首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
PELDOR (pulsed electron-electron double resonance) spectroscopy was applied to determine spin-spin distances in spin-labeled DNA duplexes (13-mer and 17-mer) containing the damaged sites 8-oxoguanine or uncleavable abasic site analogue tetrahydrofuran. The lesions were located in one strand of the DNA, and two nitroxyl spin labels were attached at the 5'- and 3'-ends of the complementary strand. PELDOR data allow us to obtain distances between the two spin labels in DNAs, which turned out to be around 5 nm for the 13-mer DNA and around 6 nm for 17-mer DNA. Results of PELDOR measurements were supported by molecular dynamics calculations. Study of the interaction of DNA fragments with DNA repair enzyme 8-oxoguanine-DNA glycosylase from E. coli (Fpg protein) showed that this interaction leads to a noticeable decrease of the distance between spin labels, which indicates the enzyme-induced bending of the DNA duplex. This bending may be important for the mechanisms of recognition of damaged sites by DNA repair enzymes.  相似文献   

2.
Formamidopyrimidine-DNA glycosylase (Fpg protein) of Escherichia coli is a DNA repair enzyme that excises oxidized purine bases, most notably the mutagenic 7-hydro-8-oxoguanine, from damaged DNA. In order to identify specific contacts between nucleobases of DNA and amino acids from the E. coli Fpg protein, photochemical cross-linking was employed using new reactive DNA duplexes containing 5-[4-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenyl]-2'-deoxyuridine dU* residues near the 7-hydro-8-oxoguanosine (oxoG) lesion. The Fpg protein was found to bind specifically and tightly to the modified DNA duplexes and to incise them. The nicking efficiency of the DNA duplex containing a dU* residue 5' to the oxoG was higher as compared to oxidized native DNA. The conditions for the photochemical cross-linking of the reactive DNA duplexes and the Fpg protein have been optimized to yield as high as 10% of the cross-linked product. Our results suggest that the Fpg protein forms contacts with two nucleosides, one 5' adjacent to oxoG and the other 5' adjacent to the cytidine residue pairing with oxoG in the other strand. The approaches developed may be applicable to pro- and eukaryotic homologues of the E. coli Fpg protein as well as to other repair enzymes.  相似文献   

3.
8-Oxoguanine-DNA glycosylases play a key role in the repair of oxidatively damaged DNA. The Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOGG1) are DNA base excision repair enzymes that catalyze the removal of 7,8-dihydro-8-oxoguanine (oxoG) residue, and cleave DNA strand. Specific contacts between DNA phosphate groups and amino acids from active centers of these enzymes play a significant role in DNA-protein interactions. In order to design new non-hydrolyzable substrate analogs of Fpg and hOGG1 for structural studies modified DNA duplexes containing pyrophosphate or OEt-substituted pyrophosphate internucleotide (SPI) groups near the damage were tested. We showed that enzymes recognize and specifically bind to DNA duplexes obtained. The mechanism of incision of oxoG by the Fpg and hOGG1 was determined. We revealed that both enzymes were not able to excise the oxoG residue from DNA containing modified phosphates immediately 3' to the oxoG. In contrast, Fpg and hOGG1 effectively incise DNA duplex carrying analogous phosphate modifications 5' to the oxoG. Non-cleavable oxoG-containing DNA duplexes bearing pyrophosphate or substituted pyrophosphate groups immediately 3' to the oxoG are specific inhibitors for both 8-oxoguanine-DNA glycosylases and can be used for structural studies of complexes comprising a oxoG-containing DNA bound to catalytically active wild-type enzymes as well as their pro- and eucaryotic homologs.  相似文献   

