首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background and Aims

How generalist plants diverge in response to pollinator selection without becoming specialized is still unknown. This study explores this question, focusing on the evolution of the pollination system in the pollination generalist Erysimum mediohispanicum (Brassicaceae).

Methods

Pollinator assemblages were surveyed from 2001 to 2010 in 48 geo-referenced populations covering the entire geographic distribution of E. mediohispanicum. Bipartite modularity, a complex network tool, was used to find the pollination niche of each population. Evolution of the pollination niches and the correlated evolution of floral traits and pollination niches were explored using within-species comparative analyses.

Key Results

Despite being generalists, the E. mediohispanicum populations studied can be classified into five pollination niches. The boundaries between niches were not sharp, the niches differing among them in the relative frequencies of the floral visitor functional groups. The absence of spatial autocorrelation and phylogenetic signal indicates that the niches were distributed in a phylogeographic mosaic. The ancestral E. mediohispanicum populations presumably belonged to the niche defined by a high number of beetle and ant visits. A correlated evolution was found between pollination niches and some floral traits, suggesting the existence of generalist pollination ecotypes.

Conclusions

It is conjectured that the geographic variation in pollination niches has contributed to the observed floral divergence in E. mediohispanicum. The process mediating this floral divergence presumably has been adaptive wandering, but the adaptation to the local pollinator faunas has been not universal. The outcome is a landscape where a few populations locally adapted to their pollination environment (generalist pollination ecotypes) coexist with many populations where this local adaptation has failed and where the plant phenotype is not primarily shaped by pollinators.  相似文献   

3.

Background and Aims

Knowledge on how climate-induced range shifts might affect natural selection is crucial to understand the evolution of species ranges.

Methods

Using historical demographic perspectives gathered from regional-scale phylogeography on the alpine herb Biscutella laevigata, indirect inferences on gene flow and signature of selection based on AFLP genotyping were compared between local populations persisting at the trailing edge and expanding at the leading edge.

Key Results

Spatial autocorrelation revealed that gene flow was two times more restricted at the trailing edge and genome scans indicated divergent selection in this persisting population. In contrast, no pattern of selection emerged in the expanding population at the leading edge.

Conclusions

Historical effects may determine different architecture of genetic variation and selective patterns within local populations, what is arguably important to understand evolutionary processes acting across the species ranges.  相似文献   

4.
5.
Species evolution depends on numerous and distinct forces, including demography and natural selection. For example, local adaptation and population structure affect the evolutionary history of species living along environmental clines. This is particularly relevant in plants, which are often characterized by limited dispersal ability and the need to respond to abiotic and biotic stress factors specific to the local environment. Here we study the demographic history and the possible existence of local adaptation in two related species of Brassicaceae, Cardamine impatiens and Cardamine resedifolia, which occupy separate habitats along the elevation gradient. Previous genome-wide analyses revealed the occurrence of distinct selective pressures in the two species, with genes involved in cold response evolving particularly fast in C. resedifolia. In this study we surveyed patterns of molecular evolution and genetic variability in a set of 19 genes, including neutral and candidate genes involved in cold response, across 10 populations each of C. resedifolia and C. impatiens from the Italian Alps (Trentino). We inferred the population structure and demographic history of the two species, and tested the occurrence of signatures of local adaptation in these genes. The results indicate that, despite a slightly higher population differentiation in C. resedifolia than in C. impatiens, both species are only weakly structured and that populations sampled at high altitude experience less gene flow than low-altitude ones. None of the genes showed signatures of positive selection, suggesting that they do not seem to play relevant roles in the current evolutionary processes of adaptation to alpine environments of these species.  相似文献   

6.

Background and Aims

Nickel (Ni) hyperaccumulation is a rare form of physiological specialization shared by a small number of angiosperms growing on ultramafic soils. The evolutionary patterns of this feature among European members of tribe Alysseae (Brassicaceae) are investigated using a phylogenetic approach to assess relationships among Ni hyperaccumulators at the genus, species and below-species level.

