首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3’-P and 5’-OH, are processed by mammalian polynucleotide kinase 3’-phosphatase (PNKP), a bifunctional enzyme with 3’-phosphatase and 5’-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14–41 to 55–82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP’s 3’ phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3’-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients’ brain. Finally, long amplicon quantitative PCR analysis of human MJD patients’ brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.  相似文献   

2.
SUMO-1共价修饰ataxin-3   总被引:3,自引:0,他引:3  
为了探讨ataxin-3的正常生理功能以及脊髓小脑型共济失调Ⅲ型/马查多-约瑟夫病的发病机理,采用酵母双杂交技术,选择polyQ扩展突变型ataxin-3全长构建诱饵质粒,筛选成人脑cDNA文库,寻找与之相互作用的蛋白质,筛选到互作蛋白smallubiquitin-likemodifier1(SUMO-1).进一步运用免疫共沉淀技术证实,SUMO-1在哺乳动物细胞中共价修饰野生型和polyQ扩展突变型ataxin-3.免疫荧光共定位实验发现,polyQ扩展突变型ataxin-3形成的核内蛋白聚合体与SUMO-1共定位.研究提示,ataxin-3的正常生理功能可能受SUMO-1的调节,SUMO-1可能参与了脊髓小脑型共济失调Ⅲ型/马查多-约瑟夫病的发病机制.  相似文献   

3.
4.
Spinocerebellar ataxia type 3 (SCA3), or Machado—Joseph disease (MJD), is an autosomal dominantly-inherited disease that produces progressive problems with movement. It is caused by the expansion of an area of CAG repeats in a coding region of ATXN3. The number of repeats is inversely associated with age at disease onset (AO) and is significantly associated with disease severity; however, the degree of CAG expansion only explains 50 to 70% of variance in AO. We tested two SNPs, rs709930 and rs910369, in the 3’ UTR of ATXN3 gene for association with SCA3/MJD risk and with SCA3/MJD AO in an independent cohort of 170 patients with SCA3/MJD and 200 healthy controls from mainland China. rs709930 genotype frequencies were statistically significantly different between patients and controls (p = 0.001, α = 0.05). SCA3/MJD patients carrying the rs709930 A allele and rs910369 T allele experienced an earlier onset, with a decrease in AO of approximately 2 to 4 years. The two novel SNPs found in this study might be genetic modifiers for AO in SCA3/MJD.  相似文献   

5.
6.
Machado-Joseph disease (MJD/SCA3) is an autosomal dominant neurodegenerative disease caused by the expansion of a CAG tract in the coding portion of the ATXN3 gene. The presence of ubiquitin-positive aggregates of the defective protein in affected neurons is characteristic of this and most of the polyglutamine disorders. Recently, the accumulation of the neural precursor cell expressed developmentally downregulated 8 (NEDD8), a ubiquitin-like protein, in the inclusions of MJD brains was reported. Here, we report a new molecular interaction between wild-type ataxin-3 and NEDD8, using in vitro and in situ approaches. Furthermore, we show that this interaction is not dependent on the ubiquitin-interacting motifs in ataxin-3, since the presence of the Josephin domain is sufficient for the interaction to occur. The conservation of the interaction between the Caenorhabditis elegans ataxin-3 homologue (atx-3) and NEDD8 suggests its biological and functional relevance. Molecular docking studies of the NEDD8 molecule to the Josephin domain of ataxin-3 suggest that NEDD8 interacts with ataxin-3 in a substrate-like mode. In agreement, ataxin-3 displays deneddylase activity against a fluorogenic NEDD8 substrate.  相似文献   

7.

Background

We used lentiviral vectors (LVs) to generate a new SCA7 animal model overexpressing a truncated mutant ataxin-7 (MUT ATXN7) fragment in the mouse cerebellum, in order to characterize the specific neuropathological and behavioral consequences of the genetic defect in this brain structure.

