首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disorder resulting from the neoplastic transformation of a hematopoietic stem cell. The majority of cases of CML are associated with the (9;22) chromosome translocation that generates the bcr-abl chimeric gene. Alpha interferon (IFN-alpha) treatment induces hematological remission and prolongs life in 75% of CML patients in the chronic phase. It has been shown that mice deficient in interferon consensus sequence binding protein (ICSBP), a member of the interferon regulatory factor family, manifest a CML-like syndrome. We have shown that expression of Bcr-Abl in bone marrow (BM) cells from 5-fluorouracil (5-FU)-treated mice by retroviral transduction efficiently induces a myeloproliferative disease in mice resembling human CML. To directly test whether icsbp can function as a tumor suppressor gene, we examined the effect of ICSBP on Bcr-Abl-induced CML-like disease using this murine model for CML. We found that expression of the ICSBP protein was significantly decreased in Bcr-Abl-induced CML-like disease. Forced coexpression of ICSBP inhibited the Bcr-Abl-induced colony formation of BM cells from 5-FU-treated mice in vitro and Bcr-Abl-induced CML-like disease in vivo. Interestingly, coexpression of ICSBP and Bcr-Abl induced a transient B-lymphoproliferative disorder in the murine model of Bcr-Abl-induced CML-like disease. Overexpression of ICSBP consistently promotes rather than inhibits Bcr-Abl-induced B lymphoproliferation in a murine model where BM cells from non-5-FU-treated donors were used, indicating that ICSBP has a specific antitumor activity toward myeloid neoplasms. We also found that overexpression of ICSBP negatively regulated normal hematopoiesis. These data provide direct evidence that ICSBP can act as a tumor suppressor that regulates normal and neoplastic proliferation of hematopoietic cells.  相似文献   

3.
CDKN3 (cyclin-dependent kinase inhibitor 3), a dual specificity protein phosphatase, dephosphorylates cyclin-dependent kinases (CDKs) and thus functions as a key negative regulator of cell cycle progression. Deregulation or mutations of CDNK3 have been implicated in various cancers. However, the role of CDKN3 in Bcr-Abl-mediated chronic myelogenous leukemia (CML) remains unknown. Here we found that CDKN3 acts as a tumor suppressor in Bcr-Abl-mediated leukemogenesis. Overexpression of CDKN3 sensitized the K562 leukemic cells to imanitib-induced apoptosis and dramatically inhibited K562 xenografted tumor growth in nude mouse model. Ectopic expression of CDKN3 significantly reduced the efficiency of Bcr-Abl-mediated transformation of FDCP1 cells to growth factor independence. In contrast, depletion of CDKN3 expression conferred resistance to imatinib-induced apoptosis in the leukemic cells and accelerated the growth of xenograph leukemia in mice. In addition, we found that CDKN3 mutant (CDKN3-C140S) devoid of the phosphatase activity failed to affect the K562 leukemic cell survival and xenografted tumor growth, suggesting that the phosphatase of CDKN3 was required for its tumor suppressor function. Furthermore, we observed that overexpression of CDKN3 reduced the leukemic cell survival by dephosphorylating CDK2, thereby inhibiting CDK2-dependent XIAP expression. Moreover, overexpression of CDKN3 delayed G1/S transition in K562 leukemic cells. Our results highlight the importance of CDKN3 in Bcr-Abl-mediated leukemogenesis, and provide new insights into diagnostics and therapeutics of the leukemia.  相似文献   

