue resulted in a decreased (P=0.30) per cycle 14-d viable pregnancy rate (14 31 , 45.2%) compared with that of endophyte-free grazing (12 16 , 75.0%). Early embryonic death rates were higher (P=0.20) in the endophyte-infected group (6 20 , 30.0%) than the endophyte-free group (1 13 , 7.7%). Cumulative pregnancy rates after a 60-d breeding period did not differ between the 2 groups. Embryonic development based on mean vesicle height at 14-d was not significantly different between treatment groups for embryos that maintained viability. Embryos that underwent early embryonic death were smaller (P<0.10) at Day-14 than embryos that maintained viability. Mean plasma progesterone concentrations were significantly (P< 0.01) greater at Day-21 postovulation in endophyte-infected mares in which the embryo remained viable (15.8 ng/ml) than in endophyte-free mares that experienced early embryonic death (9.8 ng/ml) or that demonstrated prolongation of luteal function (11.2 ng/ml). The results of this study suggest that grazing endophyte-infected tall fescue can have a detrimental effect on reproductive efficiency in the mare due to an increase in cycles bred per pregnancy rate, increased early embryonic death rate and prolongation of luteal function.  相似文献   

19.
Pregnancy rates, length of interovulatory intervals, and progesterone concentrations were examined in mares which had ultrasonically detected collections of fluid in the uterine lumen and in mares which lost the embryonic vesicle during Days 11 to 15 and did not become pseudopregnant. In mares with embryonic loss, the loss rate for mares with re-established pregnancies (9 18 ) was greater (P<0.05) than the loss rate for all pregnancies (38 154 ), indicating repeatability. Pregnancy rates were higher (P<0.01) in controls (100 177 ) than in mares with intrauterine fluid collections (2 34 ) or mares with embryonic loss (10 33 ), excluding the pregnancy associated with embryonic loss. The mean length (days) of the interovulatory interval was reduced (P<0.05) in mares with intrauterine fluid collections (20.4 +/-0.9) and in mares with embryonic loss both for the intervals in which loss occurred (19.6 +/-0.7) and for intervals in which pregnancy was not detected (21.0 +/-1.0; controls, 23.5 +/-0.6). Mean progesterone concentration (ng/ml) on Day 7 was lower (P<0.05) in mares with intrauterine fluid collections (8.8 +/-1.8) and in mares with embryonic loss (12.1 +/-1.1) than in pregnant controls (17.2 +/-0.9) and nonpregnant controls (17.5 +/-0.1). The embryonic loss seemed attributable to uterine-induced luteolysis in association with uterine inflammation, but the possibility of involvement of a primary luteal inadequacy or other factors in at least some of the mares was not eliminated.  相似文献   

20.
Ball BA  Miller PG  Daels PF 《Theriogenology》1992,38(6):1055-1063
The influence of exogenous progesterone on the development of equine oviductal embryos was determined based upon the recovery of Day-7 uterine blastocysts from treated mares (n=13) that were given 450 mg progesterone daily between Days 0 and 6 and from untreated control mares (n=13). Daily administration of 450 mg progesterone in oil significantly (P<0.02) increased serum progesterone concentrations in the treated mares. There was no significant difference in the recovery rate of Day-7 embryos between treated and control mares (8/13 versus 6/13, respectively). Embryonic development, assessed by morphologic evaluation, embryo diameter, and number of cell nuclei was not significantly different for embryos from treated and from control mares. The results of this study indicate that administration of progesterone beginning on the day of ovulation does not affect the embryo recovery rate or embryonic development, based on evaluation of uterine blastocysts recovered at Day 7 after ovulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号