4.
Ionizing radiation and radiomimetic anticancer agents induce clustered DNA damages that are thought to lead to deleterious biological consequences, due to the challenge that clustered damage may present to the repair machinery of the cell. Specific oligonucleotides, containing either dihydrothymine (DHT) or 7,8-dihydro-8-oxoguanine (8-oxoG) opposite to specific lesions at defined positions on the complementary strand, have been used to determine the kinetic constants, K(M), k(cat), and specificity constants, for excision of DHT and 8-oxoG by the Escherichia coli base excision repair proteins, endonuclease III (Nth) and formamidopyrimidine glycosylase (Fpg), respectively. For excision of DHT opposite to 8-oxoadenine by Nth or Fpg proteins, or 8-oxoG opposite to 8-oxoG by Fpg, the major change in the specificity constant occurs when the second lesion on the complementary strand is one base to the site opposite to DHT or 8-oxoG. The specificity constants for excision of DHT or 8-oxoG by both proteins are reduced by up to 2 orders of magnitude when an abasic site or a strand break is opposite on the complementary strand. Whereas the values of K(M) are only slightly affected by the presence of a second lesion, the major change is seen as a reduction in the values of k(cat). The binding of Fpg protein to oligonucleotides containing 8-oxoG is inhibited, particularly when a single strand break is near to 8-oxoG on the complementary strand. It is inferred that not only the binding affinity of Fpg protein to the base lesion but also the rate of excision of the damaged base is reduced by the presence of another lesion, particularly a single strand break or an AP site on the complementary strand.  相似文献   

5.
The combined action of reactive metabolites of benzo[a]pyrene (B[a]P) and oxidative stress can lead to cluster-type DNA damage that includes both a bulky lesion and an apurinic/apyrimidinic (AP) site, which are repaired by the nucleotide and base excision repair mechanisms — NER and BER, respectively. Interaction of NER protein XPC—RAD23B providing primary damage recognition with DNA duplexes containing a B[a]P-derived residue linked to the exocyclic amino group of a guanine (BPDE-N2-dG) in the central position of one strand and AP site in different positions of the other strand was analyzed. It was found that XPC—RAD23B crosslinks to DNA containing (+)-trans-BPDE-N2-dG more effectively than to DNA containing cis-isomer, independently of the AP site position in the opposite strand; protein affinity to DNA containing one of the BPDE-N2-dG isomers depends on the AP site position in the opposite strand. The influence of XPC—RAD23B on hydrolysis of an AP site clustered with BPDE-N2-dG catalyzed by the apurinic/apyrimidinic endonuclease 1 (APE1) was examined. XPC—RAD23B was shown to stimulate the endonuclease and inhibit the 3′–5′ exonuclease activity of APE1. These data demonstrate the possibility of cooperation of two proteins belonging to different DNA repair systems in the repair of cluster-type DNA damage.  相似文献   

6.
DNA glycosylases play the opening act in a highly conserved process for excision of damaged bases from DNA called the base excision repair pathway. DNA glycosylases attend to a wide variety of lesions arising from both endogenous and exogenous factors. The types of damage include alkylation, oxidation, and hydrolysis. A major DNA oxidation product is 8-oxoguanine (8-oxoG), a base with a high mutagenic potential. In bacteria, this lesion is repaired by formamidopyrimidine-DNA glycosylase (Fpg), while in the case of humans this function belongs to 8-oxoG-DNA glycosylase (OGG1). We have attempted a comprehensive characterization of 8-oxoG recognition by DNA glycosylases. First, we have obtained thermodynamic parameters for melting of DNA duplexes containing 8-oxoG in all possible nucleotide contexts. The energy of stacking interactions of 8-oxoG was in strict dependence on 8-oxoG nucleotide environment, which may affect the recognition of damage and the efficiency of eversion of 8-oxoG from DNA helix by glycosylases. Next, we established how the flexibility of DNA context affects damage recognition by these enzymes (Kirpota et al., 2011). Then, we have found that DNA containing 8-oxoG next to a single-strand break provides a good substrate for Fpg, as soon as all structural phosphate residues are maintained. Using site-directed mutagenesis, we have addressed the functions of many previously unstudied amino acid residuess that were predicted to be important for Fpg activity by molecular dynamics simulation and phylogenetic analysis. Of note, many substitutions abolished the excision of 8-oxoG, but did not affect the cleavage efficiency of abasic substrates. Finally, we investigated the contribution of separated structural domains of Fpg to specific enzyme-substrate interaction. Surprisingly, despite the absence of the catalytic domain, C-terminal domain of Fpg possessed a low- residual ability to recognize and cleave abasic substrates. Our study sheds light on mechanism details of Fpg and OGG1 activity, with the ultimate goal of understanding how binding energy can be spent by these enzymes for catalysis.  相似文献   