4.
The H19 gene is an imprinted gene expressed from the maternal allele. It is known to function as an RNA molecule. We previously reported that in breast adenocarcinoma, H19 is often overexpressed in stromal cells and preferentially located at the epithelium/stroma boundary, suggesting that epithelial/mesenchymal interactions can control H19 RNA expression. In some cases of breast adenocarcinoma with poor prognosis, H19 is overexpressed in epithelial cells. Therefore we examined whether mesenchymal factors can induce H19 expression in epithelial cells. Using quantitative RT-PCR and in situ hybridization, we found that when mammary epithelial cells were cultured in collagen gels, H19 expression was strongly up-regulated compared to when cells were cultured on plastic. Collagen gels allow three-dimensional growth of epithelial cells and morphogenetic responses to soluble factors. A conditioned medium from MRC-5 fibroblasts caused branching morphogenesis of HBL-100 cells and invasive growth of MDA-MB-231 cells, whereas MCF-7 cells were unresponsive. Induction of H19 expression correlated with morphological changes in HBL-100 and in MDA-MB-231 cells, whereas H19 expression was not induced in MCF-7 cells. Using a blocking antibody, HGF/SF was identified as the fibroblast-derived growth factor capable of inducing H19 expression and cell morphogenesis. We further demonstrated that H19 promoter activity was stimulated by various growth factors using transient transfection in MDCK epithelial cells. HGF/SF was more efficient than EGF or FGF-2 in transactivating the H19 promoter, whereas IGF-2, TGFbeta-1, and TNF-alpha were ineffective. This activation by HGF/SF was prevented by pharmacological inhibition of MAP kinase or of phospholipase C. We conclude that H19 is a target gene for HGF/SF, a known regulator of epithelial/mesenchymal interactions, and suggest that the up-regulation of H19 may be implicated in morphogenesis and/or migration of epithelial cells.  相似文献   

5.
外泌体是由细胞分泌的直径为30~150 nm的小囊泡,含有丰富的mRNA、microRNA和长链非编码RNA(lncRNA)。目前,大多数外泌体研究都集中在mRNA和microRNA,而对lncRNA的生物学功能并不十分清楚。研究表明,肿瘤细胞外泌体 lncRNA H19在肿瘤细胞的增殖、迁移和侵袭中发挥了重要作用。本研究将筛选到的lncRNA H19高表达的肝癌细胞HCCLM3,分别收集其高表达lncRNA H19的外泌体和其下调lncRNA H19表达后的外泌体。然后,将收集到的外泌体分别添加到lncRNA H19低表达的肝癌细胞Hep3B和HepG2孵育液中。孵育24 h后,检测其对肿瘤细胞的增殖、迁移和侵袭能力的影响。结果显示,肝癌细胞HCCLM3可分泌大量的外泌体,且能被其他肿瘤细胞大量摄取;与下调lncRNA H19表达的外泌体相比,lncRNA H19高表达的外泌体能显著增强Hep3B和HepG2细胞的增殖、迁移和侵袭能力。而这一作用可通过激活PI3K/AKT/mTOR通路实现。上述结果表明,lncRNA H19高表达的肝癌细胞以外泌体方式,增强邻近肝癌细胞的增殖、迁移和侵袭能力,促进肝癌的发生与发展。  相似文献   

6.
7.
Development of the acquired resistance is one major obstacle during chemotherapy for cancer patients. Exosomes mediate intercellular communication and cause environmental changes in tumor progression by transmitting active molecules. In this study, the role of long noncoding RNA H19 within exosomes is elucidated in terms of regulating doxorubicin (DOX) resistance of breast cancer. As a result, increased H19 expression was observed in DOX-resistant breast cancer cells in comparison with the corresponding parental cells. Suppression of H19 significantly lowered DOX resistance by decreasing cell viability, lowering colony-forming ability, and inducing apoptosis. Moreover, extracellular H19 could be moved to sensitive cells via being incorporated into exosomes. Treating sensitive cells with exosomes from resistant cells increased the chemoresistance of DOX, while downregulation of H19 in sensitive cells abated this effect. Taken together, H19 could be delivered by exosomes to sensitive cells, leading to the dissemination of DOX resistance. Our finding highlights the potential of exosomal H19 as a molecular target to reduce DOX resistance.  相似文献   

