首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Often referred to as the silent killer, ovarian cancer is the most lethal gynecologic malignancy. This disease rarely shows any physical symptoms until late stages and no known biomarkers are available for early detection. Because ovarian cancer is rarely detected early, the physiology behind the initiation, progression, treatment, and prevention of this disease remains largely unclear. Over the past 2 decades, the laying hen has emerged as a model that naturally develops epithelial ovarian cancer that is both pathologically and histologically similar to that of the human form of the disease. Different molecular signatures found in human ovarian cancer have also been identified in chicken ovarian cancer including increased CA125 and elevated E-cadherin expression, among others. Chemoprevention studies conducted in this model have shown that decreased ovulation and inflammation are associated with decreased incidence of ovarian cancer development. The purpose of this article is to review the major studies performed in laying hen model of ovarian cancer and discuss how these studies shape our current understanding of the pathophysiology, prevention and treatment of epithelial ovarian cancer.

Ovarian cancer is the leading cause of death among female gynecologic malignancies, with a 47% 5 y relative survival rate.154 Early detection of the disease is necessary for decreasing the high mortality rate. However, early detection is difficult due to the lack of known specific biomarkers and clinically detectable symptoms until the tumor reaches at an advanced stage. The disease has multiple subtypes. Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer, accounting for about 90% of all reported cases.127,164 EOC is commonly subdivided into 5 histotypes: high-grade serous (HGSOC), low-grade serous, mucinous, endometroid (EC), and clear cell. The histotypes differ in terms of tumor cell morphology, severity, systemic effect, and response to treatment. Among the different subtypes, HGSOC accounts for about 70% of cases of EOC observed in women. HGSOC has a higher mitotic index and is a more aggressive form of cancer with a worse prognosis. HGSOC and low-grade serous histotypes exhibit distinctly different presentations of the disease82,166 and demand different treatment modalities. EC (10% to 20%), mucinous (5% to 20%), and clear cell (3% to 10%) histotypes are less common forms of the disease. The subtypes of EOC also differ in terms of 5 y survival rates of patients; that is, HGSOC (20% to 35%), EC (40% to 63%), mucinous (40% to 69%), and clear cell (35% to 50%).20,76,148Developing a representative animal model for EOC has been challenging due to the histologic and pathologic differences among different subtypes of EOC. While developing a reliable animal model is challenging due to the vast complexity and limited understanding of the origin of the disease, laying hens naturally develop EOC that is histopathologically very similar to the human form of the disease (Figure 1).15 All the different human ovarian cancer histotypes have been observed in laying hen ovarian cancer (Figure 2). In addition, the presentation of the disease in chickens is remarkably similar to the human form of the disease, with early-stage ovarian cancer in laying hens having similar precursor lesions as occur in women.15 The laying hen develops ovarian cancer spontaneously, allowing analysis of early events and investigation into the natural course of the disease, as tumors can be examined as they progress from normal to late-stage ovarian carcinoma. The gross appearance of these stages is shown in Figure 3.Open in a separate windowFigure 1.Gross pathologic presentation of chicken compared with human ovarian cancer. The remarkably similar presentation in hens (A,B) and women (C,D) at the gross anatomic level with profuse abdominal ascites and peritoneal dissemination of metastasis. A) Ascites in abdominal cavity chicken with advanced ovarian cancer (photo credit: DB Hales); (B) Chicken ovarian cancer with extensive peritoneal dissemination of metastasis (photo credit: DB Hales); (C) Distended abdomen from ascites fluid accumulation in woman with ovarian cancer (http://www.pathguy.com/bryanlee/ovca.html) (D) Human ovarian cancer with extensive peritoneal dissemination of metastasis (http://www.pathguy.com/bryanlee/ovca.html).Open in a separate windowFigure 2.Gross anatomic appearance of different stages of ovarian cancer in the chicken The progression from the normal hen ovary to late-stage metastatic ovarian cancer. (A) Normal chicken ovary showing hierarchal clutch of developing follicles and postovulatory follicle; (B) Stage 1 ovarian cancer, confined to ovary with vascularized follicles; (C) Stage 2/3 ovarian cancer, metastasis locally to peritoneal cavity with ascites; (D) Stage 4 ovarian cancer, late stage with metastasis to lung and liver with extensive ascites (photo credits: DB Hales).Open in a separate windowFigure 3.Histologic subtypes in chicken compared with human ovarian cancers. H and E staining of formalin fixed paraffin embedded tissues from hens with ovarian cancer (A through D) and women (E through G). (A) Chicken clear cell carcinoma; (B) Chicken endometrioid carcinoma; (C) Chicken mucinous adenocarcinoma; (D) Chicken serous papillary adenocarcinoma (photo credits: DB Hales). (E) Human clear cell carcinoma; (F) Human endometrioid carcinoma; (G) Human mucinous cystadenocarcinoma; (H) Human serous adenocarcinoma (https://www.womenshealthsection.com).Over the past 2 decades, the laying hen has emerged as a valuable experimental model for EOC, in addition to other in vivo models such as Patient-Derived Xenografts (PDX) and Genetically Engineered Mouse Models (GEMMs). Comparison of the hen model with other animal models has been reviewed elsewhere.72 Modern-day laying hens, such as the white leghorn, have been selected from their ancestor red jungle fowl57 for decreased broodiness and persistent ovulation, resulting in approximately one egg per day, if proper nutrition