首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the last decade or so, increasing evidences suggest that the mutations of two connexin genes, GJA3 and GJA8, are directly linked to human congenital cataracts in North and Central America, Europe and Asia. GIA3 and GIA8 genes encode gap junction-forming proteins, connexin (Cx) 46 and Cx50, respectively. These two connexins are predominantly expressed in lens fiber cells. Majority of identified mutations are missense, and the mutated sites are scattered across various domains of connexin molecules. Genetic deletion of either of these two genes leads to the development of cataracts; however, the types of cataracts developed are distinctive. More interestingly, microphthalmia is only developed in Cx50, but not Cx46 deficient mice, suggesting the unique role of Cx50 in lens cell growth and development. Knockin studies with the replacement of Cx46 or Cx50 at their respective gene locus further demonstrate the unique properties of these two connexins. Furthermore, the function of Cx50 in epithelial-fiber differentiation appears to be independent of its conventional role in forming gap junction junction channels. Due to their specific functions in maintaining lens clarity and development, and their malfunctions resulting in lens cataractogenesis and developmental impairment, connexin molecules could be developed as potential drug targets for therapeutic intervention for treatment of cataracts and other eye disorders. Recent advances in basic research of lens connexins and the discoveries of clinical disorders as a result of lens connexin dysfunctions are summarized and discussed here.  相似文献   

2.
The discovery of the gap junction structure, its functions and the family of the “connexin” genes, has been basically ignored by the major biological disciplines. These connexin genes code for proteins that organize to form membrane-associated hemi-channels, “connexons”, co-join with the connexons of neighboring cells to form gap junctions. Gap junctions appeared in the early evolution of the metazoan. Their fundamental functions, (e.g., to synchronize electrotonic and metabolic functions of societies of cells, and to regulate cell proliferation, cell differentiation, and apoptosis), were accomplished via integrating the extra-cellular triggering of intra-cellular signaling, and therefore, regulating gene expression. These functions have been documented by genetic mutations of the connexin genes and by chemical modulation of gap junctions. Via genetic alteration of connexins in knock-out and transgenic mice, as well as inherited connexin mutations in various human syndromes, the gap junction has been shown to be directly linked to many normal cell functions and multiple diseases, such as birth defects, reproductive, neurological disorders, immune dysfunction and cancer. Specifically, the modulation of gap junctional intercellular communication (GJIC), either by increasing or decreasing its functions by non-mutagenic chemicals or by oncogenes or tumor suppressor genes in normal or “initiated” stem cells and their progenitor cells, can have a major impact on tumor promotion or cancer chemoprevention and chemotherapy. The overview of the roles of the gap junction in the evolution of the metazoan and its potential in understanding a “systems” view of human health and aging and the diseases of aging will be attempted.  相似文献   

3.
Lymphedema is the clinical manifestation of defects in lymphatic structure or function. Mutations identified in genes regulating lymphatic development result in inherited lymphedema. No mutations have yet been identified in genes mediating lymphatic function that result in inherited lymphedema. Survey microarray studies comparing lymphatic and blood endothelial cells identified expression of several connexins in lymphatic endothelial cells. Additionally, gap junctions are implicated in maintaining lymphatic flow. By sequencing GJA1, GJA4, and GJC2 in a group of families with dominantly inherited lymphedema, we identified six probands with unique missense mutations in GJC2 (encoding connexin [Cx] 47). Two larger families cosegregate lymphedema and GJC2 mutation (LOD score = 6.5). We hypothesize that missense mutations in GJC2 alter gap junction function and disrupt lymphatic flow. Until now, GJC2 mutations were only thought to cause dysmyelination, with primary expression of Cx47 limited to the central nervous system. The identification of GJC2 mutations as a cause of primary lymphedema raises the possibility of novel gap-junction-modifying agents as potential therapy for some forms of lymphedema.  相似文献   

