首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aim of developing new SPECT imaging agents for the translocator protein (TSPO), a small library of iodinated quinoline-2-carboxamides have been prepared and tested for binding affinity with TSPO. N,N-Diethyl-3-iodomethyl-4-phenylquinoline-2-carboxamide was found to have excellent affinity (Ki 12.0 nM), comparable to that of the widely used TSPO imaging agent PK11195.  相似文献   

2.
Oral cancer mortality and morbidity rates remain high. The main inducer of oral cancer is cigarette smoke (CS). Translocator protein 18 kDa (TSPO) was shown to play a role in carcinogenesis. We characterized TSPO binding sites in human oral cancer cell line SCC-15 and examined effect of CS on TSPO binding. We exposed SCC-15 human squamous cells to cigarette smoke. [3H]PK 11195 binding results were assessed in cells confluent for one day. To characterize the number of population sites, a custom written Matlab program compared Pearson linear correlation coefficients between all points in the Scatchard plot. Using [3H]PK 11195 as a radio ligand, we found that TSPO binding sites are not uniform, but separated into two sub-populations, one with high affinity (respective Kd and Bmax values of 1.40±0.08 nM and 1586±48 fmol/mg protein), another with lower affinity (respective Kd and Bmax values of 61±5 nM and 26260±1050 fmol/mg protein). We demonstrate rapid decrease in TSPO binding to the high affinity site induced by exposure to CS; specifically, significant 36% decrease in binding after 30 min CS exposure (p<0.05), and 69% decrease after 2 h CS exposure (p<0.05). Association between TSPO and CS exposure may contribute to understanding the underlying mechanism of oral carcinogenesis.  相似文献   

3.
The 18 kDa protein TSPO is a highly conserved transmembrane protein found in bacteria, yeast, animals and plants. TSPO is involved in a wide range of physiological functions, among which the transport of several molecules. The atomic structure of monomeric ligand-bound mouse TSPO in detergent has been published recently. A previously published low-resolution structure of Rhodobacter sphaeroides TSPO, obtained from tubular crystals with lipids and observed in cryo-electron microscopy, revealed an oligomeric structure without any ligand. We analyze this electron microscopy density in view of available biochemical and biophysical data, building a matching atomic model for the monomer and then the entire crystal. We compare its intra- and inter-molecular contacts with those predicted by amino acid covariation in TSPO proteins from evolutionary sequence analysis. The arrangement of the five transmembrane helices in a monomer of our model is different from that observed for the mouse TSPO. We analyze possible ligand binding sites for protoporphyrin, for the high-affinity ligand PK 11195, and for cholesterol in TSPO monomers and/or oligomers, and we discuss possible functional implications.  相似文献   

4.
Melittin is an amphipathic peptide which has received much attention as a model peptide for peptide–membrane interactions. It is however not suited as a transfection agent due to its cytolytic and toxicological effects. Retro-inverso-melittin, when covalently linked to the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (riDOM), eliminates these shortcomings. The interaction of riDOM with phospholipid membranes was investigated with circular dichroism (CD) spectroscopy, dynamic light scattering, ζ-potential measurements, and high-sensitivity isothermal titration calorimetry. riDOM forms cationic nanoparticles with a diameter of ~ 13 nm which are well soluble in water and bind with high affinity to DNA and lipid membranes. When dissolved in bilayer membranes, riDOM nanoparticles dissociate and form transient pores. riDOM-induced membrane leakiness is however much reduced compared to that of authentic melittin. The secondary structure of the ri-melittin is not changed when riDOM is transferred from water to the membrane and displays a large fraction of β-structure. The 31P NMR spectrum of the nanoparticle is however transformed into a typical bilayer spectrum. The Gibbs free energy of riDOM binding to bilayer membranes is − 8.0 to − 10.0 kcal/mol which corresponds to the partition energy of just one fatty acyl chain. Half of the hydrophobic surface of the riDOM lipid extension with its 2 oleic acyl chains is therefore involved in a lipid–peptide interaction. This packing arrangement guarantees a good solubility of riDOM both in the aqueous and in the membrane phase. The membrane binding enthalpy is small and riDOM binding is thus entropy-driven.  相似文献   