7.
The formamidopyrimidine-DNA glycosylase (Fpg, MutM) is a bifunctional base excision repair enzyme (DNA glycosylase/AP lyase) that removes a wide range of oxidized purines, such as 8-oxoguanine and imidazole ring-opened purines, from oxidatively damaged DNA. The structure of a non-covalent complex between the Lactoccocus lactis Fpg and a 1,3-propanediol (Pr) abasic site analogue-containing DNA has been solved. Through an asymmetric interaction along the damaged strand and the intercalation of the triad (M75/R109/F111), Fpg pushes out the Pr site from the DNA double helix, recognizing the cytosine opposite the lesion and inducing a 60 degrees bend of the DNA. The specific recognition of this cytosine provides some structural basis for understanding the divergence between Fpg and its structural homologue endo nuclease VIII towards their substrate specificities. In addition, the modelling of the 8-oxoguanine residue allows us to define an enzyme pocket that may accommodate the extrahelical oxidized base.  相似文献   

8.
8-Oxoguanine-DNA glycosylases play a key role in repairing oxidatively damaged DNA. Excision repair enzymes Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg protein) and human 8-oxoguanine-DNA glycosylase (hOGG1) catalyze excision of 7,8-dihydro-8-oxoguanine (oxoG) from DNA and subsequent cleavage of the sugar–phosphate backbone. Contacts between DNA phosphate groups and amino acid residues of the active centers of the enzymes are of importance for specific binding and catalysis. To construct noncleavable analogs of Fpg protein and hOGG1 substrates, modifications of phosphate groups bound to a damaged nucleotide were tested for their effect on the substrate properties of modified DNA duplexes. New oxoG-containing analogs of Fpg protein and hOGG1 substrates were synthetic DNA duplexes that contained a pyrophosphate or a substituted pyrophosphate group bound with the 5- or 3-OH of 8-oxoguanosine. The duplexes proved to be recognized and specifically bound by Fpg protein and hOGG1. Analysis of the mechanism of their interaction with Fpg protein and hOGG1 showed that modification of the internucleotide phosphate bound with 3-OH of 8-oxoguanosine prevents oxoG excision from DNA. Yet both enzymes efficiently cleaved the DNA duplexes when the modified phosphate was bound with the 5-OH of 8-oxoguanosine. DNA duplexes with a pyrophosphate or substituted pyrophosphate group at 3-OH of 8-oxoguanosine are noncleavable analogs of 8-oxoguanine-DNA glycosylase substrates and can be used to study the structures of catalytically active forms of Fpg protein and hOGG1 and their prokaryotic or eukaryotic homologs in complex with oxoG-containing DNA.  相似文献   

9.
When ionizing radiation traverses a DNA molecule, a combination of two or more base damages, sites of base loss or single strand breaks can be produced within 1-4 nm on opposite DNA strands, forming a multiply damaged site (MDS). In this study, we reconstituted the base excision repair system to examine the processing of a simple MDS containing the base damage, 8-oxoguanine (8-oxoG), or an abasic (AP) site, situated in close opposition to a single strand break, and asked if a double strand break could be formed. The single strand break, a nucleotide gap containing 3' and 5' phosphate groups, was positioned one, three or six nucleotides 5' or 3' to the damage in the complementary DNA strand. Escherichia coli formamidopyrimidine DNA glycosylase (Fpg), which recognizes both 8-oxoG and AP sites, was able to cleave the 8-oxoG or AP site-containing strand when the strand break was positioned three or six nucleotides away 5' or 3' on the opposing strand. When the strand break was positioned one nucleotide away, the target lesion was a poor substrate for Fpg. Binding studies using a reduced AP (rAP) site in the strand opposite the gap, indicated that Fpg binding was greatly inhibited when the gap was one nucleotide 5' or 3' to the rAP site.To complete the repair of the MDS containing 8-oxoG opposite a single strand break, endonuclease IV DNA polymerase I and Escherichia coli DNA ligase are required to remove 3' phosphate termini, insert the "missing" nucleotide, and ligate the nicks, respectively. In the absence of Fpg, repair of the single strand break by endonuclease IV, DNA polymerase I and DNA ligase occurred and was not greatly affected by the 8-oxoG on the opposite strand. However, the DNA strand containing the single strand break was not ligated if Fpg was present and removed the opposing 8-oxoG. Examination of the complete repair reaction products from this reaction following electrophoresis through a non-denaturing gel, indicated that a double strand break was produced. Repair of the single strand break did occur in the presence of Fpg if the gap was one nucleotide away. Hence, in the in vitro reconstituted system, repair of the MDS did not occur prior to cleavage of the 8-oxoG by Fpg if the opposing single strand break was situated three or six nucleotides away, converting these otherwise repairable lesions into a potentially lethal double strand break.  相似文献   