and light-dark cycles are maintained. Daily rupture and consequent repair of the ovarian surface epithelia (OSE) due to the persistent ovulation promotes potential error during rapid DNA replication. This increases the probability of oncogenic mutations, ultimately leading to neoplasia.137 Inflammation resulting from continuous ovulation also promotes the natural development of EOC.81 By the age of 2.5 to 3 y, laying hens have undergone a similar number of ovulations as a perimenopausal woman. The risk of ovarian cancer in white leghorn hens in this time (4%) is similar to the lifetime risk of ovarian cancer in women (0.35% to 8.8%).125 By the age of 4 to 6 y, the risk of ovarian cancer in hens rises to 30% to 60%.54 The incidence of ovarian carcinoma in the hens, however, depends on the age, genetic strain,80 and the egg-laying frequency of the specific breed.54 The common white leghorn hen has routinely been employed in chicken ovarian cancer studies. On average, hens are exposed to 17 h of light per day, with lights turned on at 0500 h and turned off at 2200 h. The laying hen model of EOC does present some considerable challenges. Despite its great utility for research, the model is still used mainly by agricultural poultry scientists and a small number of ovarian cancer researchers.Comprehensive and proper vivarium support is required to conduct large-scale cancer prevention studies. Only a few facilities are available for biomedical chicken research, including University of Illinois Urbana-Champaign, Cornell University, Penn State University, NC State, Auburn University, and MS State University. Another difficulty is a lack of available antibodies specific for chicken antigens. Because of the structural dissimilarities between most human proteins and murine antigens to their chicken counterparts, cross-reactivity of available antibodies is also limited. The entire chicken genome was sequenced in 2004;78 however, the chromosomal locus of many key genes, such as p53, are still unknown. Overall, humans and chickens share about 60% of genetic commonality, whereas humans and rats share about 88% of their genes. Specific pathway-mutated strains of chickens are not yet available, limiting the ability to study key pathways in carcinogenesis and prevention of cancer using this model. Although all 5 different subtypes of ovarian cancer are present in hens, their most predominant subtype is different from women. Close to 70% of women diagnosed with ovarian cancer have serous EOC, while the predominant subtype reported in hens is endometrioid.15 However, these comparisons are complicated because observations of cancer in hens consist of both early and late stages of the disease, wherein women, most of the data is from late stage and aggressive ovarian carcinoma.The spontaneous onset of ovarian cancer and the histologic and pathologic similarities to the human form of the disease make laying hens an excellent model for continued research on EOC. To date, a large number of studies have been performed on laying hens. Here we have divided the current studies into 2 groups— (A) studies that have described the molecular presentation of EOC to be similar to that in women; (
AuthorYearSignificanceKey molecular targetsCitation
Haritani and colleagues.1984Investigating ovarian tumors for key gene signaturesOvalbumin 71
Rodriguez-Burford and colleagues.2001Investigating expressions of clinically important prognostic markers in cancerous hensCA125, cytokeratin AE1/AE3, pan cytokeratin, Lewis Y, CEA, Tag 72, PCNA, EGFR, erbB-2, p27, TGF{α}, Ki-67, MUC1, and MUC2 135
Giles and colleagues.2004, 2006Investigating ovarian tumors for key gene signaturesOvalbumin, PR, PCNA, Vimentin62, 63
Jackson and colleagues.2007CA125 expression in hen ovarian tumorsCA125 79
Stammer and colleagues.2008SELENBP1 downregulation in hen ovarian tumorsSELENBP1 149
Hales and colleagues.2008Cyclooxygenase expressions in hen ovarian tumorsCOX1, COX2, PGE2 67
Urick and colleagues.2008-2009VEGF expression in cultured ascites cells from hen ovarian tumorsVEGF160, 161
Ansenberger and colleagues.2009Elevation of E-cadherin in hen ovarian tumorsE-cad 6
Hakim and colleagues.2009Investigating oncogenic mutations in hen ovarian tumorsp53, K-ras, H-ras 66
Zhuge and colleagues.2009CYP1B1 levels in chicken ovarian tumorsCYP1B1 175
Seo and colleagues.2010Upregulation of Claudin-10 in hen ovarian tumorsClaudin-10 145
Trevino and colleagues.2010Investigating ovarian tumors for key gene signaturesOvalbumin, Pax2, SerpinB3, OVM, LTF, RD 157
Choi and colleagues.2011Upregulation of MMP-3 in hen ovarian tumor stromaMMP-3 28
Barua and colleagues.2012Upregulation of DR6 in hen ovarian tumorsDR6 16
Lee and colleagues.2012-2014Upregulation of DNA methylation in hen ovarian tumorsDNMT1, DNMT3A, DNMT3B,
SPP1, SERPINB11, SERPINB13
94, 101, 103, 104
Lim and colleagues.2013-2014Key genes upregulated in endometrioid hen tumorsAvBD-11, CTNNB1, Wnt4102, 11, 100
Bradaric and colleagues.2013Investigating immune cells in hen ovarian tumors 23
Ma and colleagues.2014Identifying unique proteins from proteomic profilingF2 thrombin, ITIH2 106
Hales and colleagues.2014Key genes upregulated in hen ovarian tumorsPAX2, MSX2, FOXA2, EN1 68
Parada and colleagues,2017Unique ganglioside expressed in hen ovarian tumorsNeuGcGM3 124
Open in a separate windowTable 2.Ovarian cancer prevention studies using laying hen model
AuthorYearSignificanceCitation
Barnes and colleagues.2002Medroxyprogesterone study 14
Johnson and colleagues.2006Different genetic strain of laying hens (C strain and K strain) 80
Urick and colleagues.2009Dietary aspirin in laying hens 161
Giles and colleagues.2010Restricted Ovulator strain 61
Carver and colleagues.2011Calorie-restricted hens 25
Eilati and colleagues.2012-2013Dietary flaxseed in laying hens43, 44, 45
Trevino and colleagues.2012Oral contraceptives in laying hens 156
Rodriguez and colleagues.2013Calorie-restricted hens with or without Vitamin D and progestin 136
Mocka and colleagues.2017p53 stabilizer CP-31398 in laying hens 112
Open in a separate window  相似文献   