5.
Oral cancer features high rates of mortality and morbidity, and is in dire need for new approaches. In the present study we analyzed 18 kDa translocator protein (TSPO) expression in oral (tongue) cancer tumors by immunohistochemistry. We also assayed TSPO binding in human tongue cancer cell lines and in the cellular fraction of saliva from tongue cancer patients, heavy cigarette smokers, and non-smoking healthy people as controls. Concurrently, TSPO protein levels, cell viability, mitochondrial membrane potential (Δψm), and general protein levels were analyzed. TSPO expression could be significantly enhanced in oral cancer tumors, compared to unaffected adjacent tissue. We also found that five-year survival probability dropped from 65% in patients with TSPO negative tumors to 7% in patients with highly expressed TSPO (p < 0.001). TSPO binding capacity was also pronounced in the human oral cancer cell lines SCC-25 and SCC-15 (3133 ± 643 fmol/mg protein and 6956 ± 549 fmol/mg protein, respectively). Binding decreased by 56% and 72%, in the SCC-25 and SCC-15 cell lines, respectively (p < 0.05) following CS exposure in cell culture. In the cellular fraction of saliva of heavy smokers TSPO binding was lower than in non-smokers (by 53%, p < 0.05). Also the cellular fraction of saliva exposed to CS in vitro showed decreased TSPO binding compared to unexposed saliva (by 30%, p < 0.001). Interestingly, oral cancer patients also displayed significantly lower TSPO binding in the cellular fraction of saliva compared to healthy controls (by 40%, p < 0.01). Our results suggest that low TSPO binding found in the cellular fraction of saliva may depend on genetic background as well as result from exposure to CS. We suggest that this may be related to a predisposition for occurrence of oral cancer.  相似文献   

6.
The role of the TSPO in metabolism of human osteoblasts is unknown. We hypothesized that human osteoblast metabolism may be modulated by the TSPO. Therefore we evaluated the presence of TSPO in human osteoblast-like cells and the effect of its synthetic ligand PK 11195 on these cells. The presence of TSPO was determined by [3H]PK 11195 binding using Scatchard analysis: Bmax 7682 fmol/mg, Kd 9.24 nM. PK 11195 did not affect significantly cell proliferation, cell death, cellular viability, maturation, [18F]-FDG incorporation and hexokinase 2 gene expression or protein levels. PK 11195 exerted a suppressive effect on VDAC1 and caused an increase in TSPO gene expression or protein levels. In parallel there was an increase in mitochondrial mass, mitochondrial ATP content and a reduction in ΔΨm collapse. Thus, it appears that PK11195 (10−5 M) stimulates mitochondrial activity in human osteoblast-like cells without affecting glycolytic activity and cell death.  相似文献   

7.
Increased accumulation of p53 tumor suppressor protein is an early response to low-level stressors. To investigate the fate of mitochondrial-sequestered p53, mouse embryonic fibroblast cells (MEFs) on a p53-deficient genetic background were transfected with p53-EGFP fusion protein led by a sense (m53-EGFP) or antisense (c53-EGFP) mitochondrial import signal. Rotenone exposure (100 nM, 1 h) triggered the translocation of m53-EGFP from the mitochondrion to the nucleus, thus shifting the transfected cells from a mitochondrial p53 to a nuclear p53 state. Antibodies for p53 serine phosphorylation or lysine acetylation indicated a different post-translational status of recombinant p53 in the nucleus and mitochondrion, respectively. These data suggest that cycling of p53 through the mitochondria may establish a direct pathway for p53 signaling from the mitochondria to the nucleus during mitochondrial dysfunction. PK11195, a pharmacological ligand of mitochondrial TSPO (formerly known as the peripheral-type benzodiazepine receptor), partially suppressed the release of mitochondria-sequestered p53. These findings support the notion that p53 function mediates a direct signaling pathway from the mitochondria to nucleus during mitochondrial dysfunction.  相似文献   

8.
To investigate drug–membrane protein interactions, an artificial tethered lipid bilayer system was constructed for the functional integration of membrane proteins with large extra-membrane domains such as multi-drug resistance protein 1 (MDR1). In this study, a modified lipid (i.e., 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000] (DSPE-PEG)) was utilized as a spacer molecule to elevate lipid membrane from the sensor surface and generate a reservoir underneath. Concentration of DSPE-PEG molecule significantly affected the liposome binding/spreading and lipid bilayer formation, and 0.03 mg/mL of DSPE-PEG provided optimum conditions for membrane protein integration. Further, the incorporation of MDR1 increased the local rigidity on the platform. Antibody binding studies showed the functional integration of MDR1 protein into lipid bilayer platform. The platform allowed to follow MDR!-statin-based drug interactions in vitro. Each binding event and lipid bilayer formation was monitored in real-time using Surface Plasmon Resonance and Quartz Crystal Microbalance–Dissipation systems, and Atomic Force Microscopy was used for visualization experiments.  相似文献   