Methods

Internal transcribed spacer (ITS) sequences were generated for multiple accessions of Alysseae. Phylogenetic trees were obtained for the genera of the tribe and Alyssum sect. Odontarrhena. All accessions and additional herbarium material were tested for Ni hyperaccumulation with the dimethylglyoxime colorimetric method.

Key Results

Molecular data strongly support the poorly known hyperaccumulator endemic Leptoplax (Peltaria) emarginata as sister to hyperaccumulator species of Bornmuellera within Alysseae. This is contrary to current assumptions of affinity between L. emarginata and the non-hyperaccumulator Peltaria in Thlaspideae. The lineage Bornmuellera–Leptoplax is, in turn, sister to the two non-hyperaccumulator Mediterranean endemics Ptilotrichum rupestre and P. cyclocarpum. Low ITS sequence variation was found within the monophyletic Alyssum sect. Odontarrhena and especially in A. murale sensu lato. Nickel hyperaccumulation was not monophyletic in any of three main clades retrieved, each consisting of hyperaccumulators and non-hyperaccumulators of different geographical origin.

Conclusions

Nickel hyperaccumulation in Alysseae has a double origin, but it did not evolve in Thlaspideae. In Bornmuellera–Leptoplax it represents an early synapomorphy inherited from an ancestor shared with the calcicolous, sister clade of Mediterranean Ptilotrichum. In Alyssum sect. Odontarrhena it has multiple origins even within the three European clades recognized. Lack of geographical cohesion suggests that accumulation ability has been lost or gained over the different serpentine areas of south Europe through independent events of microevolutionary adaptation and selection. Genetic continuity and strong phenotypic plasticity in the A. murale complex call for a reduction of the number of Ni hyperaccumulator taxa formally recognized.  相似文献   

7.
8.

Background and Aims

Gene flow is important in counteracting the divergence of populations but also in spreading genes among populations. However, contemporary gene flow is not well understood across alpine landscapes. The aim of this study was to estimate contemporary gene flow through pollen and to examine the realized mating system in the alpine perennial plant, Arabis alpina (Brassicaceae).

Methods

An entire sub-alpine to alpine landscape of 2 km2 was exhaustively sampled in the Swiss Alps. Eighteen nuclear microsatellite loci were used to genotype 595 individuals and 499 offspring from 49 maternal plants. Contemporary gene flow by pollen was estimated from paternity analysis, matching the genotypes of maternal plants and offspring to the pool of likely father plants. Realized mating patterns and genetic structure were also estimated.

Key Results

Paternity analysis revealed several long-distance gene flow events (≤1 km). However, most outcrossing pollen was dispersed close to the mother plants, and 84 % of all offspring were selfed. Individuals that were spatially close were more related than by chance and were also more likely to be connected by pollen dispersal.

Conclusions

In the alpine landscape studied, genetic structure occurred on small spatial scales as expected for alpine plants. However, gene flow also covered large distances. This makes it plausible for alpine plants to spread beneficial alleles at least via pollen across landscapes at a short time scale. Thus, gene flow potentially facilitates rapid adaptation in A. alpina likely to be required under ongoing climate change.  相似文献   

9.

Background

The white mold fungus Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a remarkably broad host range. The interaction of necrotrophs with their hosts is more complex than initially thought, and still poorly understood.

Results

We combined bioinformatics approaches to determine the repertoire of S. sclerotiorum effector candidates and conducted detailed sequence and expression analyses on selected candidates. We identified 486 S. sclerotiorum secreted protein genes expressed in planta, many of which have no predicted enzymatic activity and may be involved in the interaction between the fungus and its hosts. We focused on those showing (i) protein domains and motifs found in known fungal effectors, (ii) signatures of positive selection, (iii) recent gene duplication, or (iv) being S. sclerotiorum-specific. We identified 78 effector candidates based on these properties. We analyzed the expression pattern of 16 representative effector candidate genes on four host plants and revealed diverse expression patterns.

