首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Heterochromatin normally has prescribed chromosomal positions and must not encroach on adjacent regions. We demonstrate that the fission yeast protein Epe1 stabilises silent chromatin, preventing the oscillation of heterochromatin domains. Epe1 loss leads to two contrasting phenotypes: alleviation of silencing within heterochromatin and expansion of silent chromatin into neighbouring euchromatin. Thus, we propose that Epe1 regulates heterochromatin assembly and disassembly, thereby affecting heterochromatin integrity, centromere function and chromosome segregation fidelity. Epe1 regulates the extent of heterochromatin domains at the level of chromatin, not via the RNAi pathway. Analysis of an ectopically silenced site suggests that heterochromatin oscillation occurs in the absence of heterochromatin boundaries. Epe1 requires predicted iron- and 2-oxyglutarate (2-OG)-binding residues for in vivo function, indicating that it is probably a 2-OG/Fe(II)-dependent dioxygenase. We suggest that, rather than being a histone demethylase, Epe1 may be a protein hydroxylase that affects the stability of a heterochromatin protein, or protein-protein interaction, to regulate the extent of heterochromatin domains. Thus, Epe1 ensures that heterochromatin is restricted to the domains to which it is targeted by RNAi.  相似文献   

2.
《Epigenetics》2013,8(7):680-688
The aging field is replete with theories. Over the past years, many distinct, yet overlapping mechanisms have been proposed to explain organismal aging. These include free radicals, loss of heterochromatin, genetically programmed senescence, telomere shortening, genomic instability, nutritional intake and growth signaling, to name a few. The objective of this Point-of-View is to highlight recent progress on the “loss of heterochromatin” model of aging and to propose that epigenetic changes contributing to global heterochromatin loss may underlie the various cellular processes associated with aging.  相似文献   

3.
Sadaie M  Iida T  Urano T  Nakayama J 《The EMBO journal》2004,23(19):3825-3835
The chromodomain is a conserved motif that functions in the epigenetic control of gene expression. Here, we report the functional characterization of a chromodomain protein, Chp1, in the heterochromatin assembly in fission yeast. We show that Chp1 is a structural component of three heterochromatic regions-centromeres, the mating-type region, and telomeres-and that its localization in these regions is dependent on the histone methyltransferase Clr4. Although deletion of the chp1(+) gene causes centromere-specific decreases in Swi6 localization and histone H3-K9 methylation, we show that the role of Chp1 is not exclusive to the centromeres. We found that some methylation persists in native centromeric regions in the absence of Chp1, which is also true for the mating-type region and telomeres, and determined that Swi6 and Chp2 are critical to maintaining this residual methylation. We also show that Chp1 participates in the establishment of repressive chromatin in all three chromosomal regions. These results suggest that different heterochromatic regions share common structural properties, and that centromeric heterochromatin requires Chp1-mediated establishment steps differently than do other heterochromatic regions.  相似文献   

4.
Epigenetically regulated heterochromatin domains govern essential cellular activities. A key feature of heterochromatin domains is the presence of hypoacetylated nucleosomes, which are methylated on lysine 9 of histone H3 (H3K9me). Here, we investigate the requirements for establishment, spreading and maintenance of heterochromatin using fission yeast centromeres as a paradigm. We show that establishment of heterochromatin on centromeric repeats is initiated at modular ‘nucleation sites’ by RNA interference (RNAi), ensuring the mitotic stability of centromere‐bearing minichromosomes. We demonstrate that the histone deacetylases Sir2 and Clr3 and the chromodomain protein Swi6HP1 are required for H3K9me spreading from nucleation sites, thus allowing formation of extended heterochromatin domains. We discovered that RNAi and Sir2 along with Swi6HP1 operate in two independent pathways to maintain heterochromatin. Finally, we demonstrate that tethering of Sir2 is pivotal to the maintenance of heterochromatin at an ectopic locus in the absence of RNAi. These analyses reveal that Sir2, together with RNAi, are sufficient to ensure heterochromatin integrity and provide evidence for sequential establishment, spreading and maintenance steps in the assembly of centromeric heterochromatin.  相似文献   

5.
《Molecular cell》2021,81(20):4287-4299.e5
  1. Download : Download high-res image (244KB)
  2. Download : Download full-size image
  相似文献   