9.
The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10−5 M) adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies.  相似文献   

10.
The interaction between a peptide sequence from GB virus C E1 protein (E1P8) and its structural analogs (E1P8-12), (E1P8-13), and (E1P8-21) with anionic lipid membranes (POPG vesicles and POPG, DPPG or DPPC/DPPG (2:1) monolayers) and their association with HIV-1 fusion peptide (HIV-1 FP) inhibition at the membrane level were studied using biophysical methods. All peptides showed surface activity but leakage experiments in vesicles as well as insertion kinetics in monolayers and lipid/peptide miscibility indicated a low level of interaction: neither E1P8 nor its analogs induced the release of vesicular content and the exclusion pressure values (πe) were clearly lower than the biological membrane pressure (24–30 mN m 1) and the HIV-1 FP (35 mN m 1). Miscibility was elucidated in terms of the additivity rule and excess free energy of mixing (GE). E1P8, E1P8-12 and E1P8-21 (but not E1P8-13) induced expansion of the POPG monolayer. The mixing process is not thermodynamically favored as the positive GE values indicate. To determine how E1 peptides interfere in the action of HIV-1 FP at the membrane level, mixed monolayers of HIV-1 FP/E1 peptides (2:1) and POPG were obtained. E1P8 and its derivative E1P8-21 showed the greatest HIV-1 FP inhibition. The LC-LE phase lipid behavior was morphologically examined via fluorescence microscopy (FM) and atomic force microscopy (AFM). Images revealed that the E1 peptides modify HIV-1 FP–lipid interaction. This fact may be attributed to a peptide/peptide interaction as indicated by AFM results. Finally, hemolysis assay demonstrated that E1 peptides inhibit HIV-1 FP activity.  相似文献   

11.
12.
Chlorhexidine (CHX) is an effective anti-bacterial agent whose mode of action is thought to be the disruption of the cell membrane. It is known to partition into phospholipid bilayers of aqueous model-membrane preparations. Neutron diffraction data taken at 36 °C on the location of CHX in phosphatidylcholine (PC) bilayers is presented. The center of mass of the deuterated hydrocarbon chain of CHX is found to reside 16 Å from the center of the bilayer in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (14:0–14:0 PC). This places the drug near the glycerol backbone of the lipid, and suggests a mode of action whereby the molecule is bent in half and inserts wedge-like into the lipid matrix. This mechanism is distinct from detergent-like mechanisms of membrane disruption and more similar to some anti-microbial peptide action, where peptides insert obliquely into the bilayer headgroup region to disrupt its structure.  相似文献   

13.
The 18 kDa translocator protein (TSPO) was identified as a discrete receptor for diazepam (1). Since TSPO in the central nervous system (CNS) is believed to regulate neurosteroids biosynthesis, selective TSPO ligands are expected to be useful in the treatment of psychiatric disorders. We synthesized three novel tricyclic benzimidazolone derivatives, and selected the dihydroimidazoquinolinone derivative 27 as a lead TSPO ligand. Study of the structure–activity relationship (SAR) of dihydroimidazoquinolinone derivatives revealed compounds with potent affinity for TSPO (subnanomolar Ki values), but poor metabolic stability. The optimization of these compounds led to compound 48 with potent affinity for TSPO and good in vitro PK profile.  相似文献   

14.
Vinpocetine (ethyl apovincaminate), a synthetic derivative of the Vinca minor alkaloid vincamine, is widely used for the treatment of cerebrovascular-related diseases. One of the proposed mechanisms underlying its action is to protect against the cytotoxic effects of glutamate overexposure. Glutamate excitotoxicity leads to the disregulation of mitochondrial function and neuronal metabolism. As Vinpocetine has a binding affinity to the peripheral-type benzodiazepine receptor (PBR) involved in the mitochondrial transition pore complex, we investigated whether neuroprotection can be at least partially due to Vinpocetine’s effects on PBRs.Neuroprotective effects of PK11195 and Ro5-4864, two drugs with selective and high affinity to PBR, were compared to Vinpocetine in glutamate excitotoxicity assays on primary cortical neuronal cultures. Vinpocetine exerted a neuroprotective action in a 1–50 μM concentration range while PK11195 and Ro5-4864 were only slightly neuroprotective, especially in high (>25 μM) concentrations. Combined pretreatment of neuronal cultures with Vinpocetine and PK11195 or Ro5-4864 showed increased neuroprotection in a dose-dependent manner, indicating that the different drugs may have different targets. To test this hypothesis, mitochondrial membrane potential (MMP) of cultured neurons was measured by flow cytometry. 25 μM Vinpocetine reduced the decrease of mitochondrial inner membrane potential induced by glutamate exposure, but Ro5-4864 in itself was found to be more potent to block glutamate-evoked changes in MMP. Combination of Ro5-4864 and Vinpocetine treatment was found to be even more effective.In summary, the present results indicate that the neuroprotective action of vinpocetine in culture can not be explained by its effect on neuronal PBRs alone and that additional drug targets are involved.  相似文献   