4.
Gap junctions are specialized membrane domains containing tens to thousands of intercellular channels. These channels permit exchange of small molecules (< 1000 Da) including ions, amino acids, nucleotides, metabolites and secondary messengers (e.g., calcium, glucose, cAMP, cGMP, IP3) between cells. The common reductionist view of these structures is that they are composed entirely of integral membrane proteins encoded by the 21 member connexin human gene family. However, it is clear that the normal physiological function of this structure requires interaction and regulation by a variety of proteins, especially kinases. Phosphorylation is capable of directly modulating connexin channel function but the most dramatic effects on gap junction activity occur via the organization of the gap junction structures themselves. This is a direct result of the short half-life of the primary gap junction protein, connexin, which requires them to be constantly assembled, remodeled and turned over. The biological consequences of this remodeling are well illustrated during cardiac ischemia, a process wherein gap junctions are disassembled and remodeled resulting in arrhythmia and ultimately heart failure. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.  相似文献   

5.
缝隙连接是由多基因家族编码的连接蛋白构成的、细胞间的跨膜水相通道。目前已确定小鼠连接蛋白基因家族含有20个成员,人类连接蛋白基因家族含有21个成员,其中有19种在人类和小鼠中均有表达,具有很高的同源性;不同的连接蛋白可形成同型和异型两种连接子,不同类型连接子可形成4种不同类型的缝隙连接通道。越来越多的研究表明,连接蛋白基因突变与人类遗传性疾病密切相关。  相似文献   

6.
Gap junctions play a critical role in hearing and mutations in connexin genes cause a high incidence of human deafness. Pathogenesis mainly occurs in the cochlea, where gap junctions form extensive networks between non-sensory cells that can be divided into two independent gap junction systems, the epithelial cell gap junction system and the connective tissue cell gap junction system. At least four different connexins have been reported to be present in the mammalian inner ear, and gap junctions are thought to provide a route for recycling potassium ions that pass through the sensory cells during the mechanosensory transduction process back to the endolymph. Here we review the cochlear gap junction networks and their hypothesized role in potassium ion recycling mechanism, pharmacological and physiological gating of cochlear connexins, animal models harboring connexin mutations and functional studies of mutant channels that cause human deafness. These studies elucidate gap junction functions in the cochlea and also provide insight for understanding the pathogenesis of this common hereditary deafness induced by connexin mutations. H.-B. Zhao, T. Kikuchi, A. Ngezahayo, T. W. White contributed equally to this article  相似文献   

7.
Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.  相似文献   

8.
The vertebrate gap junctions formed by the connexin family of transmembrane proteins came to the attention of geneticists in 1993 with the identification of mutations linked to a form of demyelinating neuropathy. Since then, several other genetic disorders have been linked to mutations in specific connexin genes. Also, different diseases can result from different mutations in the same connexin gene. In addition, specific connexin knockout mice have surprising phenotypes. This is leading cell biologists to look afresh at connexins and their involvement in intercellular communication through gap junctions, a process that seems central to coordinating cell function within tissues. Here, we comment on how genetic studies are giving a new impetus to the cell biology of gap junctions.  相似文献   

9.
Gap junction proteins, connexins, are dynamic polytopic membrane proteins that exhibit unprecedented short half-lives of only a few hours. Consequently, it is well accepted that in addition to channel gating, gap junctional intercellular communication is regulated by connexin biosynthesis, transport and assembly as well as the formation and removal of gap junctions from the cell surface. At least nine members of the 20-member connexin family are known to be phosphorylated en route or during their assembly into gap junctions. For some connexins, notably Cx43, evidence exists that phosphorylation may trigger its internalization and degradation. In recent years it has become apparent that the mechanisms underlying the regulation of connexin turnover are quite complex with the identification of many connexin binding molecules, a multiplicity of protein kinases that phosphorylate connexins and the involvement of both lysosomal and proteasomal pathways in degrading connexins. This paper will review the evidence that connexin phosphorylation regulates, stimulates or triggers gap junction disassembly, internalization and degradation.  相似文献   

10.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

11.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

12.
Gap junction proteins, connexins, are dynamic polytopic membrane proteins that exhibit unprecedented short half-lives of only a few hours. Consequently, it is well accepted that in addition to channel gating, gap junctional intercellular communication is regulated by connexin biosynthesis, transport and assembly as well as the formation and removal of gap junctions from the cell surface. At least nine members of the 20-member connexin family are known to be phosphorylated en route or during their assembly into gap junctions. For some connexins, notably Cx43, evidence exists that phosphorylation may trigger its internalization and degradation. In recent years it has become apparent that the mechanisms underlying the regulation of connexin turnover are quite complex with the identification of many connexin binding molecules, a multiplicity of protein kinases that phosphorylate connexins and the involvement of both lysosomal and proteasomal pathways in degrading connexins. This paper will review the evidence that connexin phosphorylation regulates, stimulates or triggers gap junction disassembly, internalization and degradation.  相似文献   