6.
Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified new targets of Sir2 and tested if their deacetylation is necessary for Clr4‐mediated heterochromatin establishment. Sir2 preferentially deacetylates H4K16Ac and H3K4Ac, but mutation of these residues to mimic acetylation did not prevent Clr4‐mediated heterochromatin establishment. Sir2 also deacetylates H3K9Ac and H3K14Ac. Strains bearing H3K9 or H3K14 mutations exhibit heterochromatin defects. H3K9 mutation blocks Clr4 function, but why H3K14 mutation impacts heterochromatin was not known. Here, we demonstrate that recruitment of Clr4 to centromeres is blocked by mutation of H3K14. We suggest that Sir2 deacetylates H3K14 to target Clr4 to centromeres. Further, we demonstrate that Sir2 is critical for de novo accumulation of H3K9me2 in RNAi‐deficient cells. These analyses place Sir2 and H3K14 deacetylation upstream of Clr4 recruitment during heterochromatin assembly.  相似文献   

7.
8.
In Drosophila melanogaster, crossing males carrying autonomous P elements with females devoid of P copies results in hybrid dysgenesis in the germline of progeny. The reciprocal cross produces non-dysgenic progeny due to a maternally inherited state non-permissive for P transposition. The capacity of a P copy to repress transposition depends on both its structure and its chromosomal location. Naturally occuring regulatory P elements inserted at the telomere of the X chromosome have been genetically isolated in a genomic context devoid of other P elements. One or two copies of autonomous P elements at this site (1A) are sufficient to elicit a strong P repression in the germline. These elements are flanked by Telomeric Associated Sequences, previously identified and described by Karpen and Spradling (1992) as having heterochromatic properties. The regulatory properties of P elements at 1A are strongly impaired by mutations affecting Su(var)205, which encodes Heterochromatin Protein 1, a non-histone heterochromatin protein. The regulatory properties of classical P strains are not sensitive to Su(var)205. Models based on chromatin structure or on nuclear localisation of the telomeres are discussed in order to explain both the strong regulatory properties of P elements at the X chromosome telomere and their sensitivity to Su(var)205. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
《Molecular cell》2022,82(19):3566-3579.e5
  1. Download : Download high-res image (135KB)
  2. Download : Download full-size image
  相似文献   

10.
Constitutive heterochromatin is crucial for the integrity of chromosomes and genomic stability. Here, we show that the chromatin remodelling complex NoRC, known to silence a fraction of rRNA genes, also establishes a repressive heterochromatic structure at centromeres and telomeres, preserving the structural integrity of these repetitive loci. Knockdown of NoRC leads to relaxation of centromeric and telomeric heterochromatin, abnormalities in mitotic spindle assembly, impaired chromosome segregation and enhanced chromosomal instability. The results demonstrate that NoRC safeguards genomic stability by coordinating enzymatic activities that establish features of repressive chromatin at centromeric and telomeric regions, and this heterochromatic structure is required for sustaining genomic integrity.  相似文献   

11.
HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1beta bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a beta-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1beta to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation.  相似文献   

12.
13.
The conserved Rap1 protein is part of the shelterin complex that plays critical roles in chromosome end protection and telomere length regulation. Previous studies have addressed how fission yeast Rap1 contributes to telomere length maintenance, but the mechanism by which the protein inhibits end fusions has remained elusive. Here, we use a mutagenesis screen in combination with high‐throughput sequencing to identify several amino acid positions in Rap1 that have key roles in end protection. Interestingly, mutations at these sites render cells susceptible to genome instability in a conditional manner, whereby longer telomeres are prone to undergoing end fusions, while telomeres within the normal length range are sufficiently protected. The protection of long telomeres is in part dependent on their nuclear envelope attachment mediated by the Rap1–Bqt4 interaction. Our data demonstrate that long telomeres represent a challenge for the maintenance of genome integrity, thereby providing an explanation for species‐specific upper limits on telomere length.  相似文献   

14.
Heterochromatin protein‐1 (HP1) is a key component of heterochromatin. Reminiscent of the cohesin complex which mediates sister‐chromatid cohesion, most HP1 proteins in mammalian cells are displaced from chromosome arms during mitotic entry, whereas a pool remains at the heterochromatic centromere region. The function of HP1 at mitotic centromeres remains largely elusive. Here, we show that double knockout (DKO) of HP1α and HP1γ causes defective mitosis progression and weakened centromeric cohesion. While mutating the chromoshadow domain (CSD) prevents HP1α from protecting sister‐chromatid cohesion, centromeric targeting of HP1α CSD alone is sufficient to rescue the cohesion defects in HP1 DKO cells. Interestingly, HP1‐dependent cohesion protection requires Haspin, an antagonist of the cohesin‐releasing factor Wapl. Moreover, HP1α CSD directly binds the N‐terminal region of Haspin and facilitates its centromeric localization. The need for HP1 in cohesion protection can be bypassed by centromeric targeting of Haspin or inhibiting Wapl activity. Taken together, these results reveal a redundant role for HP1α and HP1γ in the protection of centromeric cohesion through promoting Haspin localization at mitotic centromeres in mammalian cells.  相似文献   

