首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to develop and evaluate a novel self-emulsifying floating drug delivery system (SEFDDS) that resulted in improved solubility, dissolution, and controlled release of the poorly water-soluble tetrahydrocurcumin (THC). The formulations of liquid self-emulsifying drug delivery system (SEDDS; mixtures of Labrasol, Cremophor EL, Capryol 90, Labrafac PG) were optimized by solubility assay and pseudo-ternary phase diagram analysis. The liquid SEDDS was mixed with adsorbent (silicon dioxide), glyceryl behenate, pregelatinized starch, sodium starch glycolate, and microcrystalline cellulose and transformed into pellets by the extrusion/spheronization technique. The resulting pellets with 22% liquid SEDDS had a uniform size and good self-emulsification property. The microemulsions in aqueous media of different self-emulsifying floating pellet formulations were in a particle size range of 25.9–32.5 nm. Use of different weight proportions of glyceryl behenate and sodium starch glycolate in pellet formulations had different effects on the floating abilities and in vitro drug release. The optimum formulation (F2) had a floating efficiency of 93% at 6 h and provided a controlled release of THC over an 8-h period. The release rate and extent of release of THC liquid SEDDS (80% within 2 h) and self-emulsifying floating pellet formulation (80% within 8 h) were significantly higher than that of unformulated THC (only 30% within 8 h). The pellet formulation was stable under intermediate and accelerated storage conditions for up to 6 months. Controlled release from this novel SEFDDS can be a useful alternative for the strategic development of oral solid lipid-based formulations.  相似文献   

2.
Sparingly, water-soluble drugs such as candesartan cilexetil offer challenges in developing a drug product with adequate bioavailability. The objective of the present study was to develop and characterize self-microemulsifying drug delivery system (SMEDDS) of candesartan cilexetil for filling into hard gelatin capsules. Solubility of candesartan cilexetil was evaluated in various nonaqueous careers that included oils, surfactants, and cosurfactants. Pseudoternary phase diagrams were constructed to identify the self-microemulsification region. Four self-microemulsifying formulations were prepared using mixtures of oils, surfactants, and cosurfactants in various proportions. The self-microemulsification properties, droplet size, and zeta potential of these formulations were studied upon dilution with water. The optimized liquid SMEDDS formulation was converted into free flowing powder by adsorbing onto a solid carrier for encapsulation. The dissolution characteristics of solid intermediates of SMEDDS filled into hard gelatin capsules was investigated and compared with liquid formulation and commercial formulation to ascertain the impact on self-emulsifying properties following conversion. The results indicated that solid intermediates showed comparable rate and extent of drug dissolution in a discriminating dissolution medium as liquid SMEDDS indicating that the self-emulsifying properties of SMEDDS were unaffected following conversion. Also, the rate and extent of drug dissolution for solid intermediates was significantly higher than commercial tablet formulation. The results from this study demonstrate the potential use of SMEDDS as a means of improving solubility, dissolution, and concomitantly the bioavailability.  相似文献   

3.
The present studies entail formulation development of novel solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of valsartan with improved oral bioavailability, and evaluation of their in vitro and in vivo performance. Preliminary solubility studies were carried out and pseudoternary phase diagrams were constructed using blends of oil (Capmul MCM), surfactant (Labrasol), and cosurfactant (Tween 20). The SNEDDS were systematically optimized by response surface methodology employing 33-Box–Behnken design. The prepared SNEDDS were characterized for viscocity, refractive index, globule size, zeta potential, and TEM. Optimized liquid SNEDDS were formulated into free flowing granules by adsorption on the porous carriers like Aerosil 200, Sylysia (350, 550, and 730) and Neusilin US2, and compressed into tablets. In vitro dissolution studies of S-SNEDDS revealed 3–3.5-fold increased in dissolution rate of the drug due to enhanced solubility. In vivo pharmacodynamic studies in Wistar rats showed significant reduction in mean systolic BP by S-SNEDDS vis-à-vis oral suspension (p < 0.05) owing to the drug absorption through lymphatic pathways. Solid-state characterization of S-SNEDDS using FT-IR and powder XRD studies confirmed lack of any significant interaction of drug with lipidic excipients and porous carriers. Further, the accelerated stability studies for 6 months revealed that S-SNEDDS are found to be stable without any change in physiochemical properties. Thus, the present studies demonstrated the bioavailability enhancement potential of porous carriers based S-SNEDDS for a BCS class II drug, valsartan.KEY WORDS: BCS, bioavailability, in vitro dissolution, porous carriers, XRD  相似文献   