13.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

14.
The connexins are a family of proteins that form the intercellular membrane channels of gap junctions. Genes encoding 13 different rodent connexins have been cloned and characterized to date. Connexins vary both in their distribution among adult cell types and in the properties of the channels that they form. In order to explore the functional significance of connexin diversity, several mouse connexin-encoding genes have been disrupted by homologous recombination in embryonic stem cells. Although those experiments have illuminated specific physiological roles for individual connexins, the results have also raised the possibility that connexins may functionally compensate for one another in cells where they are coexpressed. In the present study, we have tested this hypothesis by interbreeding mice carrying null mutations in the genes (Gjb1 and Gja1) encoding connexin32 (beta 1 connexin) and connexin43 (alpha 1 connexin), respectively. We found that fetuses lacking both connexins survive to term but, as expected, the pups die soon thereafter from the cardiac abnormality caused by the absence of connexin43. A survey of the major organ systems of the doubly mutant fetuses, including the thyroid gland, developing teeth, and limbs where these two connexins are coexpressed, failed to reveal any morphological abnormalities not already seen in connexin43 deficient fetuses. Furthermore, the production of thyroxine by doubly mutant thyroids was confirmed by immunocytochemistry. We conclude that, at least as far as the prenatal period is concerned, the normal development of those three organs in fetuses lacking connexin43 cannot simply be explained by the additional presence of connexin32 and vice-versa. Either gap junctional coupling is dispensable in embryonic and fetal cells in which these two connexins are coexpressed, or coupling is provided by yet another connexin when both are absent.  相似文献   

15.
Gap junctions are intercellular conduits for small molecules made up by protein subunits called connexins. A large number of connexin genes were found in mouse and man, and most cell types express several connexins, lending support to the view that redundancy and compensation among family members exist. This review gives an overview of the current knowledge on redundancy and functional compensation - or lack thereof. It takes into account the different properties of connexin subunits which comprise gap junctional intercellular channels, but also the compatibility of connexins in gap junctions. Most insight has been gained by the investigation of mice deficient for one or more connexins and transgenic mice with functional replacement of one connexin gene by another. Most single deficient mice show phenotypical alterations limited to critical developmental time points or to specific organs and tissues, while mice doubly deficient for connexins expressed in the same cell type usually show more severe phenotypical alterations. Replacement of a connexin by another connexin in some cases gave rise to rescue of phenotypical alterations of connexin deficiencies, which were restricted to specific tissues. In many tissues, connexin substitution did not restore phenotypical alterations of connexin deficiencies, indicating that connexins are specialized in function. In some cases, fatal consequences arose from the replacement. The current consensus gained from such studies is that redundancy and compensation among connexins exists at least to a limited extent. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

16.
Gap junctional intercellular communication (GJIC) is considered to play a key role in the maintenance of tissue independence and homeostasis in multicellular organisms by controlling the growth of GJIC-connected cells. Gap junction channels are composed of connexin molecules and, so far, more than a dozen different connexin genes have been shown to be expressed in mammals. Reflecting the importance of GJIC in various physiological functions, deletion of different connexin genes from mice results in various disorders, including cancers, heart malformation or conduction abnormality, cataract, etc. The possible involvement of aberrant GJIC in abnormal cell growth and carcinogenesis has long been postulated and recent studies in our own and other laboratories have confirmed that expression and function of connexin genes play an important role in cell growth control. Thus, almost all malignant cells show altered homologous and/or heterologous GJIC and are often associated with aberrant expression or localization of connexins. Aberrant localization of connexins in some tumour cells is associated with lack of function of cell adhesion molecules, suggesting the importance of cell-cell recognition for GJIC. Transfection of connexin genes into tumorigenic cells restores normal cell growth, supporting the idea that connexins form a family of tumour-suppressor genes. Some studies also show that specific connexins may be necessary to control growth of specific cell types. We have produced various dominant-negative mutants of Cx26, Cx32 and Cx43 and showed that some of them prevent the growth control exerted by the corresponding wild-type genes. However, we have found that connexins 32, 37 and 43 genes are rarely mutated in tumours. In some of these studies, we noted that connexin expression per se, rather than GJIC level, is more closely related to growth control, suggesting that connexins may have a GJIC-independent function. We have recently created a transgenic mouse strain in which a mutant Cx32 is specifically overexpressed in the liver. Studies with such mice indicate that Cx32 plays a key role in liver regeneration after partial hepatectomy. A decade ago, we proposed a method to enhance killing of cancer cells by diffusion of therapeutic agents through GJIC. Recently, we and others have shown that GJIC is responsible for the bystander effect seen in HSV-tk/ganciclovir gene therapy. Thus, connexin genes can exert dual effects in tumour control: tumour suppression and a bystander effect for cancer therapy.  相似文献   