3.
Nickel-based Enzyme Systems     
Stephen W. Ragsdale 《The Journal of biological chemistry》2009,284(28):18571-18575
Of the eight known nickel enzymes, all but glyoxylase I catalyze the use and/or production of gases central to the global carbon, nitrogen, and oxygen cycles. Nickel appears to have been selected for its plasticity in coordination and redox chemistry and is able to cycle through three redox states (1+, 2+, 3+) and to catalyze reactions spanning ∼1.5 V. This minireview focuses on the catalytic mechanisms of nickel enzymes, with an emphasis on the role(s) of the metal center. The metal centers vary from mononuclear to complex metal clusters and catalyze simple hydrolytic to multistep redox reactions.Seven of the eight known nickel enzymes (1). CODH2 interconverts CO and CO2; ACS utilizes CO; the nickel ARD produces CO; hydrogenase generates/utilizes hydrogen gas; MCR generates methane; urease produces ammonia; and SOD generates O2.

TABLE 1

Nickel-containing enzymes
EnzymeReactionRef.
Glx I (EC 4.4.1.5)Methylglyoxal → lactate + H2O (Reaction 1)7
ARD (EC 1.13.11.54)1,2-Dihydroxy-3-oxo-5-(methylthio)pent-1-ene + O2 → HCOOH + methylthiopropionate + CO (Reaction 2)9, 10
Ni-SOD (EC 1.15.1.1)2H+ + 2O2−̇ → H2O2 + O2 (Reaction 3)16, 19
Urease (EC 3.5.1.5)H2N-CO-NH2 + 2H2O → 2NH3 + H2CO3 (Reaction 4)22, 23
Hydrogenase (EC 1.12.X.X)2H+ + 2e ⇌ H2E0′ = −414 mV) (Reaction 5)25, 26
MCR (EC 2.8.4.1)CH3-CoM + CoBSH → CH4 + CoM-SS-CoB (Reaction 6)42, 43
CODH (EC 1.2.99.2)2e + 2H+ + CO2 ⇌ CO + H2O (E0′ = −558 mV) (Reaction 7)30, 31
ACS (EC 2.3.1.169)CH3-CFeSP + CoASH + CO → CH3-CO-SCoA + CFeSP (Reaction 8)30, 31
Open in a separate windowThe nickel sites in enzymes exhibit extreme plasticity in nickel coordination and redox chemistry. The metal center in SOD must be able to redox processes with potentials that span from +890 to −160 mV (2), whereas in MCR and CODH, it must be able to reach potentials as low as −600 mV (3); thus, nickel centers in proteins perform redox chemistry over a potential range of ∼1.5 V!Because natural environments contain only trace amounts of soluble Ni2+, attaining sufficiently high intracellular nickel concentrations to meet the demand of the nickel enzymes requires a high affinity nickel uptake system(s) (4), molecular and metallochaperones (5), and sensors and regulators of the levels of enzymes involved in nickel homeostasis (6). However, space limitations prevent coverage of these pre-catalytic events.  相似文献   

4.
Functional Characterization of Naturally Occurring Variants of Human Hepatitis B Virus Containing the Core Internal Deletion Mutation     
Thomas Ta-Tung Yuan  Min-Hui Lin  Sui Min Qiu  Chiaho Shih 《Journal of virology》1998,72(3):2168-2176
  相似文献   