4.
The purpose of this work was to evaluate the potential of grewia gum (GG) as a suspending agent in pharmaceutical oral formulation using ibuprofen as model drug. Ibuprofen pediatric suspension (25 mg/5 mL) was formulated with grewia gum (0.5% w/v) as the suspending agent. Similar suspensions of Ibuprofen containing either sodium carboxymethylcellulose (Na-CMC) or hydroxymethylpropylcellulose (HPMC) were also produced. The suspensions were evaluated for ease of redispersion, sedimentation, rheological properties, and the effect of aging on the rheological properties at 25°C. The particle size and particle size distributions of the dispersed solute were determined. The redispersion time was 19, 11, and 0.5 min, respectively, for formulation containing Na-CMC, HPMC, and GG .The sedimentation volumes were 0.05, 0.05, and 0.125 mL, respectively, for Na-CMC, HPMC, and GG . Viscosities of suspensions at spindle speed of 25 rpm were of the order: GG > HPMC > Na-CMC when freshly prepared and of the order: HPMC > GG > Na-CMC within 6 months of storage. The particles size was 72.72, 73.82, 81.93, and 83.41 μm, respectively, for suspensions containing Na-CMC, ibuprofen alone, HPMC, and GG. Greatest hysteresis was observed in formulation containing HPMC. All the formulations were stable. It was our conclusion that the difference in the physicochemical properties of ibuprofen pediatric formulations was influenced more by the suspending agent used in the formulations than the drug. GG combined better redispersion with minimal changes in viscosity on storage compared to Na-CMC and HPMC as suspending agent. Thus GG may serve as a good suspending agent requiring no further aid in suspension redispersibility.KEY WORDS: grewia gum, oral pharmaceutical formulations, physicochemical properties, potential suspending agent  相似文献   

5.
To improve the poor water solubility and dissolution rate of the oral hypoglycemic drug glibenclamide, it was molecularly dispersed in Neusilin® UFL2, an amorphous synthetic form of magnesium aluminometasilicate, at different proportions; the physicochemical and biopharmaceutical properties, as well as the stability of the four different batches recovered were characterised, and it was determined that complete dispersion of glibenclamide in the amorphous polymer was obtained at the drug to Neusilin ratio of 1 to 2.5. Completely amorphous dispersion was proven by Thermal Analysis and X-Ray Powder Diffractometry. Very small particles were obtained, ranging from approximately 200 to 400 nm. The amorphous batches were physically and chemically stable for the entire duration of experiments. The physicochemical properties of the four batches were compared to those of the starting materials and physical mixtures of Neusilin® UFL2 and glibenclamide, the latter showing the typical behaviour of simple mixes, i.e., the additivity of properties of single components. The dissolution studies of the four solid dispersions revealed a very high dissolution rate of the completely amorphous batches (Batches 3 and 4), behaviour that was ascribed to their high Intrinsic dissolution rate due to the amorphous characteristics of the solid dispersions, to their very small particle size, and to the presence of polysorbate 80 that improved solid wettability. The technique under investigation thus proved effective for recovering stable amorphous dispersions of very small particle sizes.  相似文献   