17.
BackgroundImmunohistochemical staining experiments have shown that both hemangiogenesis and lymphangiogenesis occur following severe corneal and conjunctival injury and that the neovascularization of the cornea often has severe visual consequences. To better understand how hemangiogenesis and lymphangiogenesis are induced by different degrees of ocular injury, we investigated patterns of injury-induced corneal neovascularization in live Prox1-GFP/Flk1::myr-mCherry mice, in which blood and lymphatic vessels can be imaged simultaneously in vivo.MethodsThe eyes of Prox1-GFP/Flk1::myr-mCherry mice were injured according to four models based on epithelial debridement of the: A) central cornea (a 1.5-mm-diameter circle of tissue over the corneal apex), B) total cornea, C) bulbar conjunctiva, and D) cornea + bulbar conjunctiva. Corneal blood and lymphatic vessels were imaged on days 0, 3, 7, and 10 post-injury, and the percentages of the cornea containing blood and lymphatic vessels were calculated.ResultsNeither central corneal nor bulbar conjunctival debridement resulted in significant vessel growth in the mouse cornea, whereas total corneal and corneal + bulbar conjunctival debridement did. On day 10 in the central cornea, total cornea, bulbar conjunctiva, and corneal + bulbar conjunctival epithelial debridement models, the percentage of the corneal surface that was occupied by blood vessels (hemangiogenesis) was 1.9 ± 0.8%, 7.14 ± 2.4%, 2.29 ± 1%, and 15.05 ± 2.14%, respectively, and the percentage of the corneal surface that was occupied by lymphatic vessels (lymphangiogenesis) was 2.45 ± 1.51%, 4.85 ± 0.95%, 2.95 ± 1.27%, and 4.15 ± 3.85%, respectively.ConclusionsSubstantial corneal debridement was required to induce corneal neovascularization in the mouse cornea, and the corneal epithelium may therefore be partially responsible for maintaining corneal avascularity.General significanceOur study demonstrates that GFP/Flk1::myr-mCherry mice are a useful model for studying coordinated hemangiogenic and lymphangiogenic responses.  相似文献   

18.
Correction     
The Schwann cell myelin sheath is a multilamellar structure with distinct structural domains in which different proteins are localized. Intracellular dye injection and video microscopy were used to show that functional gap junctions are present within the myelin sheath that allow small molecules to diffuse between the adaxonal and perinuclear Schwann cell cytoplasm. Gap junctions are localized to periodic interruptions in the compact myelin called Schmidt–Lanterman incisures and to paranodes; these regions contain at least one gap junction protein, connexin32 (Cx32). The radial diffusion of low molecular weight dyes across the myelin sheath was not interrupted in myelinating Schwann cells from cx32-null mice, indicating that other connexins participate in forming gap junctions in these cells. Owing to the unique geometry of myelinating Schwann cells, a gap junction-mediated radial pathway may be essential for rapid diffusion between the adaxonal and perinuclear cytoplasm, since this radial pathway is approximately one million times faster than the circumferential pathway.  相似文献   

19.
Cx (connexin) proteins are components of gap junctions which are aqueous pores that allow intercellular exchange of ions and small molecules. Mutations in Cx genes are linked to a range of human disorders. In the present review we discuss mutations in β-Cx genes encoding Cx26, Cx30, Cx30.3 and Cx31 which lead to skin disease and deafness. Functional studies with Cx proteins have given insights into disease-associated mechanisms and non-gap junctional roles for Cx proteins.  相似文献   

20.
Regulation of connexin expression   总被引:4,自引:0,他引:4  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号