8.
9.
Bcr-Abl is the oncogenic protein-tyrosine kinase responsible for chronic myelogenous leukemia. Recently, we observed that inhibition of myeloid Src family kinase activity (e.g. Hck, Lyn, and Fyn) induces growth arrest and apoptosis in Bcr-Abl-transformed cells, suggesting that cell transformation by Bcr-Abl involves Src family kinases (Wilson, M. B., Schreiner, S. J., Choi, H. J., Kamens, J., and Smithgall, T. E. (2002) Oncogene 21, 8075-8088). Here, we report the unexpected observation that Hck, Lyn, and Fyn strongly phosphorylate the SH3-SH2 region of Bcr-Abl. Seven phosphorylation sites were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: Tyr89 and Tyr134 in the Abl-derived SH3 domain; Tyr147 in the SH3-SH2 connector; and Tyr158, Tyr191, Tyr204, and Tyr234 in the SH2 domain. SH3 domain Tyr89, the most prominent phosphorylation site in vitro, was strongly phosphorylated in chronic myelogenous leukemia cells in a Src family kinase-dependent manner. Substitution of the SH3-SH2 tyrosine phosphorylation sites with phenylalanine substantially reduced Bcr-Abl-mediated transformation of TF-1 myeloid cells to cytokine independence. The positions of these tyrosines in the crystal structure of the c-Abl core and the transformation defect of the corresponding Bcr-Abl mutants together suggest that phosphorylation of the SH3-SH2 region by Src family kinases impacts Bcr-Abl protein conformation and signaling.  相似文献   

10.
11.
Insulin-like growth factor-II (IGF-II) is a potent mitogen for cells in culture. The H19 gene is a developmentally regulated gene with putative tumor suppressor activity, and loss of H19 expression may be involved in tumorigenesis. The H19 gene is closely linked to the human IGF-II gene (IGF2) on chromosome 11p15.5 and these genes are reciprocally imprinted in most fetal tissues. H19 is expressed only from the maternal and IGF2 from the paternal chromosome. We have asked whether overexpression of proIGF-II alters H19 imprinting status and/or expression. Human embryonal kidney fibroblasts (293 cells) were stably transfected with a PCMV5 vector containing the full length human IGF-II cDNA or a control cDNA. Transfectant clones expressed large quantities of IGF-II mRNA and secrete 1-5 ug/ml and 150-230 ng/ml proIGF-II within 24 hours of serum-free culture (transfectant 293-9 and -11 respectively) (1). Cells were genotyped at the exon 5, RsaI restriction fragment length polymorphism (RFLP) and found to be informative (+/-). H19 expression was monoallelic (+) indicating preservation of H19 imprinting in all cell lines. Using quantitative RT-PCR with internal competitors for H19 and for IGF-II cDNA, overexpression of IGF2 in 293-11 and 293-9 cells was confirmed. In contrast, no significant difference with respect to H19 expression was detected between the overexpressing cells and control lines. In conclusion, (1) human embryonal fibroblasts express the H19 gene. (2) H19 imprinting is preserved in these cells. (3) proIGF-II overexpression does not alter H19 expression.  相似文献   