15.
The translocator protein (18-kDa) TSPO is an ubiquitous high affinity cholesterol-binding protein reported to be present in the endothelial and smooth muscle cells of the blood vessels; its expression dramatically increased in macrophages found in atherosclerotic plaques. A domain in the carboxy-terminus of TSPO was identified and characterized as the cholesterol recognition/interaction amino acid consensus (CRAC). The ability of the CRAC domain to bind to cholesterol led us to hypothesize that this peptide could be used as an hypocholesterolemic, with potential anti-atherogenic properties, agent. We report herein the therapeutic benefit that resulted for the administration of the VLNYYVWR human CRAC sequence to guinea pigs fed with a high cholesterol diet and ApoE knock-out B6.129P2-Apoetm1Unc/J mice. CRAC treatment (3 and 30 mg/kg once daily for 6 weeks) resulted in reduced circulating cholesterol levels in guinea pigs fed with 2% high cholesterol diet and ApoE knock-out B6.129P2-Apoetm1Unc/J mice. In high cholesterol fed guinea pigs, CRAC treatment administered once daily induced an increase in circulating HDL, decreased total, free and LDL cholesterol, and removed atheroma deposits in the aorta in a dose-dependent manner. The treatment also prevented the high cholesterol diet-induced increase in serum creatine kinase, total and isoforms, markers of neurological, cardiac and muscular damage. No toxicity was observed. Taken together these results support a role of TSPO in lipid homeostasis and atherosclerosis and indicate that CRAC may constitute a novel and safe treatment of hypercholesterolemia and atherosclerosis.  相似文献   

16.
Melatonin is a hormone that has been shown to have protective effects in several diseases that are associated with cholesterol dysregulation, including cardiovascular disease, Alzheimer's disease, and certain types of cancers. We studied the interaction of melatonin with model membranes made of dimyristoylphosphatidylcholine (DMPC) at melatonin concentrations ranging from 0.5 mol% to 30 mol%. From 2-dimensional X-ray diffraction measurements, we find that melatonin induces a re-ordering of the lipid membrane that is strongly dependent on the melatonin concentration. At low melatonin concentrations, we observe the presence of melatonin-enriched patches in the membrane, which are significantly thinner than the lipid bilayer. The melatonin molecules were found to align parallel to the lipid tails in these patches. At high melatonin concentrations of 30 mol%, we observe a highly ordered melatonin structure that is uniform throughout the membrane, where the melatonin molecules align parallel to the bilayers and one melatonin molecule associates with 2 lipid molecules. Understanding the organization and interactions of melatonin in membranes, and how these are dependent on the concentration, may shed light into its anti-amyloidogenic, antioxidative and photoprotective properties and help develop a structural basis for these properties.  相似文献   

17.
Background information. TSPO (translocator protein), previously known as PBR (peripheral‐type benzodiazepine receptor), is a ubiquitous 18 kDa transmembrane protein that participates in diverse cell functions. High‐affinity TSPO ligands are best known for their ability to stimulate cholesterol transport in organs synthesizing steroids and bile salts, although they modulate other physiological functions, including cell proliferation, apoptosis and calcium‐dependent transepithelial ion secretion. In present study, we investigated the localization and function of TSPO in salivary glands. Results. Immunohistochemical analysis of TSPO in rat salivary glands revealed that TSPO and its endogenous ligand, DBI (diazepam‐binding inhibitor), were present in duct and mucous acinar cells. TSPO was localized to the mitochondria of these cells, whereas DBI was cytosolic. As expected, mitochondrial membrane preparations, which were enriched in TSPO, exhibited a high affinity for the TSPO drug ligand, 3H‐labelled PK 11195, as shown by Bmax and Kd values of 10.0±0.5 pmol/mg and 4.0±1.0 nM respectively. Intravenous perfusion of PK 11195 increased the salivary flow rate that was induced by muscarinic and α‐adrenergic agonists, whereas it had no effect when administered alone. Addition of PK 11195 also increased the K+, Na+, Cl and protein content of saliva, indicating that this ligand modulated secretion by acini and duct cells. Conclusions. High‐affinity ligand binding to mitochondrial TSPO modulates neurotransmitter‐induced salivary secretion by duct and mucous acinar cells of rat submandibular glands.  相似文献   