Results

LV-mediated overexpression of MUT ATXN7 into the cerebellum of C57/BL6 adult mice induced neuropathological features similar to that observed in patients, such as intranuclear aggregates in Purkinje cells (PC), loss of synaptic markers, neuroinflammation, and neuronal death. No neuropathological changes were observed when truncated wild-type ataxin-7 (WT ATXN7) was injected. Interestingly, the local delivery of LV-expressing mutant ataxin-7 (LV-MUT-ATXN7) into the cerebellum of wild-type mice also mediated the development of an ataxic phenotype at 8 to 12 weeks post-injection. Importantly, our data revealed abnormal levels of the FUS/TLS, MBNL1, and TDP-43 RNA-binding proteins in the cerebellum of the LV-MUT-ATXN7 injected mice. MUT ATXN7 overexpression induced an increase in the levels of the pathological phosphorylated TDP-43, and a decrease in the levels of soluble FUS/TLS, with both proteins accumulating within ATXN7-positive intranuclear inclusions. MBNL1 also co-aggregated with MUT ATXN7 in most PC nuclear inclusions. Interestingly, no MBNL2 aggregation was observed in cerebellar MUT ATXN7 aggregates. Immunohistochemical studies in postmortem tissue from SCA7 patients and SCA7 knock-in mice confirmed SCA7-induced nuclear accumulation of FUS/TLS and MBNL1, strongly suggesting that these proteins play a physiopathological role in SCA7.

Conclusions

This study validates a novel SCA7 mouse model based on lentiviral vectors, in which strong and sustained expression of MUT ATXN7 in the cerebellum was found sufficient to generate motor defects.
  相似文献   

8.
Spinocerebellar ataxia type 2 (SCA2) is an incurable and genetic neurodegenerative disorder. The disease is characterized by progressive degeneration of several brain regions, resulting in severe motor and non-motor clinical manifestations. The mutation causing SCA2 disease is an abnormal expansion of CAG trinucleotide repeats in the ATXN2 gene, leading to a toxic expanded polyglutamine segment in the translated ataxin-2 protein. While the genetic cause is well established, the exact mechanisms behind neuronal death induced by mutant ataxin-2 are not yet completely understood. Thus, the goal of this study is to investigate the role of autophagy in SCA2 pathogenesis and investigate its suitability as a target for therapeutic intervention. For that, we developed and characterized a new striatal lentiviral mouse model that resembled several neuropathological hallmarks observed in SCA2 disease, including formation of aggregates, neuronal marker loss, cell death and neuroinflammation. In this new model, we analyzed autophagic markers, which were also analyzed in a SCA2 cellular model and in human post-mortem brain samples. Our results showed altered levels of SQSTM1 and LC3B in cells and tissues expressing mutant ataxin-2. Moreover, an abnormal accumulation of these markers was detected in SCA2 patients’ striatum and cerebellum. Importantly, the molecular activation of autophagy, using the compound cordycepin, mitigated the phenotypic alterations observed in disease models. Overall, our study suggests an important role for autophagy in the context of SCA2 pathology, proposing that targeting this pathway could be a potential target to treat SCA2 patients.Subject terms: Diseases of the nervous system, Molecular neuroscience  相似文献   

9.
Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is an autosomal dominantly-inherited neurodegenerative disorder caused by the over-repetition of a CAG codon in the MJD1 gene. This expansion translates into a polyglutamine tract that confers a toxic gain-of-function to the mutant protein – ataxin-3, leading to neurodegeneration in specific brain regions, with particular severity in the cerebellum. No treatment able to modify the disease progression is available. However, gene silencing by RNA interference has shown promising results. Therefore, in this study we investigated whether lentiviral-mediated allele-specific silencing of the mutant ataxin-3 gene, after disease onset, would rescue the motor behavior deficits and neuropathological features in a severely impaired transgenic mouse model of MJD. For this purpose, we injected lentiviral vectors encoding allele-specific silencing-sequences (shAtx3) into the cerebellum of diseased transgenic mice expressing the targeted C-variant of mutant ataxin-3 present in 70% of MJD patients. This variation permits to discriminate between the wild-type and mutant forms, maintaining the normal function of the wild-type allele and silencing only the mutant form. Quantitative analysis of rotarod performance, footprint and activity patterns revealed significant and robust alleviation of gait, balance (average 3-fold increase of rotarod test time), locomotor and exploratory activity impairments in shAtx3-injected mice, as compared to control ones injected with shGFP. An important improvement of neuropathology was also observed, regarding the number of intranuclear inclusions, calbindin and DARPP-32 immunoreactivity, fluorojade B and Golgi staining and molecular and granular layers thickness. These data demonstrate for the first time the efficacy of gene silencing in blocking the MJD-associated motor-behavior and neuropathological abnormalities after the onset of the disease, supporting the use of this strategy for therapy of MJD.  相似文献   