12.
Recent studies indicated that Gene Associated with Retinoid-IFN-Induced Mortality 19 (GRIM-19), a newly discovered mitochondria-related protein, can regulate mitochondrial function and modulate cell viability possibly via interacting with STAT3 signal. In the present study we sought to test: 1) whether GRIM-19 is involved in high glucose (HG) induced altered cell metabolism in both cancer and cardiac cells, 2) whether GRIM-19/STAT3 signaling pathway plays a role in HG induced biological effects, especially whether AMPK activity could be involved. Our data showed that HG enhanced cell proliferation of both HeLa and H9C2 cells, which was closely associated with down-regulated GRIM-19 expression and increased phosphorylated STAT3 level. We showed that GRIM-19 knock-down alone in normal glucose cultured cells can also result in an increase in phosphorylated STAT3 level and enhanced proliferation capability, whereas GRIM-19 over-expression can abolished HG induced STAT3 activation and enhanced cell proliferation. Importantly, both down-regulated or over-expression of GRIM-19 increased lactate production in both HeLa and H9C2 cells. The activated STAT3 was responsible for increased cell proliferation as either AG-490, an inhibitor of JAK2, or siRNA targeting STAT3 can attenuate cell proliferation increased by HG. In addition, HG increased lactate acid levels in HeLa cells, which was also observed when GRIM-19 was genetically manipulated. However, HG did not affect the lactate levels in H9C2 cells. Of note, over-expression of GRIM-19 and silencing of STAT3 both increased lactate production in H9C2 cells. As expected, HG resulted in significant decreases in phosphorylated AMPKα levels in H9C2 cells, but not in HeLa cells. Interestingy, activation of AMPKα by metformin was associated with a reversal of the suppressed GRIM-19 expression in H9C2 cells, the fold of changes in GRIM-19 expression by metformin were much less in HeLa cells. Metformin did not affect the phosphorylated STAT3 lelvels, however, decreased its levels in H9C2, especially in the setting of HG culture. Not like HG alone which resulted in no changes in lactate acid in H9C2 cells, metformin can increase lactate acid levels in H9C2 cells. Increased lactate induced by metformin was also observed in HeLa cells.  相似文献   

13.
目的:检测长链非编码RNA-H19在常见的妇科恶性肿瘤中的表达,并探讨其在肿瘤细胞糖代谢过程中发挥的可能作用。方法:以ARK2子宫内膜癌细胞株和OVCAR-3上皮性卵巢癌细胞株作为实验对象;利用脂质体转染技术,将特异性靶向小干扰RNA序列转染进细胞;利用TRIzol法提取样品的总RNA,并通过逆转录和实时定量PCR技术检测样品中目的基因的表达;利用荧光标记的非放射性2-NBDG评估肿瘤细胞的葡萄糖摄取能力;采用方差齐性检验和t检验进行统计学分析。结果:H19在ARK2和OVCAR-3细胞中的表达均较高。在ARK2和OVCAR-3细胞中,si H19抑制H19表达的效率分别为34.02%和30.30%。是否添加Insulin对于转染si Con的肿瘤细胞的糖摄取能力无明显影响,但是si H19转染后的ARK2和OVCAR-3细胞,在经Insulin处理后糖摄取能力均明显增强。结论:ARK2和OVCAR-3这两种细胞是研究H19在妇科恶性肿瘤中机制的较为理想的实验对象,ARK2和OVCAR-3细胞本身存在胰岛素抵抗,外源性抑制H19表达后,细胞的胰岛素抵抗有所改善,H19或成为我们改善妇科恶性肿瘤患者机体葡萄糖代谢的标记物。  相似文献   

14.
Recent research suggests that the first-line oral antidiabetes drug metformin may prevent gastric cancer progression and improve prognosis. Many studies have also shown that long noncoding RNAs (lncRNAs) play important roles in many biological processes. Therefore, we aimed to explore whether lncRNAs participate in the mechanisms by which metformin affects gastric cancer cells. In the current study, we found that metformin significantly inhibited the cellular functions of gastric cancer cells through Cell Counting Kit-8 and invasion assays. We found that lncRNA H19 was greatly downregulated in gastric cancer cells treated with metformin using lncRNA microassays. Based on bioinformatics analyses of the Oncomine and The Cancer Genome Atlas databases, H19 is shown to be overexpressed in gastric cancer tissues, with increased expression of H19 relating to advanced pathological tumor stage and pathological tumor node metastasis stage, indicating that H19 may be associated with the invasive ability of gastric cancer. We knocked down H19 in AGS and SGC7901 cell lines and found that knocked-down H19 could decrease gastric cancer cell invasion and that metformin could not further decrease invasion after the knock down. Moreover, H19 depletion increased AMPK activation and decreased MMP9 expression, and metformin could not further activate AMPK or decrease MMP9 in H19 knocked-down gastric cancer cells. In summary, metformin has a profound antitumor effect on gastric cancer cells, and H19 is a key component in the process of metformin suppressing gastric cancer cell invasion.  相似文献   