5.
Molecular and Biochemical Characterization of the Protein Template Controlling Biosynthesis of the Lipopeptide Lichenysin     
Dirk Konz  Sascha Doekel  Mohamed A. Marahiel 《Journal of bacteriology》1999,181(1):133-140
Lichenysins are surface-active lipopeptides with antibiotic properties produced nonribosomally by several strains of Bacillus licheniformis. Here, we report the cloning and sequencing of an entire 26.6-kb lichenysin biosynthesis operon from B. licheniformis ATCC 10716. Three large open reading frames coding for peptide synthetases, designated licA, licB (three modules each), and licC (one module), could be detected, followed by a gene, licTE, coding for a thioesterase-like protein. The domain structure of the seven identified modules, which resembles that of the surfactin synthetases SrfA-A to -C, showed two epimerization domains attached to the third and sixth modules. The substrate specificity of the first, fifth, and seventh recombinant adenylation domains of LicA to -C (cloned and expressed in Escherichia coli) was determined to be Gln, Asp, and Ile (with minor Val and Leu substitutions), respectively. Therefore, we suppose that the identified biosynthesis operon is responsible for the production of a lichenysin variant with the primary amino acid sequence l-Gln–l-Leu–d-Leu–l-Val–l-Asp–d-Leu–l-Ile, with minor Leu and Val substitutions at the seventh position.Many strains of Bacillus are known to produce lipopeptides with remarkable surface-active properties (11). The most prominent of these powerful lipopeptides is surfactin from Bacillus subtilis (1). Surfactin is an acylated cyclic heptapeptide that reduces the surface tension of water from 72 to 27 mN m−1 even in a concentration below 0.05% and shows some antibacterial and antifungal activities (1). Some B. subtilis strains are also known to produce other, structurally related lipoheptapeptides (Table (Table1),1), like iturin (32, 34) and bacillomycin (3, 27, 30), or the lipodecapeptides fengycin (50) and plipastatin (29).

TABLE 1

Lipoheptapeptide antibiotics of Bacillus spp.
LipopeptideOrganismStructureReference
Lichenysin AB. licheniformisFAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asn-D-Leu-L-Ile51, 52
Lichenysin BFAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leu23, 26
Lichenysin CFAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Ile17
Lichenysin DFAa-L-Gln-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-IleThis work
Surfactant 86B. licheniformisFAa-L-Glxd-L-Leu-D-Leu-L-Val-L-Asxd-D-Leu-L-Ilee14, 15
L-Val
SurfactinB. subtilisFAa-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leu1, 7, 49
EsperinB. subtilisFAb-L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leue45
L-Val 
Iturin AB. subtilisFAc-L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asn-L-Ser32
Iturin CFAc-L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asne-L-Asne34
D-Ser-L-Thr 
Bacillomycin LB. subtilisFAc-L-Asp-D-Tyr-D-Asn-L-Ser-L-Gln-D-Proe-L-Thr3
D-Ser- 
Bacillomycin DFAc-L-Asp-D-Tyr-D-Asn-L-Pro-L-Glu-D-Ser-L-Thr30, 31
Bacillomycin FFAc-L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asn-L-Thr27
Open in a separate windowaFA, β-hydroxy fatty acid. The β-hydroxy group forms an ester bond with the carboxy group of the C-terminal amino acid. bFA, β-hydroxy fatty acid. The β-hydroxy group forms an ester bond with the carboxy group of Asp5. cFA, β-amino fatty acid. The β-amino group forms a peptide bond with the carboxy group of the C-terminal amino acid. dOnly the following combinations of amino acid 1 and 5 are allowed: Gln-Asp or Glu-Asn. eWhere an alternative amino acid may be present in a structure, the alternative is also presented. In addition to B. subtilis, several strains of Bacillus licheniformis have been described as producing the lipopeptide lichenysin (14, 17, 23, 26, 51). Lichenysins can be grouped under the general sequence l-Glx–l-Leu–d-Leu–l-Val–l-Asx–d-Leu–l-Ile/Leu/Val (Table (Table1).1). The first amino acid is connected to a β-hydroxyl fatty acid, and the carboxy-terminal amino acid forms a lactone ring to the β-OH group of the lipophilic part of the molecule. In contrast to the lipopeptide surfactin, lichenysins seem to be synthesized during growth under aerobic and anaerobic conditions (16, 51). The isolation of lichenysins from cells growing on liquid mineral salt medium on glucose or sucrose basic has been studied intensively. Antimicrobial properties and the ability to reduce the surface tension of water have also been described (14, 17, 26, 51). The structural elucidation of the compounds revealed slight differences, depending on the producer strain. Various distributions of branched and linear fatty acid moieties of diverse lengths and amino acid variations in three defined positions have been identified (Table (Table11).In contrast to the well-defined methods for isolation and structural characterization of lichenysins, little is known about the biosynthetic mechanisms of lichenysin production. The structural similarity of lichenysins and surfactin suggests that the peptide moiety is produced nonribosomally by multifunctional peptide synthetases (7, 13, 25, 49, 53). Peptide synthetases from bacterial and fungal sources describe an alternative route in peptide bond formation in addition to the ubiquitous ribosomal pathway. Here, large multienzyme complexes affect the ordered recognition, activation, and linking of amino acids by utilizing the thiotemplate mechanism (19, 24, 25). According to this model, peptide synthetases activate their substrate amino acids as aminoacyl adenylates by ATP hydrolysis. These unstable intermediates are subsequently transferred to a covalently enzyme-bound 4′-phosphopantetheinyl cofactor as thioesters. The thioesterified amino acids are then integrated into the peptide product through a stepwise elongation by a series of transpeptidations directed from the amino terminals to the carboxy terminals. Peptide synthetases have not only awakened interest because of their mechanistic features; many of the nonribosomally processed peptide products also possess important biological and medical properties.In this report we describe the identification and characterization of a putative lichenysin biosynthesis operon from B. licheniformis ATCC 10716. Cloning and sequencing of the entire lic operon (26.6 kb) revealed three genes, licA, licB, and licC, with structural patterns common to peptide synthetases and a gene designated licTE, which codes for a putative thioesterase. The modular organization of the sequenced genes resembles the requirements for the biosynthesis of the heptapeptide lichenysin. Based on the arrangement of the seven identified modules and the tested substrate specificities, we propose that the identified genes are involved in the nonribosomal synthesis of the portion of the lichenysin peptide with the primary sequence l-Gln–l-Leu–d-Leu–l-Val–l-Asp–d-Leu–l-Ile (with minor Val and Leu substitutions).  相似文献   