Conclusions

These results reveal diverse predicted functions and expression patterns in the repertoire of S. sclerotiorum effector candidates. They will facilitate the functional analysis of fungal pathogenicity determinants and should prove useful in the search for plant quantitative disease resistance components active against the white mold.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-336) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Signatures of selection are regions in the genome that have been preferentially increased in frequency and fixed in a population because of their functional importance in specific processes. These regions can be detected because of their lower genetic variability and specific regional linkage disequilibrium (LD) patterns.

Methods

By comparing the differences in regional LD variation between dairy and beef cattle types, and between indicine and taurine subspecies, we aim at finding signatures of selection for production and adaptation in cattle breeds. The VarLD method was applied to compare the LD variation in the autosomal genome between breeds, including Angus and Brown Swiss, representing taurine breeds, and Nelore and Gir, representing indicine breeds. Genomic regions containing the top 0.01 and 0.1 percentile of signals were characterized using the UMD3.1 Bos taurus genome assembly to identify genes in those regions and compared with previously reported selection signatures and regions with copy number variation.

Results

For all comparisons, the top 0.01 and 0.1 percentile included 26 and 165 signals and 17 and 125 genes, respectively, including TECRL, BT.23182 or FPPS, CAST, MYOM1, UVRAG and DNAJA1.

Conclusions

The VarLD method is a powerful tool to identify differences in linkage disequilibrium between cattle populations and putative signatures of selection with potential adaptive and productive importance.  相似文献   

11.
12.

Background and Aims

Positive selection in the α-crystallin domain (ACD) of the chloroplast small heat shock protein (CPsHSP) gene was found in a previous study and was suggested to be related to the ecological adaptation of Rhododendron species in the subgenus Hymenanthes. Consequently, it was of interest to examine whether gene duplication and subsequent divergence have occurred in other sHSP genes, for example class I cytosolic sHSP genes (CT1sHSPs) in Rhododendron in Taiwan, where many endemic species have evolved as a result of habitat differentiation.

Methods

A phylogeny of CT1sHSP amino acid sequences was built from Rhododendron, Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Vitis vinifera and other species for elucidation of the phylogenetic relationships among CT1sHSPs. Phylogenies of Rhododendron CT1sHSP nucleotide and amino acid sequences were generated for positive selection and functional divergence analysis, respectively. Positively selected sites and amino acid differences between types of Rhododendron CT1sHSPs were mapped onto the wheat sHSP16·9 protein structure. Average genetic distance (Dxy) and dN/dS ratios between types of Rhododendron CT1sHSP genes were analysed using sliding window analysis. Gene conversion was also assessed between types of Rhododendron CT1sHSPs.

Key Results

Two types of Rhododendron CT1sHSP were identified. A high level of genetic similarity and diversity within and flanking the ACD, respectively, between types of Rhododendron CT1sHSP were found. Main differences between the two types of Rhododendron CT1sHSPs were: (1) increased hydrophobicity by two positively selected amino acid sites and a seven-amino-acid insertion in the N-terminal arm; and (2) increased structural flexibility and solubility by a seven-amino-acid insertion in the N-terminal arm and one positively selected amino acid site in the C-terminal extension.

Conclusions

Functional conservation of the ACD of Rhododendron CT1sHSP genes was inferred because of strong purifying selection. However, sequence variations flanking the ACD in Rhododendron CT1sHSP gene duplicates may have resulted in functional divergence and played important roles in chaperon function enhancement.  相似文献   

13.
14.

Premise of the Study

As more plastomes are assembled, it is evident that rearrangements, losses, intergenic spacer expansion and contraction, and syntenic breaks within otherwise functioning plastids are more common than was thought previously, and such changes have developed independently in disparate lineages. However, to date, the magnoliids remain characterized by their highly conserved plastid genomes (plastomes).

