首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The intracellular negatively regulatory mechanism which affects IL-1β-induced MUC8 gene expression remains unclear. We found that SOCS3 overexpression suppressed IL-1β-induced MUC8 gene expression in NCI-H292 cells, whereas silencing of SOCS3 restored IL-1β-induced MUC8 gene expression. Sequentially activated ERK1/2, RSK1, and CREB by IL-1β were not affected by SOCS3, indicating that SOCS3 has an independent mechanism of action. Using immunoprecipitaion and nano LC mass analysis, we found that SOCS3 bound NonO (non-POU-domain containing, octamer-binding domain protein) in the absence of IL-1β, whereas IL-1β treatment dissociated the direct binding of SOCS3 and NonO. A dominant-negative SOCS3 mutant (Y204F/Y221F) did not bind to NonO. Interestingly, SOCS3 overexpression dramatically suppressed MUC8 gene expression in cells transfected with wild-type or siRNA of NonO. Moreover, silencing of SOCS3 dramatically increased NonO-mediated MUC8 gene expression caused by IL-1β compared to NonO overexpression alone, suggesting that SOCS3 acts as a suppressor by regulating the action of NonO.  相似文献   

3.
Suppressor of cytokine signaling proteins (SOCS) are a family of intracellular cytokine inducible proteins, consisting of eight members. They are involved in the complex control of the inflammatory response through their actions on various signaling pathways, including the JAK/STAT and NF-κB pathways. A series of studies has shown that SOCS proteins are involved in the regulation and progression of immune responses in microglia cells. The accumulated data suggest that modulation of SOCS expression could be a target for drug development aimed at controlling inflammation in the brain. This review focuses on the current understanding of SOCS proteins involvement in inflammation-based neurodegenerative diseases and their role as therapeutic targets in future approaches.  相似文献   

4.
Influenza A virus (IAV) has evolved multiple mechanisms to compromise type I interferon (IFN) responses. The antiviral function of IFN is mainly exerted by activating the JAK/STAT signalling and subsequently inducing IFN‐stimulated gene (ISG) production. However, the mechanism by which IAV combat the type I IFN signalling pathway is not fully elucidated. In this study, we explored the roles of human microRNAs modulated by IAV infection in type I IFN responses. We demonstrated that microRNA‐30 (miR‐30) family members were downregulated by IAV infection. Our data showed that the forced expression of miR‐30 family members inhibited IAV proliferation, while miR‐30 family member inhibitors promoted IAV proliferation. Mechanistically, we found that miR‐30 family members targeted and reduced SOCS1 and SOCS3 expression, and thus relieved their inhibiting effects on IFN/JAK/STAT signalling pathway. In addition, miR‐30 family members inhibited the expression of NEDD4, a negative regulator of IFITM3, which is important for host defence against influenza viruses. Our findings suggest that IAV utilises a novel strategy to restrain host type I IFN‐mediated antiviral immune responses by decreasing the expression of miR‐30 family members, and add a new way to understand the mechanism of immune escape caused by influenza viruses.  相似文献   

5.
Periodontitis, an oral inflammatory disease caused by periodontal pathogen infection, is the most prevalent chronic inflammatory disease and a major burden on healthcare. The TAM receptor tyrosine kinases (Tyro3, Axl and Mertk) and their ligands (Gas6 and Pros1) play a pivotal role in the resolution of inflammation and have been associated with chronic inflammatory and autoimmune diseases. In this study, we evaluated the effects of exogenous Pros1 in in vitro and in vivo models of periodontitis. We detected higher Pros1 but lower Tyro3 levels in inflamed gingival specimens of periodontitis patients compared with healthy controls. Moreover, Pros1 was mostly localized in the gingival epithelium of all specimens. In cultured human gingival epithelial cells (hGECs), Porphyromonas gingivalis LPS (p.g‐LPS) stimulation down‐regulated Pros1 and Tyro3. Exogenous Pros1 inhibited p.g‐LPS–induced production of TNF‐α, IL‐6, IL‐1β, MMP9/2 and RANKL in a Tyro3‐dependent manner as revealed by PCR, Western blot analysis, ELISA and gelatin zymography. Pros1 also restored Tyro3 expression down‐regulated by p.g‐LPS in hGECs. In rats treated with ligature and p.g‐LPS, administration of Pros1 attenuated periodontitis‐associated gingival inflammation and alveolar bone loss. Our mechanistic studies implicated SOCS1/3 and STAT1/3 as mediators of the in vitro and in vivo anti‐inflammatory effects of Pros1. Collectively, the findings from this work supported Pros1 as a novel anti‐inflammatory therapy for periodontitis.  相似文献   