6.
Engineering of a Chimeric RB69 DNA Polymerase Sensitive to Drugs Targeting the Cytomegalovirus Enzyme     
Egor P. Tchesnokov  Aleksandr Obikhod  Raymond F. Schinazi  Matthias G?tte 《The Journal of biological chemistry》2009,284(39):26439-26446
  相似文献   

7.
Peptidoglycan Fine Structure of the Radiotolerant Bacterium Deinococcus radiodurans Sark     
José Carlos Quintela  Francisco García-del Portillo  Ernst Pittenauer  Günter Allmaier  Miguel A. de Pedro 《Journal of bacteriology》1999,181(1):334-337
Peptidoglycan from Deinococcus radiodurans was analyzed by high-performance liquid chromatography and mass spectrometry. The monomeric subunit was: N-acetylglucosamine–N-acetylmuramic acid–l-Ala–d-Glu-(γ)–l-Orn-[(δ)Gly-Gly]–d-Ala–d-Ala. Cross-linkage was mediated by (Gly)2 bridges, and glycan strands were terminated in (1→6)anhydro-muramic acid residues. Structural relations with the phylogenetically close Thermus thermophilus are discussed.The gram-positive bacterium Deinococcus radiodurans is remarkable because of its extreme resistance to ionizing radiation (14). Phylogenetically the closest relatives of Deinococcus are the extreme thermophiles of the genus Thermus (4, 11). In 16S rRNA phylogenetic trees, the genera Thermus and Deinococcus group together as one of the older branches in bacterial evolution (11). Both microorganisms have complex cell envelopes with outer membranes, S-layers, and ornithine-Gly-containing mureins (7, 12, 19, 20, 22, 23). However, Deinococcus and Thermus differ in their response to the Gram reaction, having positive and negative reactions, respectively (4, 14). The murein structure for Thermus thermophilus HB8 has been recently elucidated (19). Here we report the murein structure of Deinococcus radiodurans with similar detail.D. radiodurans Sark (23) was used in the present study. Cultures were grown in Luria-Bertani medium (13) at 30°C with aeration. Murein was purified and subjected to amino acid and high-performance liquid chromatography (HPLC) analyses as previously described (6, 9, 10, 19). For further analysis muropeptides were purified, lyophilized, and desalted as reported elsewhere (6, 19). Purified muropeptides were subjected to plasma desorption linear time-of-flight mass spectrometry (PDMS) as described previously (1, 5, 16, 19). Positive and negative ion mass spectra were obtained on a short linear 252californium time-of-flight instrument (BioIon AB, Uppsala, Sweden). The acceleration voltage was between 17 and 19 kV, and spectra were accumulated for 1 to 10 million fission events. Calibration of the mass spectra was done in the positive ion mode with H+ and Na+ ions and in the negative ion mode with H and CN ions. Calculated m/z values are based on average masses.Amino acid analysis of muramidase (Cellosyl; Hoechst, Frankfurt am Main, Germany)-digested sacculi (50 μg) revealed Glu, Orn, Ala, and Gly as the only amino acids in the muramidase-solubilized material. Less than 3% of the total Orn remained in the muramidase-insoluble fraction, indicating an essentially complete solubilization of murein.Muramidase-digested murein samples (200 μg) were analyzed by HPLC as described in reference 19. The muropeptide pattern (Fig. (Fig.1)1) was relatively simple, with five dominating components (DR5 and DR10 to DR13 [Fig. 1]). The muropeptides resolved by HPLC were collected, desalted, and subjected to PDMS. The results are presented in Table Table11 compared with the m/z values calculated for best-matching muropeptides made up of N-acetylglucosamine (GlucNAc), N-acetylmuramic acid (MurNAc), and the amino acids detected in the murein. The more likely structures are shown in Fig. Fig.1.1. According to the m/z values, muropeptides DR1 to DR7 and DR9 were monomers; DR8, DR10, and DR11 were dimers; and DR12 and DR13 were trimers. The best-fitting structures for DR3 to DR8, DR11, and DR13 coincided with muropeptides previously characterized in T. thermophilus HB8 (19) and had identical retention times in comparative HPLC runs. The minor muropeptide DR7 (Fig. (Fig.1)1) was the only one detected with a d-Ala–d-Ala dipeptide and most likely represents the basic monomeric subunit. The composition of the major cross-linked species DR11 and DR13 confirmed that cross-linking is mediated by (Gly)2 bridges, as proposed previously (20). Open in a separate windowFIG. 1HPLC muropeptide elution patterns of murein purified from D. radiodurans. Muramidase-digested murein samples were subjected to HPLC analysis, and the A204 of the eluate was recorded. The most likely structures for each muroeptide as deduced by PDMS are shown. The position of residues in brackets is the most likely one as deduced from the structures of other muropeptides but could not be formally demonstrated. R = GlucNac–MurNac–l-Ala–d-Glu-(γ)→.