10.
Phosphorylation of ATXN1 at Ser776 in the cerebellum   总被引:1,自引:1,他引:0  
Spinocerebellar ataxia type 1 (SCA1) is one of nine inherited neurodegenerative disorders caused by a mutant protein with an expanded polyglutamine tract. Phosphorylation of ataxin-1 (ATXN1) at serine 776 is implicated in SCA1 pathogenesis. Previous studies, utilizing transfected cell lines and a Drosophila photoreceptor model of SCA1, suggest that phosphorylating ATXN1 at S776 renders it less susceptible to degradation. This work also indicated that oncogene from AKR mouse thymoma (Akt) promotes the phosphorylation of ATXN1 at S776 and severity of neurodegeneration. Here, we examined the phosphorylation of ATXN1 at S776 in cerebellar Purkinje cells, a prominent site of pathology in SCA1. We found that while phosphorylation of S776 is associated with a stabilization of ATXN1 in Purkinje cells, inhibition of Akt either in vivo or in a cerebellar extract-based phosphorylation assay did not decrease the phosphorylation of ATXN1-S776. In contrast, immunodepletion and inhibition of cyclic AMP-dependent protein kinase decreased phosphorylation of ATXN1-S776. These results argue against Akt as the in vivo kinase that phosphorylates S776 of ATXN1 and suggest that cyclic AMP-dependent protein kinase is the active ATXN1-S776 kinase in the cerebellum.  相似文献   

11.
Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia type 3, is an inherited dominant autosomal neurodegenerative disorder. An expansion of Cytosine-Adenine-Guanine (CAG) repeats in the ATXN3 gene is translated as an expanded polyglutamine domain in the disease protein, ataxin-3. Selective neurodegeneration in MJD is evident in several subcortical brain regions including the cerebellum. Mitochondrial dysfunction has been proposed as a mechanism of neurodegeneration in polyglutamine disorders. In this study, we used different cell models and transgenic mice to assess the importance of mitochondria on cytotoxicity observed in MJD. Transiently transfected HEK cell lines with expanded (Q84) ataxin-3 exhibited a higher susceptibility to 3-nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II. Increased susceptibility to 3-NP was also detected in stably transfected PC6-3 cells that inducibly express expanded (Q108) ataxin-3 in a tetracycline-regulated manner. Moreover, cerebellar granule cells from MJD transgenic mice were more sensitive to 3-NP inhibition than wild-type cerebellar neurons. PC6-3 (Q108) cells differentiated into a neuronal-like phenotype with nerve growth factor (NGF) exhibited a significant decrease in mitochondrial complex II activity. Mitochondria from MJD transgenic mouse model and lymphoblast cell lines derived from MJD patients also showed a trend toward reduced complex II activity. Our results suggest that mitochondrial complex II activity is moderately compromised in MJD, which may designate a common feature in polyglutamine toxicity.  相似文献   

12.
There are no effective therapeutics that antagonize or reverse the protein-misfolding events underpinning polyglutamine (PolyQ) disorders, including Spinocerebellar Ataxia Type-3 (SCA3). Here, we augment the proteostasis network of Drosophila SCA3 models with Hsp104, a powerful protein disaggregase from yeast, which is bafflingly absent from metazoa. Hsp104 suppressed eye degeneration caused by a C-terminal ataxin-3 (MJD) fragment containing the pathogenic expanded PolyQ tract, but unexpectedly enhanced aggregation and toxicity of full-length pathogenic MJD. Hsp104 suppressed toxicity of MJD variants lacking a portion of the N-terminal deubiquitylase domain and full-length MJD variants unable to engage polyubiquitin, indicating that MJD-ubiquitin interactions hinder protective Hsp104 modalities. Importantly, in staging experiments, Hsp104 suppressed toxicity of a C-terminal MJD fragment when expressed after the onset of PolyQ-induced degeneration, whereas Hsp70 was ineffective. Thus, we establish the first disaggregase or chaperone treatment administered after the onset of pathogenic protein-induced degeneration that mitigates disease progression.  相似文献   