6.
Epithelial sheet movement is an essential morphogenetic process during mouse embryonic eyelid closure in which Mitogen-Activated Protein 3 Kinase 1 (MAP3K1) and c-Jun play a critical role. Here we show that MAP3K1 associates with the cytoskeleton, activates Jun N-terminal kinase (JNK) and actin polymerization, and promotes the eyelid inferior epithelial cell elongation and epithelium protrusion. Following epithelium protrusion, c-Jun begins to express and acts to promote ERK phosphorylation and migration of the protruding epithelial cells. Homozygous deletion of either gene causes defective eyelid closure, but non-allelic non-complementation does not occur between Map3k1 and c-Jun and the double heterozygotes have normal eyelid closure. Results from this study suggest that MAP3K1 and c-Jun signal through distinct temporal-spatial pathways and that productive epithelium movement for eyelid closure requires the consecutive action of MAP3K1-dependent cytoskeleton reorganization followed by c-Jun-mediated migration.  相似文献   

7.
Hepatocyte growth factor (HGF) is a potent mitogen for mature hepatocytes. Because HGF has strong effects on the motility of keratinocytes and is produced by fibroblasts, HGF is thought to regulate keratinocyte migration during wound healing. However, the intracellular signaling mechanism of HGF-induced keratinocyte migration is poorly understood. In this report, we clarify the roles of STAT3 and SOCS/CIS family in HGF-induced keratinocyte migration. HGF activated STAT3 and strongly induced keratinocyte migration. Transfection with the dominant-negative mutant of STAT3 almost completely abolished HGF-induced keratinocyte migration and STAT3 phosphorylation. Next, we studied the mechanisms that regulate STAT3 phosphorylation. HGF enhanced the expression of SOCS3/CIS3 by sixfold within 1h, but had minimum effect on SOCS1/JAB expression. Transfection with SOCS3/CIS3 almost completely abolished HGF-induced STAT3 phosphorylation and keratinocyte migration, indicating that SOCS3/CIS3 acts as a negative regulator of HGF-induced keratinocyte migration. In conclusion, SOCS3/CIS3 regulates HGF-induced keratinocyte migration by inhibiting STAT3 phosphorylation.  相似文献   

8.
9.
The suppressors of cytokine signalling (SOCS) box is a structural domain found at the C-terminus of over 70 human proteins. It is usually coupled to a protein interaction module such as an SH2 domain in case of SOCS proteins, a family of modulators of cytokine signaling. The SOCS box participates in the formation of E3 ligase complexes, marking activated cytokine receptor complexes for proteasomal degradation. A similar mechanism was recently uncovered for controlling SOCS activity itself, since SOCS2 was found to enhance the turnover of other SOCS proteins. The SOCS box can also add unique features to individual SOCS proteins: it can function as an adaptor domain as was demonstrated for SOCS3, or as a modulator of substrate binding in case of CIS. In this review we discuss these multiple roles of the SOCS box, which emerges as a versatile module controlling cytokine signaling via multiple mechanisms.  相似文献   

10.
The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21cip1 protein expression in primary mouse hepatocytes. Disruption of the p21cip1 gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21cip1 protein expression and a slightly stronger inhibition of cell proliferation in SOCS3+/- mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3+/- mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21cip1-dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration.  相似文献   

11.
12.
13.
构建细胞信号抑制因子3(suppressor of cytokine signaling 3,SOCS3)慢病毒干扰载体,获得有感染性的病毒颗粒,感染猪前体脂肪细胞和成肌细胞,并检测其对前体脂肪细胞的干扰效率.首先设计并合成3对针对目的基因SOCS3的siRNA序列,退火后连接于LentiH1上,测序验证后,与包装质粒△8.9和vsv-g共转染到293T细胞中进行包装和浓缩,纯化后测定病毒滴度,然后感染猪前体脂肪细胞和成肌细胞.重组慢病毒载体LentiH1-siRNA经酶切和测序鉴定正确,病毒滴度为3×107tu/mL,感染猪成肌细胞和前体脂肪细胞后,可见报告基因GFP的表达;RT-PCR和Western印迹分析表明,前体脂肪细胞中SOCS3的表达被显著下调,其中LentiH1-siRNA3介导对SOCS3基因mRNA和蛋白的干扰效率分别达53%和71%.本研究成功构建了猪SOCS3慢病毒干扰载体,感染猪前体脂肪细胞能稳定沉默SOCS3基因的表达,为深入研究SOCS3的功能奠定了基础.  相似文献   