Methods

Illumina HiSeq and MiSeq platforms were used to sequence the plastomes of Saruma henryi and those of representative species from each of the six taxonomic sections of Asarum. Sequenced plastomes were compared in a phylogenetic context provided by maximum likelihood and parsimony inferences made using an additional 18 publicly available plastomes from early‐diverging angiosperm lineages.

Key Results

In contrast to previously published magnoliid plastomes and the newly sequenced Saruma henryi plastome published here, Asarum plastomes have undergone extensive disruption and contain extremely lengthy AT‐repeat regions. The entirety of the small single copy region (SSC) of A. canadense and A. sieboldii var. sieboldii has been incorporated into the inverted repeat regions (IR), and the SSC of A. delavayi is only 14 bp long. All sampled Asarum plastomes share an inversion of a large portion of the large single copy region (LSC) such that trnE‐UUC is adjacent to the LSC‐IR boundary.

Conclusions

Plastome divergence in Asarum appears to be consistent with trends seen in highly rearranged plastomes of the monocots and eudicots. We propose that plastome instability in Asarum is due to repetitive motifs that serve as recombinatory substrates and reduce genome stability.  相似文献   

15.

Background and Aims

The Senecio hybrid zone on Mt Etna, Sicily, is characterized by steep altitudinal clines in quantitative traits and genetic variation. Such clines are thought to be maintained by a combination of ‘endogenous’ selection arising from genetic incompatibilities and environment-dependent ‘exogenous’ selection leading to local adaptation. Here, the hypothesis was tested that local adaptation to the altitudinal temperature gradient contributes to maintaining divergence between the parental species, S. chrysanthemifolius and S. aethnensis.

Methods

Intra- and inter-population crosses were performed between five populations from across the hybrid zone and the germination and early seedling growth of the progeny were assessed.

Key Results

Seedlings from higher-altitude populations germinated better under low temperatures (9–13 °C) than those from lower altitude populations. Seedlings from higher-altitude populations had lower survival rates under warm conditions (25/15 °C) than those from lower altitude populations, but also attained greater biomass. There was no altitudinal variation in growth or survival under cold conditions (15/5 °C). Population-level plasticity increased with altitude. Germination, growth and survival of natural hybrids and experimentally generated F1s generally exceeded the worse-performing parent.

Conclusions

Limited evidence was found for endogenous selection against hybrids but relatively clear evidence was found for divergence in seed and seedling traits, which is probably adaptive. The combination of low-temperature germination and faster growth in warm conditions might enable high-altitude S. aethnensis to maximize its growth during a shorter growing season, while the slower growth of S. chrysanthemifolius may be an adaptation to drought stress at low altitudes. This study indicates that temperature gradients are likely to be an important environmental factor generating and maintaining adaptive divergence across the Senecio hybrid zone on Mt Etna.  相似文献   

16.

Background and Aims

Hybridizing species such as oaks may provide a model to study the role of selection in speciation with gene flow. Discrete species'' identities and different adaptations are maintained among closely related oak species despite recurrent gene flow. This is probably due to ecologically mediated selection at a few key genes or genomic regions. Neutrality tests can be applied to identify so-called outlier loci, which demonstrate locus-specific signatures of divergent selection and are candidate genes for further study.

Methods

Thirty-six genic microsatellite markers, some with putative functions in flowering time and drought tolerance, and eight non-genic microsatellite markers were screened in two population pairs (n = 160) of the interfertile species Quercus rubra and Q. ellipsoidalis, which are characterized by contrasting adaptations to drought. Putative outliers were then tested in additional population pairs from two different geographic regions (n = 159) to support further their potential role in adaptive divergence.

Key Results

A marker located in the coding sequence of a putative CONSTANS-like (COL) gene was repeatedly identified as under strong divergent selection across all three geographically disjunct population pairs. COL genes are involved in the photoperiodic control of growth and development and are implicated in the regulation of flowering time.