13.
Machado-Joseph disease (MJD) is an inherited neurodegenerative disease caused by an expanded CAG repeat in the ATXN3 gene. Although the principal genetic determinant of the age at onset (AAO) is the length of the expanded CAG repeat, the additional genetic contribution of MJD toward the AAO has mostly not yet been clarified. It was recently suggested in two independent studies that apolipoprotein E (APOE) might be associated with AAO variability in MJD patients. To identify the potential modifier effect of APOE polymorphisms on the AAO of MJD patients, 403 patients with MJD (confirmed by molecular tests) from eastern and southeastern China were enrolled in the present study. CAG repeats in the ATXN3 and APOE polymorphisms were genotyped. Data were analyzed using a statistical package. No contribution of APOE polymorphisms to the variance in disease onset was observed using ANCOVA (F = 0.183, P = 0.947). However, significant effects on the AAO of MJD were found for the normal ATXN3 allele and for the interaction of mutant and normal ATXN3 alleles in a multiple linear regression model (P = 0.043 and P = 0.035, respectively). Our study does not support a role for APOE as a genetic modifier of the AAO of MJD. Additionally, our study presents evidence that the normal ATXN3 allele and its interaction with mutant alleles contribute toward AAO variance in MJD patients.  相似文献   

14.
Pathogenic CAG repeat expansion in the ataxin-2 gene (ATXN2) is the genetic cause of spinocerebellar ataxia type 2 (SCA2). Recently, it has been associated with Parkinsonism and increased genetic risk for amyotrophic lateral sclerosis (ALS). Here we report the association of de novo mutations in ATXN2 with autosomal dominant ALS. These findings support our previous conjectures based on population studies on the role of large normal ATXN2 alleles as the source for new mutations being involved in neurodegenerative pathologies associated with CAG expansions. The de novo mutations expanded from ALS/SCA2 non-risk alleles as proven by meta-analysis method. The ALS risk was associated with SCA2 alleles as well as with intermediate CAG lengths in the ATXN2. Higher risk for ALS was associated with pathogenic CAG repeat as revealed by meta-analysis.  相似文献   

15.
16.
17.
Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant spinocerebellar degeneration characterized by a wide range of clinical manifestations. The molecular mechanisms underlying the selective neuronal death typical of MJD/SCA3 are unknown. In this study, human SK-N-SH neuroblastoma cells stably transfected with full-length MJD with 78 CAG repeats were assayed for the dynamic expression of Hsp27, known as a suppressor of poly-Q mediated cell death, in the presence of mutant ataxin-3 in different passages of cultured cells. A dramatic decrease of Hsp27 expression was observed in the earlier passage of cultured SK-N-SH-MJD78 cells, however, the later passage of cells showed a significant increase of Hsp27 to almost the same level of the parental cells. Furthermore, immunohistochemical analysis of MJD transgenic mice and post-mortem human brain tissues showed increased expression of Hsp27 compared to normal control brain, suggesting an up-regulation of Hsp27 in the end stage of MJD. However, mutant cells of earlier passages were more susceptible to serum deprivation than mutant cells of later passages, indicating weak tolerance toward stress in cells with reduced Hsp27. While heat shock was used to assess the stress response, cells expressing mutant ataxin-3 displayed normal response upon heat shock stimuli when compared to the parental cells. Taken together, we proposed that during the early disease stage, the reduction of Hsp27 synthesis mitigated the ability of neuron cells to cope with cytotoxicity induced by mutant ataxin-3, triggering the cell death process during the disease progress. In the late stage of disease, after prolonged stressful conditions of polyglutamine cytotoxicity, the increased level of Hsp27 may reflect a dynamic process of the survived cells to unfold and remove mutant ataxin-3. However, this increased Hsp27 still cannot reverse the global dysfunction of cellular proteins due to accumulation of cytotoxic effects.  相似文献   