6.
The first successful development of controlled microwave processing for pharmaceutical formulations is presented and illustrated with a model drug (ibuprofen) and two excipients (stearic acid and polyvinylpyrrolidone). The necessary fine temperature control for formulation with microwave energy has been achieved using a uniquely modified microwave oven with direct temperature measurement and pulse-width modulation power control. In addition to comparing microwave and conventional heating, the effect of the presence of liquid (water) in aiding the mixing of the drug and excipient during formulation was also investigated. Analysis of the prepared formulations using differential scanning calorimetry and dissolution studies suggest that microwave and conventional heating produce similar products when applied to mixtures of ibuprofen and stearic acid. However, the differences were observed for the ibuprofen and polyvinylpyrrolidone formulation in terms of the dissolution kinetics. In all cases, the presence of water did not appear to influence the formulation to any appreciable degree. The application of controllable microwave heating is noteworthy as fine temperature control opens up opportunities for thermally sensitive materials for which microwave methods have not been feasible prior to this work.  相似文献   

7.
The purpose of this study is to enhance the dissolution rate of prednisone by co-grinding with Neusilin to form a complex that can be incorporated into a mini-tablet formulation for pediatrics. Prednisone–Neusilin complex was co-grinded at various ratios (1:1, 1:3, 1:5, and 1:7). The physicochemical properties of the complex were characterized by various analytical techniques including: differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), scanning electron microscope (SEM), particle size, surface area, solubility, and dissolution rate. The co-grinded prednisone–Neusilin complex (1:7) was blended with other excipients and was formulated into a 2-mm diameter mini-tablet. The mini-tablets were further evaluated for thickness, weight, content uniformity, and dissolution rate. To improve taste masking and stability, mini-tablets were coated by dip coating with Eudragit® EPO solution. DSC and XRPD results showed that prednisone was transformed from crystalline state into amorphous state after co-grinding with Neusilin. Particle size, surface area, and SEM results confirmed that prednisone was adsorbed to Neusilin’s surface. Co-grinded prednisone–Neusilin complex (1:7) had a solubility of 0.24 mg/mL and 90% dissolved within 20 min as compared to crystalline prednisone which had a solubility of 0.117 mg/mL and 30% dissolved within 20 min. The mini-tablets containing co-grinded prednisone–Neusilin complex (1:7) exhibited acceptable physicochemical and mechanical properties including dissolution rate enhancement. These mini-tablets were successfully dip coated in Eudragit® EPO solution to mask the taste of the drug during swallowing. This work illustrates the potential use of co-grinded prednisone–Neusilin to enhance solubility and dissolution rate as well as incorporation into a mini-tablet formulation for pediatric use.Key words: mini-tablet, Neusilin, pediatric, prednisone, solubility  相似文献   

8.
In order to avoid in vivo experiments and to gain information about the suitability of surrogates for skin replacement, Franz-type diffusion cell experiments were conducted by using three ibuprofen-containing formulations (cream, gel and microgel) on bovine split-skin samples and cellophane membranes. Moreover, ex vivo examinations were performed on the isolated perfused bovine udder, to study the comparability of in vitro and ex vivo experimental set-ups. Depending on the formulation, noticeable differences in the permeation of Ibuprofen occurred in vitro (udder skin) and ex vivo (isolated perfused bovine udder), but not in the cellophane membrane. The rates of ibuprofen permeability (cream > gel > microgel) and adsorption into the skin (gel > microgel > cream) varied with the formulation, and were probably caused by differences in the ingredients. Furthermore, different storage conditions and seasonal variation in the collection of the skin samples probably led to differences in the amounts of ibuprofen adsorption apparent in the isolated bovine udder and udder skin. In vitro diffusion experiments should be preferred to experiments on isolated organs with regard to the costs involved, the throughput, and the intensity of labour required, unless metabolism of the drug in the skin, or cell-cell interactions are of particular interest.  相似文献   

9.
The objective of this study was to develop new solid self-emulsifying pellets to deliver milk thistle extract (silymarin). These pellets were prepared via extrusion/spheronisation procedure, using a self-emulsifying system or SES (Akoline MCM®, Miglyol®, Tween 80®, soy lecithin and propylene glycol), microcrystalline cellulose and lactose monohydrate. To select the most suitable formulations for extrusion and spheronisation, an experimental design of experiences was adopted. The screening amongst formulations (13 different blends) was performed preparing pellets and evaluating extrusion profiles and quality of the spheronised extrudates. The pellets were characterised for size and shape, density, force required to crush them. Although more than one type of pellets demonstrated adequate morphological and technological characteristics, pellets prepared from formulation 7 revealed the best properties and were selected for further biopharmaceutical investigations, including in vitro dissolution and in vivo trials on rats to study serum and lymph levels after oral administration of the pellets. These preliminary technological and pharmacokinetic data demonstrated that extrusion/spheronisation is a viable technology to produce self-emulsifying pellets of good quality and able to improve in vivo oral bioavailability of main components of a phytotherapeutic extract of more than 100 times by enhancing the lymphatic route of absorption.  相似文献   