Conclusions

The location of the polymorphism in the Quercus COL gene and given the potential role of COL genes in adaptive divergence and reproductive isolation makes this a promising candidate speciation gene. Further investigation of the phenological characteristics of both species and flowering time pathway genes is suggested in order to elucidate the importance of phenology genes for the maintenance of species integrity. Next-generation sequencing in multiple population pairs in combination with high-density genetic linkage maps could reveal the genome-wide distribution of outlier genes and their potential role in reproductive isolation between these species.  相似文献   

17.

Background and Aims

Flavonoids have the potential to serve as antioxidants in addition to their function of UV screening in photoprotective mechanisms. However, flavonoids have long been reported to accumulate mostly in epidermal cells and surface organs in response to high sunlight. Therefore, how leaf flavonoids actually carry out their antioxidant functions is still a matter of debate. Here, the distribution of flavonoids with effective antioxidant properties, i.e. the orthodihydroxy B-ring-substituted quercetin and luteolin glycosides, was investigated in the mesophyll of Ligustrum vulgare leaves acclimated to contrasting sunlight irradiance.

Methods

In the first experiment, plants were grown at 20 % (shade) or 100% (sun) natural sunlight. Plants were exposed to 100 % sunlight irradiance in the presence or absence of UV wavelengths, in a second experiment. Fluorescence microspectroscopy and multispectral fluorescence microimaging were used in both cross sections and intact leaf pieces to visualize orthodihydroxy B-ring-substituted flavonoids at inter- and intracellular levels. Identification and quantification of individual hydroxycinnamates and flavonoid glycosides were performed via HPLC-DAD.

Key Results

Quercetin and luteolin derivatives accumulated to a great extent in both the epidermal and mesophyll cells in response to high sunlight. Tissue fluorescence signatures and leaf flavonoid concentrations were strongly related. Monohydroxyflavone glycosides, namely luteolin 4′-O-glucoside and two apigenin 7-O-glycosides were unresponsive to changes in sunlight irradiance. Quercetin and luteolin derivatives accumulated in the vacuoles of mesophyll cells in leaves growing under 100 % natural sunlight in the absence of UV wavelengths.

Conclusions

The above findings lead to the hypothesis that flavonoids play a key role in countering light-induced oxidative stress, and not only in avoiding the penetration of short solar wavelengths in the leaf.  相似文献   

18.
19.

Background and Aims

Marginal populations of widely distributed species can be of high conservation interest when they hold a significant or unique portion of the genetic diversity of the species. However, such genetic information is frequently lacking. Here the relevance of genetic surveys to develop efficient conservation strategies for such populations is illustrated using cork oak (Quercus suber) from Minorca (Balearic Islands, Spain) as a case study. Cork oak is highly endangered on the island, where no more than 67 individuals live in small, isolated stands in siliceous sites. As a consequence, it was recently granted protected status.

Methods

Two Bayesian clustering approaches were used to analyse the genetic structure of the Minorcan population, on the basis of nuclear microsatellite data. The different groups within the island were also compared with additional island and continental populations surrounding Minorca.

Key Results

Very high genetic diversity was found, with values comparable with those observed in continental parts of the species'' range. Furthermore, the Minorcan oak stands were highly differentiated from one another and were genetically related to different continental populations of France and Spain.

Conclusions

The high levels of genetic diversity and inter-stands differentiation make Minorcan cork oak eligible for specific conservation efforts. The relationship of Minorcan stands to different continental populations in France and Spain probably reflects multiple colonization events. However, discrepancy between chloroplast DNA- and nuclear DNA-based groups does not support a simple scenario of recent introduction. Gene exchanges between neighbouring cork oak stands and with holm oak have created specific and exceptional genetic combinations. They also constitute a wide range of potential genetic resources for research on adaptation to new environmental conditions. Conservation guidelines that take into account these findings are provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号