首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background

Maternal diabetes alters gene expression leading to neural tube defects (NTDs) in the developing brain. The mechanistic pathways that deregulate the gene expression remain unknown. It is hypothesized that exposure of neural stem cells (NSCs) to high glucose/hyperglycemia results in activation of epigenetic mechanisms which alter gene expression and cell fate during brain development.

Methods and Findings

NSCs were isolated from normal pregnancy and streptozotocin induced-diabetic pregnancy and cultured in physiological glucose. In order to examine hyperglycemia induced epigenetic changes in NSCs, chromatin reorganization, global histone status at lysine 9 residue of histone H3 (acetylation and trimethylation) and global DNA methylation were examined and found to be altered by hyperglycemia. In NSCs, hyperglycemia increased the expression of Dcx (Doublecortin) and Pafah1b1 (Platelet activating factor acetyl hydrolase, isoform 1b, subunit 1) proteins concomitant with decreased expression of four microRNAs (mmu-miR-200a, mmu-miR-200b, mmu-miR-466a-3p and mmu-miR-466 d-3p) predicted to target these genes. Knockdown of specific microRNAs in NSCs resulted in increased expression of Dcx and Pafah1b1 proteins confirming target prediction and altered NSC fate by increasing the expression of neuronal and glial lineage markers.

Conclusion/Interpretation

This study revealed that hyperglycemia alters the epigenetic mechanisms in NSCs, resulting in altered expression of some development control genes which may form the basis for the NTDs. Since epigenetic changes are reversible, they may be valuable therapeutic targets in order to improve fetal outcomes in diabetic pregnancy.  相似文献   

4.
5.
6.
Kao CF  Fang YS  Zhao Z  Kuo PH 《PloS one》2011,6(4):e18696

Background

Large scale and individual genetic studies have suggested numerous susceptible genes for depression in the past decade without conclusive results. There is a strong need to review and integrate multi-dimensional data for follow up validation. The present study aimed to apply prioritization procedures to build-up an evidence-based candidate genes dataset for depression.

Methods

Depression candidate genes were collected in human and animal studies across various data resources. Each gene was scored according to its magnitude of evidence related to depression and was multiplied by a source-specific weight to form a combined score measure. All genes were evaluated through a prioritization system to obtain an optimal weight matrix to rank their relative importance with depression using the combined scores. The resulting candidate gene list for depression (DEPgenes) was further evaluated by a genome-wide association (GWA) dataset and microarray gene expression in human tissues.

Results

A total of 5,055 candidate genes (4,850 genes from human and 387 genes from animal studies with 182 being overlapped) were included from seven data sources. Through the prioritization procedures, we identified 169 DEPgenes, which exhibited high chance to be associated with depression in GWA dataset (Wilcoxon rank-sum test, p = 0.00005). Additionally, the DEPgenes had a higher percentage to express in human brain or nerve related tissues than non-DEPgenes, supporting the neurotransmitter and neuroplasticity theories in depression.

Conclusions

With comprehensive data collection and curation and an application of integrative approach, we successfully generated DEPgenes through an effective gene prioritization system. The prioritized DEPgenes are promising for future biological experiments or replication efforts to discoverthe underlying molecular mechanisms for depression.  相似文献   

7.

Background

Genome-wide association studies (GWASs) and global profiling of gene expression (microarrays) are two major technological breakthroughs that allow hypothesis-free identification of candidate genes associated with tumorigenesis. It is not obvious whether there is a consistency between the candidate genes identified by GWAS (GWAS genes) and those identified by profiling gene expression (microarray genes).

Methodology/Principal Findings

We used the Cancer Genetic Markers Susceptibility database to retrieve single nucleotide polymorphisms from candidate genes for prostate cancer. In addition, we conducted a large meta-analysis of gene expression data in normal prostate and prostate tumor tissue. We identified 13,905 genes that were interrogated by both GWASs and microarrays. On the basis of P values from GWASs, we selected 1,649 most significantly associated genes for functional annotation by the Database for Annotation, Visualization and Integrated Discovery. We also conducted functional annotation analysis using same number of the top genes identified in the meta-analysis of the gene expression data. We found that genes involved in cell adhesion were overrepresented among both the GWAS and microarray genes.