10.
The present study was carried out with a view to enhance the dissolution of poorly water-soluble BCS-class II drug aceclofenac by co-grinding with novel porous carrier Neusilin US2. (amorphous microporous granules of magnesium aluminosilicate, Fuji Chemical Industry, Toyama, Japan). Neusilin US2 has been used as an important pharmaceutical excipient for solubility enhancement. Co-grinding of aceclofenac with Neusilin US2 in a ratio of 1:5 was carried out by ball milling for 20 h. Samples of co-ground mixtures were withdrawn at the end of every 5 h. and characterized for X-ray powder diffraction, differential scanning calorimetry, and Fourier-transform infrared spectroscopy. The analysis revealed the conversion of crystalline aceclofenac to its amorphous form upon milling with Neusilin US2. Further, in vitro dissolution rate of aceclofenac from co-ground mixture was significantly higher compared to pure aceclofenac. The accelerated stability study of co-ground mixture was carried out at 40°C/75%RH for 4 weeks, and it showed that there was no reversion from amorphous to crystalline form. Thus, it is advantageous to use a porous carrier like Neusilin US2 in improvement of dissolution of poorly soluble drugs.  相似文献   

11.
Novel self-microemulsifying floating tablets were developed to enhance the dissolution and oral absorption of the poorly water-soluble tetrahydrocurcumin (THC). Their physicochemical properties and THC permeability across Caco-2 cell monolayers were assessed. The self-microemulsifying liquid containing THC was adsorbed onto colloidal silicon dioxide, mixed with HPMC, gas-generating agents (sodium bicarbonate and tartaric acid), lactose and silicified-microcrystalline cellulose and transformed into tablets by direct compression. The use of different types/concentrations of HPMC and sodium bicarbonate in tablet formulations had different effects on the floating characteristics and in vitro THC release. The optimum tablet formulation (F2) provided a short floating lag time (∼23 s) together with a prolonged buoyancy (>12 h). About 72% of THC was released in 12 h with an emulsion droplet size in aqueous media of 33.9 ± 1.0 nm while that of a self-microemulsifying liquid was 29.9 ± 0.3 nm. The tablet formulation was stable under intermediate and accelerated storage conditions for up to 6 months. The THC released from the self-microemulsifying liquid and tablet formulations provided an approximately three- to fivefold greater permeability across the Caco-2 cell monolayers than the unformulated THC and indicated an enhanced absorption of THC by the formulations. The self-microemulsifying floating tablet could provide a dosage form with the potential to improve the oral bioavailability of THC and other hydrophobic compounds.KEY WORDS: Caco-2 cells, controlled release, permeability, self-microemulsifying floating tablets, tetrahydrocurcumin  相似文献   