18.
Diacylglycerol pyrophosphate (DGPP), a phosphorylated form of phosphatidic acid (PA), gained attention recently due to its role as signaling lipid. However, little is known about its surface organization and potential impact on membrane-mediated function. In this work we investigated the interfacial behavior of Langmuir monolayers formed with pure DGPP and of its mixtures with PA. We found that changes of the subphase pH affect the surface behavior of DGPP. At pH 8, DGPP forms liquid expanded monolayers with a compressibility modulus of about 60 mN m?1 at collapse. On acidic solutions, the compressibility modulus increases to 90 mN m?1 and the average molecular area is smaller. At pH 8, DGPP and its precursor PA form thermodynamically favored topographically homogeneous non-ideal mixtures. The interaction among these lipids leads to a non-ideal diminution of the mean molecular area and consequently, to an increase of the compressibility modulus, with variations of the surface electrostatics. The favorable interaction of PA and DGPP, leading to changes of the film packing suggest that DGPP may act as a structural signal transducer in membrane-mediated cellular processes.  相似文献   

19.
A series of four novel analogues of DPA-714, bearing a fluoroalkynyl side chain (with a length ranging from three to six carbon atoms) in replacement of the fluoroethoxy motif, have been synthetized in six steps from commercially available methyl 4-iodobenzoate. The synthetic strategy for the preparation of these N,N-diethyl-2-(2-(4-(ω-fluoroalk-1-ynyl)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamides (7ad) consisted in derivatizing a key iodinated building block featuring the pyrazolopyrimidine acetamide backbone of DPA-714, by Sonogashira couplings with various alkynyl reagents. The resulting alkynols were subsequently fluorinated, yielding the expected target derivatives. All four analogues exhibited slightly higher affinity and selectivity towards the TSPO 18 kDa (Ki vs [3H]PK11195: 0.35–0.79 nM; Ki vs [3H]flunitrazepam: >1000 nM) when compared to DPA-714 (Ki vs [3H]PK11195: 0.91 nM; Ki vs [3H]flunitrazepam: >1000 nM). Lipophilicities (HPLC, log D7.4) increased with the chain length (from 3.6 to 4.3) and were significantly higher than the one determined for DPA-714 (2.9). Preliminary in vitro metabolism evaluation using rat microsomal incubations and LC–MS analyses showed, for all four novel analogues, the absence of defluorinated metabolites. Among them, the fluoropentynyl compound, DPA-C5yne (7c), was selected, labelled in one single step with fluorine-18 from the corresponding tosylate and in vivo evaluated with PET on our in-house-developed rat model of acute local neuroinflammation.  相似文献   

20.
BACKGROUND INFORMATION: TSPO (translocator protein), previously known as PBR (peripheral-type benzodiazepine receptor), is a ubiquitous 18 kDa transmembrane protein that participates in diverse cell functions. High-affinity TSPO ligands are best known for their ability to stimulate cholesterol transport in organs synthesizing steroids and bile salts, although they modulate other physiological functions, including cell proliferation, apoptosis and calcium-dependent transepithelial ion secretion. In present study, we investigated the localization and function of TSPO in salivary glands. RESULTS: Immunohistochemical analysis of TSPO in rat salivary glands revealed that TSPO and its endogenous ligand, DBI (diazepam-binding inhibitor), were present in duct and mucous acinar cells. TSPO was localized to the mitochondria of these cells, whereas DBI was cytosolic. As expected, mitochondrial membrane preparations, which were enriched in TSPO, exhibited a high affinity for the TSPO drug ligand, (3)H-labelled PK 11195, as shown by B(max) and K(d) values of 10.0+/-0.5 pmol/mg and 4.0+/-1.0 nM respectively. Intravenous perfusion of PK 11195 increased the salivary flow rate that was induced by muscarinic and alpha-adrenergic agonists, whereas it had no effect when administered alone. Addition of PK 11195 also increased the K(+), Na(+), Cl(-) and protein content of saliva, indicating that this ligand modulated secretion by acini and duct cells. CONCLUSIONS: High-affinity ligand binding to mitochondrial TSPO modulates neurotransmitter-induced salivary secretion by duct and mucous acinar cells of rat submandibular glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号