Conclusions/Significance

We conclude that the results of these analyses suggest that combining GWAS and microarray data would be a more effective approach than analyzing individual datasets and can help to refine the identification of candidate genes and functions associated with tumor development.  相似文献   

8.
9.
Woodwark C  Bateman A 《PloS one》2011,6(5):e14814

Background

Due to the increased accuracy of Copy Number Variable region (CNV) break point mapping, it is now possible to say with a reasonable degree of confidence whether a gene (i) falls entirely within a CNV; (ii) overlaps the CNV or (iii) actually contains the CNV. We classify these as type I, II and III CNV genes respectively.

Principal Findings

Here we show that although type I genes vary in copy number along with the CNV, most of these type I genes have the same expression levels as wild type copy numbers of the gene. These genes must, therefore, be under homeostatic dosage compensation control. Looking into possible mechanisms for the regulation of gene expression we found that type I genes have a significant paucity of genes regulated by miRNAs and are not significantly enriched for monoallelically expressed genes. Type III genes, on the other hand, have a significant excess of genes regulated by miRNAs and are enriched for genes that are monoallelically expressed.

Significance

Many diseases and genomic disorders are associated with CNVs so a better understanding of the different ways genes are associated with normal CNVs will help focus on candidate genes in genome wide association studies.  相似文献   

10.
11.

Background

DNA methylation is associated with aberrant gene expression in cancer, and has been shown to correlate with therapeutic response and disease prognosis in some types of cancer. We sought to investigate the biological significance of DNA methylation in lung cancer.

Results

We integrated the gene expression profiles and data of gene promoter methylation for a large panel of non-small cell lung cancer cell lines, and identified 578 candidate genes with expression levels that were inversely correlated to the degree of DNA methylation. We found these candidate genes to be differentially methylated in normal lung tissue versus non-small cell lung cancer tumors, and segregated by histologic and tumor subtypes. We used gene set enrichment analysis of the genes ranked by the degree of correlation between gene expression and DNA methylation to identify gene sets involved in cellular migration and metastasis. Our unsupervised hierarchical clustering of the candidate genes segregated cell lines according to the epithelial-to-mesenchymal transition phenotype. Genes related to the epithelial-to-mesenchymal transition, such as AXL, ESRP1, HoxB4, and SPINT1/2, were among the nearly 20% of the candidate genes that were differentially methylated between epithelial and mesenchymal cells. Greater numbers of genes were methylated in the mesenchymal cells and their expressions were upregulated by 5-azacytidine treatment. Methylation of the candidate genes was associated with erlotinib resistance in wild-type EGFR cell lines. The expression profiles of the candidate genes were associated with 8-week disease control in patients with wild-type EGFR who had unresectable non-small cell lung cancer treated with erlotinib, but not in patients treated with sorafenib.

Conclusions

Our results demonstrate that the underlying biology of genes regulated by DNA methylation may have predictive value in lung cancer that can be exploited therapeutically.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1079) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

Identification of genes with switch-like properties will facilitate discovery of regulatory mechanisms that underlie these properties, and will provide knowledge for the appropriate application of Boolean networks in gene regulatory models. As switch-like behavior is likely associated with tissue-specific expression, these gene products are expected to be plausible candidates as tissue-specific biomarkers.

Methodology/Principal Findings

In a systematic classification of genes and search for biomarkers, gene expression profiles (GEPs) of more than 16,000 genes from 2,145 mouse array samples were analyzed. Four distribution metrics (mean, standard deviation, kurtosis and skewness) were used to classify GEPs into four categories: predominantly-off, predominantly-on, graded (rheostatic), and switch-like genes. The arrays under study were also grouped and examined by tissue type. For example, arrays were categorized as ‘brain group’ and ‘non-brain group’; the Kolmogorov-Smirnov distance and Pearson correlation coefficient were then used to compare GEPs between brain and non-brain for each gene. We were thus able to identify tissue-specific biomarker candidate genes.