15.
The abnormal haemopoietic precursor cells of chronic myeloid leukaemia (CML) carry the cytogenetic abnormality [t(9;22)(q34;q11)]--a reciprocal translocation that results in the expression of a chimaeric protein derived from the fused BCR and ABL genes. This Bcr-Abl protein tyrosine kinase mediates an array of effects on signal transduction pathways affecting cell survival, proliferation, adhesion and genetic stability. The end-result of these abnormal signalling processes is a bi- or triphasic clinical disease. Initially, CML is characterised by the presence of an excess of myeloid progenitor cells and their mature progeny. This chronic phase of CML is followed, either directly or with an intervening 'accelerated phase', by a stage where primitive blast cells predominate (acute transformation). This review discusses the role of Bcr-Abl-mediated signalling events in cellular transformation, genetic instability and disease progression in CML, and describes current developments in CML treatment using a Bcr-Abl inhibitor.  相似文献   

16.
Allele-specific methylation of the endogenous H19 imprinting control region (ICR) is established in sperm. We previously showed that the paternal H19 ICR in yeast artificial chromosome (YAC) transgenic mice (TgM) was preferentially methylated in somatic cells, but not in germ cells, suggesting that differential methylation could be established after fertilization. In this report, we discovered small RNA molecules in growing oocytes, the nucleotide sequences of which mapped to the H19 ICR. To test if these small RNA sequences play a role in the establishment of differential methylation, we deleted the sequences from the H19 ICR DNA and generated YAC TgM. In somatic cells of these mice, methylation imprinting of the transgene was normally established. In addition, the mutant fragment was not methylated in sperm and eggs. These data demonstrate that sequences in the H19 ICR that correspond to the small RNA sequences are dispensable for methylation imprinting in YAC TgM.  相似文献   

17.
Choriocarcinoma (CC) is a trophoblast tumor prone to early distant organ metastases. At present, the main treatment for CC is chemotherapy, but chemotherapy resistance readily occurs and leads to treatment failure. H19 is a long noncoding RNA, and its abnormal expression has been found in various tumors, including CC. H19 is also considered to be related to the drug resistance mechanism of the same cancers. To investigate the role of H19 in drug-resistant CC cells, the following experiments were designed. We used human CC cell line JEG-3 to establish cell lines resistant to methotrexate and 5-fluorouracil (JEG-3/MTX and JEG-3/5-FU) and detected the expression of H19 in JEG-3, JEG-3/MTX, JEG-3/5-FU cells, JEG-3 with MTX, and JEG-3 with 5-FU. We found that the expression of H19 in the JEG-3/MTX and JEG-3/5-FU cells were significantly higher than that in JEG-3 cells. JEG-3 cells were treated with MTX or 5-FU for and quantitative real-time polymerase chain reaction assay revealed that H19 messenger RNA expression increased. Furthermore, after H19 was knocked out, the drug resistance index of the JEG-3/MTX and JEG-3/5-FU cells decreased; the proliferation, migration, and invasion ability diminished significantly; and apoptosis increased significantly. Finally, we detected the total and phosphorylation protein expression of phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) in the JEG-3/MTX and JEG-3/5-FU cells. The total protein of PI3K, AKT, and mTOR in the H19 knockout resistant cells showed no significant change relative to those in the H19 non-knockout resistant cells, whereas the phosphorylated proteins of PI3K, AKT, and mTOR were significantly decreased. Phosphorylated proteins of PI3K, AKT, and mTOR in the JEG-3/MTX and JEG-3/5-FU cells were significantly higher than that in JEG-3 cells. After using inhibition of phosphorylated PI3K/AKT/mTOR, the proliferation, migration, and invasion ability of the JEG-3/MTX and JEG-3/5-FU cells diminished significantly; and apoptosis increased significantly. On the basis of the above experiments, we concluded that H19 is related to the drug resistance of CC, and the knockout of H19 can reduce the drug resistance of resistant CC cells; and decrease the proliferative, migratory, and invasive ability; and increase the apoptosis. PI3K/AKT/mTOR pathway might be involved in H19-mediated effects. H19 is expected to be a therapeutic target for the treatment of drug-resistant chorionic carcinoma.  相似文献   