10.
Ionizing radiation induces clustered DNA damage sites, whereby two or more individual DNA lesions are formed within one or two helical turns of DNA by a single radiation track. A subset of DNA clustered damage sites exist in which the lesions are located in tandem on the same DNA strand. Recent studies have established that two closely opposed lesions impair the repair machinery of the cell, but few studies have investigated the processing of tandem lesions. In this study, synthetic double-stranded oligonucleotides were synthesized to contain 8-oxoA and an AP site in tandem, separated by up to four bases in either a 5' or 3' orientation. The influence 8-oxoA has on the incision of the AP site by the E. coli glycosylases Fpg and Nth protein and the human AP endonuclease HAP1 was assessed. 8-OxoA has little or no effect on the efficiency of incision of the AP site by Nth protein; however, the efficiency of incision of the AP site by Fpg protein is reduced in the presence of 8-oxoA even up to a four-base separation in both the 5' and 3' orientations. 8-OxoA influences the efficiency of HAP1 incision of the AP site only when it is 3' to the AP site and separated by up to two bases. This study demonstrates that the initial stages of base excision repair can be impaired by the presence of a second base lesion in proximity to an AP site on the same DNA strand. This impairment could have biological consequences, such as mutation induction, if the AP site is present at replication.  相似文献   

11.
The interaction of nucleotide excision repair factors--xeroderma pigmentosum complementation group C protein in complex with human homolog of yeast Rad23 protein (XPC-HR23B), replication protein A (RPA), and xeroderma pigmentosum complementation group A protein (XPA)--with 48-mer DNA duplexes imitating damaged DNA structures was investigated. All studied proteins demonstrated low specificity in binding to damaged DNA compared with undamaged DNA duplexes. RPA stimulates formation of XPC-HR23B complex with DNA, and when XPA and XPC-HR23B are simultaneously present in the reaction mixture a synergistic effect in binding of these proteins to DNA is observed. RPA crosslinks to DNA bearing photoreactive 5I-dUMP residue on one strand and fluorescein-substituted dUMP analog as a lesion in the opposite strand of DNA duplex and also stimulates cross-linking with XPC-HR23B. Therefore, RPA might be one of the main regulation factors at various stages of nucleotide excision repair. The data are in agreement with the cooperative binding model of nucleotide excision repair factors participating in pre-incision complex formation with DNA duplexes bearing damages.  相似文献   

12.
The formation of clustered DNA damage sites is a unique feature of ionizing radiation. Recent studies have shown that the repair of lesions within clusters may be compromised, but little is understood about the mutagenic consequences of such damage sites. Using a plasmid-based method, damaged DNA containing uracil positioned at 1–5 bp separations from 8-oxo-7,8-dihydroguanine on the complementary strand was transfected into wild-type Escherichia coli or into strains lacking the DNA glycosylases Fpg and MutY. Mutation frequencies were found to be significantly higher for clustered damage sites than for single lesions. The loss of MutY gave a large relative increase in mutation frequency and a strain lacking both Fpg and MutY showed even higher mutation frequencies, up to nearly 40% of rescued plasmid. In these strains, the mutation frequency decreases with increasing spacing of the uracil from the 8-oxo-7,8-dihydroguanine site. Sequencing of plasmid DNA carrying clustered damage, following rescue from bacteria, showed that almost all of the mutations are GC→TA transversions. The data suggest that at clustered damage sites, depending on lesion spacing, the action of Fpg is compromised and post-replication processing of lesions by MutY is the most important mechanism for protection against mutagenesis.  相似文献   