TABLE 1

Calculated and measured m/z values for the molecular ions of the major muropeptides from D. radiodurans
MuropeptideaIonm/z
ΔmbError (%)cMuropeptide composition
Muropeptide abundance (mol%)
CalculatedMeasuredNAGdNAMeGluOrnAlaGly
DR1[M+H]+699.69700.10.410.0611101012.0
DR2[M+H]+927.94928.30.360.041111125.7
DR3[M+Na]+1,006.971,007.50.530.051111133.0
DR4[M+Na]+963.95964.60.650.071111212.5
DR5[M+H]+999.02999.80.780.0811112227.7
[M−H]997.00997.30.300.03
DR6[M+Na]+1,078.51,078.80.750.071111232.4
DR7[M+H]+1,070.091,071.00.900.081111322.2
DR8[M+Na]+1,520.531,521.61.080.071122442.2
DR9[M+Na]+701.64702.10.460.0311f10105.0
DR10[M+H]+1,907.941,907.80.140.0122223410.1
[M−H]1,905.921,906.60.680.04
DR11[M+H]+1,979.011,979.10.090.0122224419.1
[M−H]1,977.001,977.30.300.02
DR12[M+H]+2,887.932,886.5−1.43−0.053333564.4
[M−H]2,885.912,885.8−0.11−0.01
DR13[M+H]+2,959.002,957.8−1.20−0.043333663.6
[M−H]2,956.992,955.9−1.09−0.04
Open in a separate windowaDR5 and DR10 to DR13 were analyzed in both the positive and negative ion modes. Muropeptides DR1 to DR4 and DR6 to DR9 were analyzed in the positive mode only due to the small amounts of sample available. bMass difference between measured and calculated quasimolecular ion values. c[(Measured mass−calculated mass)/calculated mass] × 100. dN-Acetylglucosamine. eN-Acetylmuramitol. f(1→6)Anhydro-N-acetylmuramic acid. Structural assignments of muropeptides DR1, DR2, DR8 to DR10, and DR12 deserve special comments. The low m/z value measured for DR1 (700.1) fitted very well with the value calculated for GlucNAc–MurNAc–l-Ala–d-Glu (699.69). Even smaller was the mass deduced for DR9 from the m/z value of the molecular ion of the sodium adduct (702.1) (Fig. (Fig.2).2). The mass difference between DR1 and DR9 (19.9 mass units) was very close indeed to the calculated difference between N-acetylmuramitol and the (1→6)anhydro form of MurNAc (20.04 mass units). Therefore, DR9 was identified as GlucNAc–(1→6)anhydro-MurNAc–l-Ala–d-Glu (Fig. (Fig.1).1). Muropeptides with (1→6)anhydro muramic acid have been identified in mureins from diverse origins (10, 15, 17, 19), indicating that it might be a common feature among peptidoglycan-containing microorganisms. Open in a separate windowFIG. 2Positive-ion linear PDMS of muropeptide DR9. Muropeptide DR9 was purified, desalted by HPLC, and subjected to PDMS to determine the molecular mass. The masses for the dominant molecular ions are indicated.The measured m/z value for the [M+Na]+ ion of DR8 was 1,521.6, very close to the mass calculated for a cross-linked dimer without one disaccharide moiety (1,520.53) (Fig. (Fig.1;1; Table Table1).1). Such muropeptides, also identified in T. thermophilus HB8 and other bacteria (18, 19), are most likely generated by the enzymatic clevage of MurNAc–l-Ala amide bonds in murein by an N-acetylmuramyl–l-alanine amidase (21). In particular, DR8 could derive from DR11. The difference between measured m/z values for DR8 and DR11 was 478.7, which fits with the mass contribution of a disaccharide moiety (480.5) within the mass accuracy of the instrument.The m/z values for muropeptides DR2, DR10, and DR12 supported the argument for structures in which the two d-Ala residues from the d-Ala–d-Ala C-terminal dipeptide were lost, leaving Orn as the C-terminal amino acid.The position of one Gly residue in muropeptides