18.
Laryngeal squamous cell carcinoma (LSCC) is the most common malignant tumor, which occurs in the head and neck. Current treatments for LSCC are all largely weakened by increasing drug resistance. Our study aimed to investigate the effects of long noncoding RNA (lncRNA) H19 on drug resistance in LSCC. In our study, we found that the level of H19 was sharply upregulated in LSCC tissues and drug-resistant cells compared with the control. Besides, the expression of high-mobility group B1 (HMGB1) was elevated, and microRNA107 (miR-107) was suppressed in drug-resistant cells compared with the control. Further study revealed that the interference of H19 by short hairpin RNA (shRNA) effectively suppressed high autophagy level and obvious drug resistance in drug-resistant cells. Besides that, miR-107 was predicted as a target of H19 and inhibiting effects of H19 shRNA on autophagy and drug resistance were both reversed by miR-107 inhibitor. Moreover, HMGB1 was predicted as a target of miR-107 in LSCC cells and knockdown of HMGB1 was able to suppress autophagy and drug resistance in LSCC cells. In addition, our investigation demonstrated that H19 shRNA exerted an inhibiting effect on autophagy and drug resistance by downregulating HMGB1 by targeting miR-107. Finally, the in vivo experiment revealed that LV-H19 shRNA strongly suppressed drug resistance compared with the usage of cisplatin individually. Taken together, our research indicated an H19–miR-107–HMGB1 axis in regulating the autophagy-induced drug resistance in LSCC in vitro and in vivo, providing novel targets for molecular-targeted therapy and broadening the research for LSCC.  相似文献   

19.
The imprinted H19 noncoding RNA is a primary microRNA precursor   总被引:4,自引:0,他引:4  
  相似文献   

20.
Fetal growth restriction (FGR) is a serious pregnancy complication associated with increased perinatal mortality and morbidity. It may lead to neurodevelopmental impairment and adulthood onset disorders. Recently, long noncoding RNAs (lncRNAs) were found to be associated with the pathogenesis of FGR. Here we report that the lncRNAH19 is significantly decreased in placentae from pregnancies with FGR. Downregulation of H19 leads to reduced proliferation and invasion of extravillous trophoblast cells. This is identified with reduced trophoblast invasion, which has been discovered in FGR. Autophagy is exaggerated in FGR. Downregulation of H19 promotes autophagy via the PI3K/AKT/mTOR and MAPK/ERK/mTOR pathways of extravillous trophoblast cells in FGR. We also found that the expression level of microRNAs miR-18a-5p was negatively correlated with that of H19. H19 can act as an endogenous sponge by directly binding to miR-18a-5p, which targets IRF2. The expression of miR-18a-5p was upregulated, but IRF2 expression was downregulated after the H19 knockdown. In conclusion, our study revealed that H19 downexpressed could inhibit proliferation and invasion, and promote autophagy by targeting miR-18a-5pin HTR8 and JEG3 cells. We propose that aberrant regulation of H19/miR-18a-5p-mediated regulatory pathway may contribute to the molecular mechanism of FGR. We indicated that H19 may be a potential predictive, diagnostic, and therapeutic modality for FGR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号