Conclusions/Significance

The methodology employed here may be used to facilitate disease-specific biomarker discovery.  相似文献   

13.

Background

Sex-determination genes drive the evolution of adjacent chromosomal regions. Sexually antagonistic selection favors the accumulation of inversions that reduce recombination in regions adjacent to the sex-determination gene. Once established, the clonal inheritance of sex-linked inversions leads to the accumulation of deleterious alleles, repetitive elements and a gradual decay of sex-linked genes. This in turn creates selective pressures for the evolution of mechanisms that compensate for the unequal dosage of gene expression. Here we use whole genome sequencing to characterize the structure of a young sex chromosome and quantify sex-specific gene expression in the developing gonad.

Results

We found an 8.8 Mb block of strong differentiation between males and females that corresponds to the location of a previously mapped sex-determiner on linkage group 1 of Oreochromis niloticus. Putatively disruptive mutations are found in many of the genes within this region. We also found a significant female-bias in the expression of genes within the block of differentiation compared to those outside the block of differentiation. Eight candidate sex-determination genes were identified within this region.

Conclusions

This study demonstrates a block of differentiation on linkage group 1, suggestive of an 8.8 Mb inversion encompassing the sex-determining locus. The enrichment of female-biased gene expression inside the proposed inversion suggests incomplete dosage compensation. This study helps establish a model for studying the early-to-intermediate stages of sex chromosome evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-975) contains supplementary material, which is available to authorized users.  相似文献   

14.
Hale LA  Fowler DK  Eisen JS 《PloS one》2011,6(10):e25841

Background

We previously showed that equivalence between two identified zebrafish motoneurons is broken by interactions with identified muscle fibers that act as an intermediate target for the axons of these motoneurons. Here we investigate the molecular basis of the signaling interaction between the intermediate target and the motoneurons.

Principal Findings

We provide evidence that Netrin 1a is an intermediate target-derived signal that causes two equivalent motoneurons to adopt distinct fates. We show that although these two motoneurons express the same Netrin receptors, their axons respond differently to Netrin 1a encountered at the intermediate target. Furthermore, we demonstrate that when Netrin 1a is knocked down, more distal intermediate targets that express other Netrins can also function to break equivalence between these motoneurons.

Significance

Our results suggest a new role for intermediate targets in breaking neuronal equivalence. The data we present reveal that signals encountered during axon pathfinding can cause equivalent neurons to adopt distinct fates. Such signals may be key in diversifying a neuronal population and leading to correct circuit formation.  相似文献   

15.

Purpose

The ciliary body (CB) of the human eye consists of the non-pigmented (NPE) and pigmented (PE) neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecular signatures for the NPE and PE and studied possible new clues for glaucoma.

Methods

We isolated NPE and PE cells from seven healthy human donor eyes using laser dissection microscopy. Next, we performed RNA isolation, amplification, labeling and hybridization against 44×k Agilent microarrays. For microarray conformations, we used a literature study, RT-PCRs, and immunohistochemical stainings. We analyzed the gene expression data with R and with the knowledge database Ingenuity.

Results

The gene expression profiles and functional annotations of the NPE and PE were highly similar. We found that the most important functionalities of the NPE and PE were related to developmental processes, neural nature of the tissue, endocrine and metabolic signaling, and immunological functions. In total 1576 genes differed statistically significantly between NPE and PE. From these genes, at least 3 were cell-specific for the NPE and 143 for the PE. Finally, we observed high expression in the (N)PE of 35 genes previously implicated in molecular mechanisms related to glaucoma.

Conclusion

Our gene expression analysis suggested that the NPE and PE of the CB were quite similar. Nonetheless, cell-type specific differences were found. The molecular machineries of the human NPE and PE are involved in a range of neuro-endocrinological, developmental and immunological functions, and perhaps glaucoma.  相似文献   

16.
Evolutionary conservation of regulated longevity assurance mechanisms   总被引:3,自引:1,他引:2  

Background

To what extent are the determinants of aging in animal species universal? Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) is an evolutionarily conserved (public) regulator of longevity; yet it remains unclear whether the genes and biochemical processes through which IIS acts on aging are public or private (that is, lineage specific). To address this, we have applied a novel, multi-level cross-species comparative analysis to compare gene expression changes accompanying increased longevity in mutant nematodes, fruitflies and mice with reduced IIS.