12.
Hydroxypropylcellulose (HPC)-SL and -SSL, low-viscosity hydroxypropylcellulose polymers, are versatile pharmaceutical excipients. The utility of HPC polymers was assessed for both dissolution enhancement and sustained release of pharmaceutical drugs using various processing techniques. The BCS class II drugs carbamazepine (CBZ), hydrochlorthiazide, and phenytoin (PHT) were hot melt mixed (HMM) with various polymers. PHT formulations produced by solvent evaporation (SE) and ball milling (BM) were prepared using HPC-SSL. HMM formulations of BCS class I chlorpheniramine maleate (CPM) were prepared using HPC-SL and -SSL. These solid dispersions (SDs) manufactured using different processes were evaluated for amorphous transformation and dissolution characteristics. Drug degradation because of HMM processing was also assessed. Amorphous conversion using HMM could be achieved only for relatively low-melting CBZ and CPM. SE and BM did not produce amorphous SDs of PHT using HPC-SSL. Chemical stability of all the drugs was maintained using HPC during the HMM process. Dissolution enhancement was observed in HPC-based HMMs and compared well to other polymers. The dissolution enhancement of PHT was in the order of SE > BM > HMM > physical mixtures, as compared to the pure drug, perhaps due to more intimate mixing that occurred during SE and BM than in HMM. Dissolution of CPM could be significantly sustained in simulated gastric and intestinal fluids using HPC polymers. These studies revealed that low-viscosity HPC-SL and -SSL can be employed to produce chemically stable SDs of poorly as well as highly water-soluble drugs using various pharmaceutical processes in order to control drug dissolution.KEY WORDS: controlled release formulations, hydroxypropylcellulose, melt extrusion, solid dispersion  相似文献   

13.
This study aims to formulate and evaluate bioavailability of a self-nanoemulsified drug delivery system (SNEDDS) of a poorly water-soluble herbal active component oleanolic acid (OA) for oral delivery. Solubility of OA under different systems was determined for excipient selection purpose. Four formulations, where OA was fixed at the concentration of 20 mg/g, were prepared utilizing Sefsol 218 as oil phase, Cremophor EL and Labrasol as primary surfactants, and Transcutol P as cosurfactant. Pseudo-ternary phase diagrams were constructed to identify self-emulsification regions for the rational design of SNEDDS formulations. Sefsol 218 was found to provide the highest solubility among all medium-chained oils screened. Efficient self-emulsification was observed for the systems composing of Cremophor EL and Labrasol. The surfactant to cosurfactant ratio greatly affected the droplet size of the nanoemulsion. Based on the outcomes in dissolution profiles, stability data, and particle size profiles, three optimized formulations were selected: Sefsol 218/Cremophor EL/Labrasol (50:25:25, w/w), Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:20:20:10, w/w), and Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:17.5:17.5:15, w/w). Based on the conventional dissolution method, a remarkable increase in dissolution was observed for the SNEDDS when compared with the commercial tablet. The oral absorption of OA from SNEDDS showed a 2.4-fold increase in relative bioavailability compared with that of the tablet (p < 0.05), and an increased mean retention time of OA in rat plasma was also observed compared with that of the tablet (p < 0.01). These results suggest the potential use of SNEDDS to improve dissolution and oral bioavailability for poorly water-soluble triterpenoids such as OA.  相似文献   

14.
To maximize the pharmacological effect of a pain reliever such as ibuprofen, early onset of action is critical. Unfortunately, the acidic nature of ibuprofen minimizes the amount of drug that can be solubilized under gastric conditions and would be available for immediate absorption upon entry into the intestine. Although the sodium salt of ibuprofen has higher solubility, rapid conversion from the salt to the poorly soluble free acid phase occurs under gastric conditions. Therefore, the combination of the highly soluble sodium salt form of ibuprofen with polymers was evaluated as an approach to prolong supersaturation of ibuprofen during the disproportionation of the salt. Binary combinations of ibuprofen sodium with polymers resulted in the identification of several formulations that demonstrated high degrees and extended durations of supersaturation during in vitro dissolution experiments. These formulations included HPMC, polyvinyl pyrrolidone-vinyl acetate copolymer (PVP-VA64), methylcellulose (MC), and hydroxypropyl cellulose (HPC). The in vitro supersaturation observed with these ibuprofen-polymer formulations translated to an increase in Cmax and an earlier Tmax for the PVP-VA64, MC, and HPC formulations relative to ibuprofen only controls when administered orally to rats under fasted conditions. Based on these observations, combining ibuprofen sodium with polymers such as PVP-VA64, MC, or HPC is a viable formulation approach to prolong supersaturation in the stomach and enable an optimized pharmacokinetic profile in vivo where rapid onset of action is desired.  相似文献   