15.
Shareef MM  Badugu R  Kellum R 《Genetica》2003,117(2-3):127-134
We have used the highly conserved heterochromatin component, heterochromatin protein 1 (HP1), as a molecular tag for purifying other protein components of Drosophila heterochromatin. A complex of HP1 associated with the origin recognition complex (ORC) and an HP1/ORC-associated protein (HOAP) was purified from the maternally loaded cytoplasm of early Drosophila embryo. We propose that the DNA-binding activities of ORC and HOAP function to recruit underphosphorylated isoforms of HP1 to sites of heterochromatin nucleation. The roles of highly phosphorylated HP1, other DNA-binding proteins known to interact with HP1, and histone modifying activities in heterochromatin assembly are also addressed.  相似文献   

16.
CENP-A chromatin forms the foundation for kinetochore assembly. Replication-independent incorporation of CENP-A at centromeres depends on its chaperone HJURPScm3, and Mis18 in vertebrates and fission yeast. The recruitment of Mis18 and HJURPScm3 to centromeres is cell cycle regulated. Vertebrate Mis18 associates with Mis18BP1KNL2, which is critical for the recruitment of Mis18 and HJURPScm3. We identify two novel fission yeast Mis18-interacting proteins (Eic1 and Eic2), components of the Mis18 complex. Eic1 is essential to maintain Cnp1CENP-A at centromeres and is crucial for kinetochore integrity; Eic2 is dispensable. Eic1 also associates with Fta7CENP-Q/Okp1, Cnl2Nkp2 and Mal2CENP-O/Mcm21, components of the constitutive CCAN/Mis6/Ctf19 complex. No Mis18BP1KNL2 orthologue has been identified in fission yeast, consequently it remains unknown how the key Cnp1CENP-A loading factor Mis18 is recruited. Our findings suggest that Eic1 serves a function analogous to that of Mis18BP1KNL2, thus representing the functional counterpart of Mis18BP1KNL2 in fission yeast that connects with a module within the CCAN/Mis6/Ctf19 complex to allow the temporally regulated recruitment of the Mis18/Scm3HJURP Cnp1CENP-A loading factors. The novel interactions identified between CENP-A loading factors and the CCAN/Mis6/Ctf19 complex are likely to also contribute to CENP-A maintenance in other organisms.  相似文献   

17.
The maintenance of open and repressed chromatin states is crucial for the regulation of gene expression. To study the genes involved in maintaining chromatin states, we generated a random mutant library in Schizosaccharomyces pombe and monitored the silencing of reporter genes inserted into the euchromatic region adjacent to the heterochromatic mating type locus. We show that Leo1–Paf1 [a subcomplex of the RNA polymerase II‐associated factor 1 complex (Paf1C)] is required to prevent the spreading of heterochromatin into euchromatin by mapping the heterochromatin mark H3K9me2 using high‐resolution genomewide ChIP (ChIP–exo). Loss of Leo1–Paf1 increases heterochromatin stability at several facultative heterochromatin loci in an RNAi‐independent manner. Instead, deletion of Leo1 decreases nucleosome turnover, leading to heterochromatin stabilization. Our data reveal that Leo1–Paf1 promotes chromatin state fluctuations by enhancing histone turnover.  相似文献   

18.
19.
We developed a model system whereby HP1 can be targeted to pericentric heterochromatin in ES cells lacking Suv(3)9h1/2 histone methyltransferase (HMTase) activities. HP1 so targeted can reconstitute tri-methylated lysine 9 of histone H3 (Me(3)K9H3) and tri-methylated lysine 20 of histone H4 (Me(3)K20H4) at pericentric heterochromatin, indicating that HP1 can regulate the distribution of these histone modifications in vivo. Both homo- and hetero-typic interactions between the HP1 isotypes were demonstrated in vivo as were HP1 interactions with the ESET/SETDB1 HMTase and the ATRX chromatin remodelling enzyme. We conclude that HP1 not only "deciphers" the histone code but can also "encode it".  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号