13.
Amara P  Serre L 《DNA Repair》2006,5(8):947-958
The formamidopyrimidine-DNA glycosylase (Fpg) recognizes and eliminates efficiently 8-oxoguanine, an abundant mutagenic DNA lesion. The X-ray structure of the inactive E3Q mutant of Fpg from Bacillus stearothermophilus, complexed to an 8-oxoG-containing DNA, revealed a small peptide (called the alphaF-beta10 loop) involved in the recognition of the lesion via an interaction with the protonated N(7) atom. This region, which is disordered in the X-ray models where an abasic site-containing DNA is bound to Fpg, interacts tightly with the 8-oxoG which appears to be confined within the enzyme. Molecular dynamics simulations were performed on this mutant and the wild type derived model at 298 and 323K, to determine if this tight assembly around the 8-oxoG was due to the mutation and/or to an inappropriate experimental temperature. Differences in the relative orientation of the protein structural domains and in the architecture around the damaged base were observed, depending on the presence of the mutation and/or on the temperature. This data allowed us to show that the recognition of the damaged base by the wild type enzyme close to its optimal temperature might require significant movements of the enzyme, leading to conformational changes that could not be detected within the only X-ray structure. In addition, a dynamics performed with a normal guanine suggests that the alphaF-beta10 loop dynamics could be needed by the active Fpgs to distinguish a damaged guanine from a normal nucleotide.  相似文献   

14.
DNA damage drives genetic mutations that underlie the development of cancer in humans. Multiple pathways have been described in mammalian cells which can repair this damage. However, most work to date has focused upon single lesions in DNA. We present here a combinatorial system which allows assembly of duplexes containing single or multiple types of damage by ligating together six oligonucleotides containing damaged or modified bases. The combinatorial system has dual fluorescent labels allowing examination of both strands simultaneously, in order to study interactions or competition between different DNA repair pathways. Using this system, we demonstrate how repair of oxidative damage in one DNA strand can convert a mispaired T:G deamination intermediate into a T:A mutation. We also demonstrate that slow repair of a T:G mispair, relative to a U:G mispair, by the human methyl-binding domain 4 DNA glycosylase provides a competitive advantage to competing repair pathways, and could explain why CpG dinucleotides are hotspots for C to T mutations in human tumors. Data is also presented that suggests repair of closely spaced lesions in opposing strands can be repaired by a combination of short and long-patch base excision repair and simultaneous repair of multiply damage sites can potentially lead to lethal double strand breaks.  相似文献   

15.
Model DNA molecules that contain bulky lesions in both strands have been created, and their properties as substrates of the nucleotide excision repair (NER) system have been analyzed. The modified nucleoside, 5-[3-(4-azido-2,3,5,6-tetrafluorobenzamido)-1-propoxypropyl]-2′-deoxycytidine (dCFAB), or the nonnucleoside fragment, N-[6-(9-anthracenylcarbamoyl)hexanoyl]-3-amino-1,2-propanediol (nAnt), have been inserted as damage in certain positions of the first DNA strand (“0”). The position of N-[6-5(6)- fluoresceinylcarbamoyl]hexanoyl]-3-amino-1,2-propanediol (nFlu) has been varied within the second DNA strand. This residue has been located opposite the removable damaging fragment of the first strand at positions–20,–10,–4, 0, +3, and +8 relative to the first lesion). It has been demonstrated that the presence of nFlu at the–4, 0, or +3 position of the second strand significantly reduces the thermostability of DNA duplexes, especially in the case of nAnt-DNA and completely excludes the possibility of NER-catalyzed excision from dCFAB- and nAnt-containing 137-meric DNA with the second lesion at these positions. The introduction of nFlu at positions–20,–10, or +8 differently affects the excision efficiency of dCFAB- and nAntcontaining fragments from the first strand. The excision efficiency of dCFAB-containing fragments from extended double-damaged DNA is as high as from DNA that contains a single dCFAB damage, while the excision of nAnt-containing fragments occurs with 80–90% lower efficiency from double-damaged DNA occurs from DNA that contains the single nAnt insert. The nFlu insert differently affects the interaction of the sensory XPC-HR23B dimer with dCFAB- and nAnt-containing DNAs, although in all cases, this interaction occurs with increased efficiency compared to that with single-damaged DNAs. No direct correlation between the thermostability of the DNA duplex and XPC-DNA affinity on the one hand, and the excision efficiency of lesions on the other hand has been shown. The absence of the correlation may be caused by both functional features of variable multiprotein complexes involved in the recognition and verification of damage during NER and the sensitivity of the complexes to the structure of the damage and damage-surrounding DNA. The results are important for understanding the NER mechanism of elimination of bulky damage located in both DNA strands.  相似文献   