14.
The exchange protein directly activated by cAMP (EPAC) is a key receptor of cAMP in eukaryotes and controls critical signaling pathways. Currently, no residue resolution information is available on the full-length EPAC dynamics, which are known to be pivotal determinants of allostery. In addition, no information is presently available on the intermediates for the classical induced fit and conformational selection activation pathways. Here these questions are addressed through molecular dynamics simulations on five key states along the thermodynamic cycle for the cAMP-dependent activation of a fully functional construct of EPAC2, which includes the cAMP-binding domain and the integral catalytic region. The simulations are not only validated by the agreement with the experimental trends in cAMP-binding domain dynamics determined by NMR, but they also reveal unanticipated dynamic attributes, rationalizing previously unexplained aspects of EPAC activation and autoinhibition. Specifically, the simulations show that cAMP binding causes an extensive perturbation of dynamics in the distal catalytic region, assisting the recognition of the Rap1b substrate. In addition, analysis of the activation intermediates points to a possible hybrid mechanism of EPAC allostery incorporating elements of both the induced fit and conformational selection models. In this mechanism an entropy compensation strategy results in a low free-energy pathway of activation. Furthermore, the simulations indicate that the autoinhibitory interactions of EPAC are more dynamic than previously anticipated, leading to a revised model of autoinhibition in which dynamics fine tune the stability of the autoinhibited state, optimally sensitizing it to cAMP while avoiding constitutive activation.  相似文献   

15.
目的 研究激活STAT3( pSTAT3)蛋白和SOCS3在人乳腺癌和乳腺良性病变组织中的蛋白表达及其临床意义.方法 应用免疫组织化学检测160例乳腺癌和36例乳腺良性病变组织pSTAT3和SOCS3蛋白的表达情况,分析它们与患者临床病理特征的关系.结果 人乳腺癌组织中pSTAT3和SOCS3蛋白表达阳性率分别为69.4%和40.0%,乳腺良性病变组织中pSTAT3和SOCS3蛋白表达阳性率分别为33.3%和22.2%,前者与后者相比具有统计学意义(P<0.01和P<0.05);乳腺癌pSTAT3蛋白表达与肿瘤的大小、淋巴结转移和临床分期均呈显著正相关(均P<0.01),但与患者年龄、肿瘤的组织学分级、雌孕激素受体表达和c-erBb-2表达均无显著相关(均P>0.05);SOCS3蛋白表达与肿瘤大小呈显著正相关(P<0.05),但与患者年龄、淋巴结转移、临床分期、肿瘤的组织学分级、雌孕激素受体表达和c-erBb-2表达均无显著相关(均P>0.05);乳腺癌pSTAT3和SOCS3表达呈显著正相关(r=0.237,P<0.01).结论 乳腺癌pSTAT3和SOCS3表达状况与肿瘤生长、侵袭和转移等呈密切相关,提示STAT3和SOCS3可能在乳腺癌发生发展过程中发挥了重要作用.  相似文献   

16.
17.
18.
19.
Abstract: Induction of the prodynorphin gene occurs in a tissue-specific manner following different physiological stimuli. Using electrophoretic mobility shift assays, we studied the relative activity of the five major regulatory sites in the rat prodynorphin promoter. Prodynorphin cyclic AMP-responsive element 2 (DynCRE2), DynCRE3, and the noncanonical prodynorphin AP-1 (ncDynAP-1) regulatory sites control, in a coordinated manner, prodynorphin induction in the spinal cord after noxious stimulation, whereas prodynorphin up-regulation in supraoptic neurons is regulated predominantly by the ncDynAP-1. Conversely, prodynorphin transactivation in the ovaries upon gonadotrophin stimulation is controlled by DynCRE1 and DynCRE3. Our results support the idea that stimulus-specific changes in nuclear proteins establish a functional hierarchy among regulatory sites in the prodynorphin promoter and provide further insight in the molecular mechanisms that govern prodynorphin gene regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号