15.
Aim of current research was to prepare ibuprofen-poloxamer 407 binary mixtures using fusion method and characterize them for their physicochemical and performance properties. Binary mixtures of ibuprofen and poloxamer were prepared in three different ratios (1:0.25, 1:0.5, and 1:0.75, respectively) using a water-jacketed high shear mixer. In vitro dissolution and saturation solubility studies were carried out for the drug, physical mixtures, and formulations for all ratios in de-ionized water, 0.1 N HCl (pH?=?1.2), and phosphate buffer (pH?=?7.2). Thermal and physical characterization of samples was done using modulated differential scanning calorimetry (mDSC), X-ray powder diffraction (XRD), and infrared spectroscopy (FTIR). Flow properties were evaluated using a powder rheometer. Maximum solubility enhancement was seen in acidic media for fused formulations where the ratio 1:0.75 had 18-fold increase. In vitro dissolution studies showed dissolution rate enhancement for physical mixtures and the formulations in all three media. The most pronounced effect was seen for formulation (1:0.75) in acidic media where the cumulative drug release was 58.27% while for drug, it was 3.67%. Model independent statistical methods and ANOVA based methods were used to check the significance of difference in the dissolution profiles. Thermograms from mDSC showed a characteristic peak for all formulations with Tpeak of around 45°C which suggested formation of a eutectic mixture. XRD data displayed that crystalline nature of ibuprofen was intact in the formulations. This work shows the effect of eutectic formation and micellar solubilization between ibuprofen and poloxamer at the given ratios on its solubility and dissolution rate enhancement.  相似文献   

16.
Stable solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) formulations to enhance the dissolution rates of poorly soluble drug spironolactone (SP) were being developed. Probe ultra-sonication method was used to prepare SLNs and NLCs. All NLCs contained stearic acid (solid lipid carrier) and oleic acid (liquid lipid content), whereas, SLNs were prepared and optimised by using the solid lipid only. The particles were characterised in terms of particle size analysis, thermal behaviour, morphology, stability and in vitro release. The zeta sizer data revealed that the increase in the concentration of oleic acid in the formulations reduced the mean particle size and the zeta potential. The increase in concentration of oleic acid from 0 to 30% (w/w) resulted in a higher entrapment efficiency. All nanoparticles were almost spherically shaped with an average particle size of about ~170 nm. The DSC traces revealed that the presence of oleic acid in the NLC formulations resulted in a shift in the melting endotherms to a higher temperature. This could be attributed to a good long-term stability of the nanoparticles. The stability results showed that the particle size remained smaller in NLC compared to that of SLN formulations after 6 months at various temperatures. The dissolution study showed about a 5.1- to 7.2-fold increase in the release of the drug in 2 h compared to the raw drug. Comparing all nanoparticle formulations indicated that the NLC composition with a ratio of 70:30 (solid:liquid lipid) is the most suitable formulation with desired drug dissolution rates, entrapment efficiency and physical stability.  相似文献   

17.
Self-nanoemulsifying drug delivery system (SNEDDS) can be used to improve dissolution of poorly water-soluble drugs. The objective of this study was to prepare SNEDDS by using ternary phase diagram and investigate their spontaneous emulsifying property, dissolution of nifedipine (NDP), as well as the pharmacokinetic profile of selected SNEDDS formulation. The results showed that the composition of the SNEDDS was a great importance for the spontaneous emulsification. Based on ternary phase diagram, the region giving the SNEDDS with emulsion droplet size of less than 300 nm after diluting in aqueous medium was selected for further formulation. The small-angle X-ray scattering curves showed no sharp peak after dilution at different percentages of water, suggesting non-ordered structure. The system was found to be robust in different dilution volumes; the droplet size was in nanometer range. In vitro dissolution study showed remarkable increase in dissolution of NDP from SNEDDS formulations compared with NDP powders. The pharmacokinetic study of selected SNEDDS formulation in male Wistar rats revealed the improved maximum concentration and area under the curve. Our results proposed that the developed SNEDDS formations could be promising to improve the dissolution and oral bioavailability of NDP.KEY WORDS: nifedipine, poorly water-soluble drug, self-emulsifying drug delivery system, spontaneous emulsification  相似文献   