16.
Ribonuclease HI (RNase H) is a member of the nucleotidyl-transferase superfamily and endo-nucleolytically cleaves the RNA portion in RNA/DNA hybrids and removes RNA primers from Okazaki fragments. The enzyme also binds RNA and DNA duplexes but is unable to cleave either. Three-dimensional structures of bacterial and human RNase H catalytic domains bound to RNA/DNA hybrids have revealed the basis for substrate recognition and the mechanism of cleavage. In order to visualize the enzyme’s interactions with duplex DNA and to establish the structural differences that afford tighter binding to RNA/DNA hybrids relative to dsDNA, we have determined the crystal structure of Bacillus halodurans RNase H in complex with the B-form DNA duplex [d(CGCGAATTCGCG)]2. The structure demonstrates that the inability of the enzyme to cleave DNA is due to the deviating curvature of the DNA strand relative to the substrate RNA strand and the absence of Mg2+ at the active site. A subset of amino acids engaged in contacts to RNA 2′-hydroxyl groups in the substrate complex instead bind to bridging or non-bridging phosphodiester oxygens in the complex with dsDNA. Qualitative comparison of the enzyme’s interactions with the substrate and inhibitor duplexes is consistent with the reduced binding affinity for the latter and sheds light on determinants of RNase H binding and cleavage specificity.  相似文献   

17.
Formamidopyrimidine-DNA glycosylase (Fpg; MutM) is a DNA repair enzyme widely distributed in bacteria. Fpg recognizes and excises oxidatively modified purines, 4,6-diamino-5-formamidopyrimidine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 8-oxoguanine (8-oxoG), with similar excision kinetics. It exhibits some lesser activity toward 8-oxoadenine. Fpg enzymes are also present in some plant and fungal species. The eukaryotic Fpg homologs exhibit little or no activity on DNA containing 8-oxoG, but they recognize and process its oxidation products, guanidinohydantoin (Gh) and spiroiminohydantoin (Sp). To date, several structures of bacterial Fpg enzymes unliganded or in complex with DNA containing a damaged base have been published but there is no structure of a eukaryotic Fpg. Here we describe the first crystal structure of a plant Fpg, Arabidopsis thaliana (AthFpg), unliganded and bound to DNA containing an abasic site analog, tetrahydrofuran (THF). Although AthFpg shares a common architecture with other Fpg glycosylases, it harbors a zincless finger, previously described in a subset of Nei enzymes, such as human NEIL1 and Mimivirus Nei1. Importantly the "αF-β9/10 loop" capping 8-oxoG in the active site of bacterial Fpg is very short in AthFpg. Deletion of a segment encompassing residues 213-229 in Escherichia coli Fpg (EcoFpg) and corresponding to the "αF-β9/10 loop" does not affect the recognition and removal of oxidatively damaged DNA base lesions, with the exception of 8-oxoG. Although the exact role of the loop remains to be further explored, it is now clear that this protein segment is specific to the processing of 8-oxoG.  相似文献   