18.
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited disorder characterized by progressive loss of coordination, motor impairment and the degeneration of cerebellar Purkinje cells, spinocerebellar tracts and brainstem nuclei. Many dominantly inherited neurodegenerative diseases share the mutational basis of SCA1: the expansion of a translated CAG repeat coding for glutamine. Mice lacking ataxin-1 display learning deficits and altered hippocampal synaptic plasticity but none of the abnormalities seen in human SCA1; mice expressing ataxin-1 with an expanded CAG tract (82 glutamine residues), however, develop Purkinje cell pathology and ataxia. These results suggest that mutant ataxin-1 gains a novel function that leads to neuronal degeneration. This novel function might involve aberrant interaction(s) with cell-specific protein(s), which in turn might explain the selective neuronal pathology. Mutant ataxin-1 interacts preferentially with a leucine-rich acidic nuclear protein that is abundantly expressed in cerebellar Purkinje cells and other brain regions affected in SCA1. Immunolocalization studies in affected neurons of patients and SCA1 transgenic mice showed that mutant ataxin-1 localizes to a single, ubiquitin-positive nuclear inclusion (NI) that alters the distribution of the proteasome and certain chaperones. Further analysis of NIs in transfected HeLa cells established that the proteasome and chaperone proteins co-localize with ataxin-1 aggregates. Moreover, overexpression of the chaperone HDJ-2/HSDJ in HeLa cells decreased ataxin-1 aggregation, suggesting that protein misfolding might underlie NI formation. To assess the importance of the nuclear localization of ataxin-1 and its role in SCA1 pathogenesis, two lines of transgenic mice were generated. In the first line, the nuclear localization signal was mutated so that full-length mutant ataxin-1 would remain in the cytoplasm; mice from this line did not develop any ataxia or pathology. This suggests that mutant ataxin-1 is pathogenic only in the nucleus. To assess the role of the aggregates, transgenic mice were generated with mutant ataxin-1 without the self-association domain (SAD) essential for aggregate formation. These mice developed ataxia and Purkinje cell abnormalities similar to those seen in SCA1 transgenic mice carrying full-length mutant ataxin-1, but lacked NIs. The nuclear milieu is thus a critical factor in SCA1 pathogenesis, but large NIs are not needed to initiate pathogenesis. They might instead be downstream of the primary pathogenic steps. Given the accumulated evidence, we propose the following model for SCA1 pathogenesis: expansion of the polyglutamine tract alters the conformation of ataxin-1, causing it to misfold. This in turn leads to aberrant protein interactions. Cell specificity is determined by the cell-specific proteins interacting with ataxin-1. Submicroscopic protein aggregation might occur because of protein misfolding, and those aggregates become detectable as NIs as the disease advances. Proteasome redistribution to the NI might contribute to disease progression by disturbing proteolysis and subsequent vital cellular functions.  相似文献   

19.
Spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3) are two common autosomal-dominant inherited ataxia syndromes, both of which are related to the unstable expansion of trinucleotide CAG repeats in the coding region of the related ATXN2 and ATXN3 genes, respectively. The poly-glutamine (poly-Q) tract encoded by the CAG repeats has long been recognized as an important factor in disease pathogenesis and progress. In this study, using the I-TASSER method for 3D structure prediction, we investigated the effect of poly-Q tract enlargement on the structure and folding of ataxin-2 and ataxin-3 proteins. Our results show good agreement with the known experimental structures of the Josephin and UIM domains providing credence to the simulation results presented here, which show that the enlargement of the poly-Q region not only affects the local structure of these regions but also affects the structures of functional domains as well as the whole protein. The changes observed in the predicted models of the UIM domains in ataxin-3 when the poly-Q track is enlarged provide new insights on possible pathogenic mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号