18.
The study was designed to build up a database for the evaluation of the self-emulsifying lipid formulations performance. A standard assessment method was constructed to evaluate the self-emulsifying efficiency of the formulations based on five parameters including excipients miscibility, spontaneity, dispersibility, homogeneity, and physical appearance. Equilibrium phase studies were conducted to investigate the phase changes of the anhydrous formulation in response to aqueous dilution. Droplet size studies were carried out to assess the influence of lipid and surfactant portions on the resulted droplet size upon aqueous dilution. Formulations containing mixed glycerides showed enhanced self-emulsification with both lipophilic and hydrophilic surfactants. Increasing the polarity of the lipid portion in the formulation leaded to progressive water solubilization capacity. In addition, formulations containing medium chain mixed glycerides and hydrophilic surfactants showed lower droplet size compared with their long chain and lipophilic counterparts. The inclusion of mixed glycerides in the lipid formulations enormously enhances the formulation efficiency.  相似文献   

19.
The KinetiSol® Dispersing (KSD) technology has enabled the investigation into the use of polyvinyl alcohol (PVAL) as a concentration enhancing polymer for amorphous solid dispersions. Our previous study revealed that the 88% hydrolyzed grade of PVAL was optimal for itraconazole (ITZ) amorphous compositions with regard to solid-state properties, non-sink dissolution performance, and bioavailability enhancement. The current study investigates the influence of molecular weight for the 88% hydrolyzed grades of PVAL on the properties of KSD processed ITZ:PVAL amorphous dispersions. Specifically, molecular weights in the processable range of 4 to 18 mPa · s were evaluated and the 4-88 grade provided the highest AUC dissolution profile. Amorphous dispersions at 10, 20, 30, 40, and 50% ITZ drug loads in PVAL 4-88 were also compared by dissolution performance. Analytical tools of diffusion-ordered spectroscopy and Fourier transform infrared spectroscopy were employed to understand the interaction between drug and polymer. Finally, results from a 30-month stability test of a 30% drug loaded ITZ:PVAL 4-88 composition shows that stable amorphous dispersions can be achieved. Thus, this newly enabled polymer carrier can be considered a viable option for pharmaceutical formulation development for solubility enhancement.KEY WORDS: amorphous solid dispersion, itraconazole, polyvinyl alcohol, PVAL, solubility enhancement  相似文献   

20.
Tamilvanan S  Sa B 《AAPS PharmSciTech》2006,7(3):E126-E134
The major aims of the present study were (1) to select a multiple-unit formulation that matched the in vitro dissolution profile of single-unit sustained-release commercial capsules, (2) to compare the sustaining/controlling efficacy of the selected multiple-unit formulation with that of the single-unit commercial conventional tablet and sustained-release capsules, and (3) to determine whether an in vitro-in vivo correlation exists for single- and multiple-unit formulations. Ibuprofen (20%–60% wt/wt)-loaded multiple-unit polystyrene microparticles were prepared by an emulsion-solvent evaporation method from an aqueous system. The in vitro release profiles obtained in phosphate buffer of pH 6.8 for drug-loaded polystyrene microparticles and for commercial sustained-release capsules (Fenlong-SR, 400 mg) were compared. Since the microparticles with 30% ibuprofen load showed a release profile comparable to that of the Fenlong-SR release profile, the microparticles with this drug load were considered to be the optimized/selected formulation and, therefore, were subjected to stability study and in vivo study in human volunteers. A single-dose oral bioavailability study revealed significant differences in Cmax, Tmax, t1/2a, t1/2e, Ka, Ke, and AUC between the conventional tablet and optimized or Fenlong-SR capsule dosage forms. However, all the parameters, with the exception of Ka along with relative bioavailability (F) and retard quotient (RΔ), obtained from the optimized ibuprofenloaded microparticles were lower than that obtained from the commercial Fenlong-SR formulation. Furthermore, linear relationship obtained between the percentages dissolved and absorbed suggests a means to predict in vivo absorption by measuring in vitro dissolution. Published: September 1, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号