DR2, DR8, and DR10 to DR13 could not be formally demonstrated. One of the Gly residues could be at either the N- or the C-terminal positions. However, the N-terminal position seems more likely. The structure of the basic muropeptide (DR7), with a (Gly)2 acylating the δ-NH2 group of Orn, suggests that major muropeptides should present a (Gly)2 dipeptide. The scarcity of DR3 and DR6, which unambiguously have Gly as the C-terminal amino acid (Fig. (Fig.1),1), supports our assumption.Molar proportions for each muropeptide were calculated as proposed by Glauner et al. (10) and are shown in Table Table1.1. For calculations the structures of DR10 to DR13 were assumed to be those shown in Fig. Fig.1.1. The degree of cross-linkage calculated was 47.2%. Trimeric muropeptides were rather abundant (8 mol%) and made a substantial contribution to total cross-linkage. However, higher-order oligomers were not detected, in contrast with other gram-positive bacteria, such as Staphylococcus aureus, which is rich in such oligomers (8). The proportion of muropeptides with (1→6)anhydro-muramic acid (5 mol%) corresponded to a mean glycan strand length of 20 disaccharide units, which is in the range of values published for other bacteria (10, 17).The results of our study indicate that mureins from D. radiodurans and T. thermophilus HB8 (19) are certainly related in their basic structures but have distinct muropeptide compositions. In accordance with the phylogenetic proximity of Thermus and Deinococcus (11), both mureins are built up from the same basic monomeric subunit (DR7 in Fig. Fig.1),1), are cross-linked by (Gly)2 bridges, and have (1→6)anhydro-muramic acid at the termini of glycan strands. Most interestingly, Deinococcus and Thermus are the only microorganisms identified at present with the murein chemotype A3β as defined by Schleifer and Kandler (20). Nevertheless, the differences in muropeptide composition were substantial. Murein from D. radiodurans was poor in d-Ala–d-Ala- and d-Ala–Gly-terminated muropeptides (2.2 and 2.4 mol%, respectively) but abundant in Orn-terminated muropeptides (23.8 mol%) and in muropeptides with a peptide chain reduced to the dipeptide l-Ala–d-Glu (18 mol%). In contrast, neither Orn- nor Glu-terminated muropeptides have been detected in T. thermophilus HB8 murein, which is highly enriched in muropeptides with d-Ala–d-Ala and d-Ala–Gly (19). Furthermore, no traces of phenyl acetate-containing muropeptides, a landmark for T. thermophilus HB8 murein (19), were found in D. radiodurans. Cross-linkage was definitely higher in D. radiodurans than in T. thermophilus HB8 (47.4 and 27%, respectively), largely due to the higher proportion of trimers in the former.The similarity in murein basic structure suggests that the difference between D. radiodurans and T. thermophilus HB8 with respect to the Gram reaction may simply be a consequence of the difference in the thickness of cell walls (2, 3, 23). Interestingly, D. radiodurans murein turned out to be relatively simple for a gram-positive organism, possibly reflecting the primitive nature of this genus as deduced from phylogenetic trees (11). Our results illustrate the phylogenetic proximity between Deinococcus and Thermus at the cell wall level but also point out the structural divergences originated by the evolutionary history of each genus.  相似文献   