Results

Surprisingly, there is little evolutionary conservation at the level of individual, orthologous genes or paralogous genes under IIS regulation. However, a number of gene categories are significantly enriched for genes whose expression changes in long-lived animals of all three species. Down-regulated categories include protein biosynthesis-associated genes. Up-regulated categories include sugar catabolism, energy generation, glutathione-S-transferases (GSTs) and several other categories linked to cellular detoxification (that is, phase 1 and phase 2 metabolism of xenobiotic and endobiotic toxins). Protein biosynthesis and GST activity have recently been linked to aging and longevity assurance, respectively.

Conclusion

These processes represent candidate, regulated mechanisms of longevity-control that are conserved across animal species. The longevity assurance mechanisms via which IIS acts appear to be lineage-specific at the gene level (private), but conserved at the process level (or semi-public). In the case of GSTs, and cellular detoxification generally, this suggests that the mechanisms of aging against which longevity assurance mechanisms act are, to some extent, lineage specific.  相似文献   

17.
18.

Introduction

Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects.

Purpose

We addressed the gene expression signatures in colorectal cancer linked to Lynch syndrome and FCCTX with the aim to identify candidate genes and to map signaling pathways relevant in hereditary colorectal carcinogenesis.

Experimental design

The 18 k whole-genome c-DNA-mediated annealing, selection, extension, and ligation (WG-DASL) assay was applied to 123 colorectal cancers, including 39 Lynch syndrome tumors and 37 FCCTX tumors. Target genes were technically validated using real-time quantitative RT-PCR (qRT-PCR) and the expression signature was validated in independent datasets.

Results

Colorectal cancers linked to Lynch syndrome and FCCTX showed distinct gene expression profiles, which by significance analysis of microarrays (SAM) differed by 2188 genes. Functional pathways involved were related to G-protein coupled receptor signaling, oxidative phosphorylation, and cell cycle function and mitosis. qRT-PCR verified altered expression of the selected genes NDUFA9, AXIN2, MYC, DNA2 and H2AFZ. Application of the 2188-gene signature to independent datasets showed strong correlation to MMR status.

Conclusion

Distinct genetic profiles and deregulation of different canonical pathways apply to Lynch syndrome and FCCTX and key targets herein may be relevant to pursue for refined diagnostic and therapeutic strategies in hereditary colorectal cancer.  相似文献   

19.

Background

Since, similarly to humans, songbirds learn their vocalization through imitation during their juvenile stage, they have often been used as model animals to study the mechanisms of human verbal learning. Numerous anatomical and physiological studies have suggested that songbirds have a neural network called ‘song system’ specialized for vocal learning and production in their brain. However, it still remains unknown what molecular mechanisms regulate their vocal development. It has been suggested that type-II cadherins are involved in synapse formation and function. Previously, we found that type-II cadherin expressions are switched in the robust nucleus of arcopallium from cadherin-7-positive to cadherin-6B-positive during the phase from sensory to sensorimotor learning stage in a songbird, the Bengalese finch. Furthermore, in vitro analysis using cultured rat hippocampal neurons revealed that cadherin-6B enhanced and cadherin-7 suppressed the frequency of miniature excitatory postsynaptic currents via regulating dendritic spine morphology.

Methodology/Principal Findings

To explore the role of cadherins in vocal development, we performed an in vivo behavioral analysis of cadherin function with lentiviral vectors. Overexpression of cadherin-7 in the juvenile and the adult stages resulted in severe defects in vocal production. In both cases, harmonic sounds typically seen in the adult Bengalese finch songs were particularly affected.

Conclusions/Significance

Our results suggest that cadherins control vocal production, particularly harmonic sounds, probably by modulating neuronal morphology of the RA nucleus. It appears that the switching of cadherin expressions from sensory to sensorimotor learning stage enhances vocal production ability to make various types of vocalization that is essential for sensorimotor learning in a trial and error manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号