18.
As part of an overall effort to map the energetic landscape of the base excision repair pathway, we report the first thermodynamic characterization of repair enzyme binding to lesion-containing duplexes. Isothermal titration calorimetry (ITC) in conjunction with spectroscopic measurements and protease protection assays have been employed to characterize the binding of Escherichia coli formamidopyrimidine-glycosylase (Fpg), a bifunctional repair enzyme, to a series of 13-mer DNA duplexes. To resolve energetically the binding and the catalytic events, several of these duplexes are constructed with non-hydrolyzable lesion analogs that mimic the natural 8-oxo-dG substrate and the abasic-like intermediates. Specifically, one of the duplexes contains a central, non-hydrolyzable, tetrahydrofuran (THF) abasic site analog, while another duplex contains a central, carbocyclic substrate analog (carba-8-oxo-dG). ITC-binding studies conducted between 5.0 °C and 15.0 °C reveal that Fpg association with the THF-containing duplex is characterized by binding free energies that are relatively invariant to temperature (ΔG∼−9.5 kcal mol−1), in contrast to both the reaction enthalpy and entropy that are strongly temperature-dependent. Complex formation between Fpg and the THF-containing duplex at 15 °C exhibits an unfavorable association enthalpy that is compensated by a favorable association entropy (TΔS=+17.0 kcal mol−1). The entropic nature of the binding interaction, coupled with the large negative heat capacity is consistent with Fpg complexation to the THF-containing duplex involving significant burial of non-polar surface areas. By contrast, under the high ionic strength buffer conditions employed herein (200 mM NaCl), no appreciable Fpg affinity for the carba-8-oxo-dG substrate analog is detected. Our results suggest that initial Fpg recognition of a damaged DNA site is predominantly electrostatic in nature, and does not involve large contact interfaces. Subsequent base excision presumably facilitates accommodation of the resulting lesion site into the binding pocket, as the enzyme interaction with the THF-containing duplex is characterized by high affinity and a large negative heat capacity change. Our data are consistent with a pathway in which Fpg glycosylase activity renders the base excision product a preferred ligand relative to the natural substrate, thereby ensuring the fidelity of removing highly reactive and potentially mutagenic abasic-like intermediates through catalytic elimination reactions.  相似文献   

19.
Specific contacts between DNA phosphate groups and positively charged nucleophilic amino acids from the Escherichia coli Fpg protein play a significant role in DNA-Fpg protein interaction. In order to identify these phosphate groups the chemical crosslinking procedure was carried out. The probing of the Fpg protein active center was performed using a series of reactive DNA duplexes containing both a single 7,8-dihydro-8-oxoguanosine (oxoG) residue and O-alkyl-substituted pyrophosphate internucleotide groups at the same time. Reactive internucleotide groups were introduced in dsDNA immediately 5' or 3' to the oxidative lesion and one or two nucleotides 5' or 3' away from it. We showed that the Fpg protein specifically binds to the modified DNA duplexes. The binding efficiency varied with the position of the reactive group and was higher for the duplexes containing substituted pyrophosphate groups at the ends of pentanucleotide with the oxoG in the center. The nicking efficiency of the DNA duplexes containing the reactive groups one or two nucleotides 5' away from the lesion was higher as compared to non-modified DNA duplex bearing only the oxidative damage. We found two novel non-hydrolizable substrate analogs for the Fpg protein containing pyrophosphate and substituted pyrophosphate groups 3' adjacent to the oxoG. Using crosslinking, we revealed the phosphate groups, 3' and 5' adjacent to the lesion, which have specific contacts with nucleophilic amino acids from the E. coli Fpg protein active center. The crosslinking efficiency achieved 30%. The approaches developed can be employed in the studies of pro- and eucaryotic homologs of the E. coli Fpg protein as well as other repair enzymes.  相似文献   

20.
Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOGG1) are base excision repair enzymes involved in the 8-oxoguanine (oxoG) repair pathway. Specific contacts between these enzymes and DNA phosphate groups play a significant role in DNA-protein interactions. To reveal the phosphates crucial for lesion excision by Fpg and hOGG1, modified DNA duplexes containing pyrophosphate and OEt-substituted pyrophosphate internucleotide (SPI) groups near the oxoG were tested as substrate analogues for both proteins. We have shown that Fpg and hOGG1 recognize and specifically bind the DNA duplexes tested. We have found that both enzymes were not able to excise the oxoG residue from DNA containing modified phosphates immediately 3' to the 8-oxoguanosine (oxodG) and one nucleotide 3' away from it. In contrast, they efficiently incised DNA duplexes bearing the same phosphate modifications 5' to the oxodG and two nucleotides 3' away from the lesion. The effect of these phosphate modifications on the substrate properties of oxoG-containing DNA duplexes is discussed. Non-cleavable oxoG-containing DNA duplexes bearing pyrophosphate or SPI groups immediately 3' to the oxodG or one nucleotide 3' away from it are specific inhibitors for both 8-oxoguanine-DNA glycosylases and can be used for structural studies of complexes comprising a wild-type enzymes bound to oxoG-containing DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号