8.
A Systematic Proteomic Analysis of Listeria monocytogenes House-keeping Protein Secretion Systems     
Sven Halbedel  Swantje Reiss  Birgit Hahn  Dirk Albrecht  Gopala Krishna Mannala  Trinad Chakraborty  Torsten Hain  Susanne Engelmann  Antje Flieger 《Molecular & cellular proteomics : MCP》2014,13(11):3063-3081
  相似文献   

9.
Proteomics of Saccharomyces cerevisiae Organelles     
Elena Wiederhold  Liesbeth M. Veenhoff  Bert Poolman    Dirk Jan Slotboom 《Molecular & cellular proteomics : MCP》2010,9(3):431-445
  相似文献   

10.
Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice     
Pavan Umate 《Plant signaling & behavior》2011,6(3):335-338
The enzymes called lipoxygenases (LOXs) can dioxygenate unsaturated fatty acids, which leads to lipoperoxidation of biological membranes. This process causes synthesis of signaling molecules and also leads to changes in cellular metabolism. LOXs are known to be involved in apoptotic (programmed cell death) pathway, and biotic and abiotic stress responses in plants. Here, the members of LOX gene family in Arabidopsis and rice are identified. The Arabidopsis and rice genomes encode 6 and 14 LOX proteins, respectively, and interestingly, with more LOX genes in rice. The rice LOXs are validated based on protein alignment studies. This is the first report wherein LOXs are identified in rice which may allow better understanding the initiation, progression and effects of apoptosis, and responses to bitoic and abiotic stresses and signaling cascades in plants.Key words: apoptosis, biotic and abiotic stresses, genomics, jasmonic acid, lipidsLipoxygenases (linoleate:oxygen oxidoreductase, EC 1.13.11.-; LOXs) catalyze the conversion of polyunsaturated fatty acids (lipids) into conjugated hydroperoxides. This process is called hydroperoxidation of lipids. LOXs are monomeric, non-heme and non-sulfur, but iron-containing dioxygenases widely expressed in fungi, animal and plant cells, and are known to be absent in prokaryotes. However, a recent finding suggests the existence of LOX-related genomic sequences in bacteria but not in archaea.1 The inflammatory conditions in mammals like bronchial asthama, psoriasis and arthritis are a result of LOXs reactions.2 Further, several clinical conditions like HIV-1 infection,3 disease of kidneys due to the activation of 5-lipoxygenase,4,5 aging of the brain due to neuronal 5-lipoxygenase6 and atherosclerosis7 are mediated by LOXs. In plants, LOXs are involved in response to biotic and abiotic stresses.8 They are involved in germination9 and also in traumatin and jasmonic acid biochemical pathways.10,11 Studies on LOX in rice are conducted to develop novel strategies against insect pests12 in response to wounding and insect attack,13 and on rice bran extracts as functional foods and dietary supplements for control of inflammation and joint health.14 In Arabidopsis, LOXs are studied in response to natural and stress-induced senescence,15 transition to flowering,16 regulation of lateral root development and defense response.17The arachidonic, linoleic and linolenic acids can act as substrates for different LOX isozymes. A hydroperoxy group is added at carbons 5, 12 or 15, when arachidonic acid is the substrate, and so the LOXs are designated as 5-, 12- or 15-lipoxygenases. Sequences are available in the database for plant lipoxygenases (EC:1.13.11.12), mammalian arachidonate 5-lipoxygenase (EC:1.13.11.34), mammalian arachidonate 12-lipoxygenase (EC:1.13.11.31) and mammalian erythroid cell-specific 15-lipoxygenase (EC:1.13.11.33). The prototype member for LOX family, LOX-1 of Glycine max L. (soybean) is a 15-lipoxygenase. The LOX isoforms of soybean (LOX-1, LOX-2, LOX-3a and LOX-3b) are the most characterized of plant LOXs.18 In addition, five vegetative LOXs (VLX-A, -B, -C, -D, -E) are detected in soybean leaves.19 The 3-dimensional structure of soybean LOX-1 has been determined.20,21 LOX-1 was shown to be made of two domains, the N-terminal domain-I which forms a β-barrel of 146 residues, and a C-terminal domain-II of bundle of helices of 693 residues21 (Fig. 1). The iron atom was shown to be at the centre of domain-II bound by four coordinating ligands, of which three are histidine residues.22Open in a separate windowFigure 1Three-dimensional structure of soybean lipoxygenase L-1. The domain I (N-terminal) and domain II (C-terminal) are indicated. The catalytic iron atom is embedded in domain II (PDB ID-1YGE).21This article describes identification of LOX genes in Arabidopsis and rice. The Arabidopsis genome encodes for six LOX proteins23 (www.arabidopsis.org) (LocusAnnotationNomenclatureA*B*C*AT1G55020lipoxygenase 1 (LOX1)LOX185998044.45.2049AT1G17420lipoxygenase 3 (LOX3)LOX3919103725.18.0117AT1G67560lipoxygenase family proteinLOX4917104514.68.0035AT1G72520lipoxygenase, putativeLOX6926104813.17.5213AT3G22400lipoxygenase 5 (LOX5)LOX5886101058.86.6033AT3G45140lipoxygenase 2 (LOX2)LOX2896102044.75.3177Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.Interestingly, the rice genome (rice.plantbiology.msu.edu) encodes for 14 LOX proteins as compared to six in Arabidopsis (and22). Of these, majority of them are composed of ∼790–950 aa with the exception for loci, LOC_Os06g04420 (126 aa), LOC_Os02g19790 (297 aa) and LOC_Os12g37320 (359 aa) (Fig. 2).Open in a separate windowFigure 2Protein alignment of rice LOXs and vegetative lipoxygenase, VLX-B,28 a soybean LOX (AA B67732). The 14 rice LOCs are indicated on left and sequence position on right. Gaps are included to improve alignment accuracy. Figure was generated using ClustalX program.

Table 2

Genes encoding lipoxygenases in rice
ChromosomeLocus IdPutative functionA*B*C*
2LOC_Os02g10120lipoxygenase, putative, expressed9271035856.0054
2LOC_Os02g19790lipoxygenase 4, putative29733031.910.4799
3LOC_Os03g08220lipoxygenase protein, putative, expressed9191019597.4252
3LOC_Os03g49260lipoxygenase, putative, expressed86897984.56.8832
3LOC_Os03g49380lipoxygenase, putative, expressed87898697.57.3416
3LOC_Os03g52860lipoxygenase, putative, expressed87197183.56.5956
4LOC_Os04g37430lipoxygenase protein, putative, expressed79889304.610.5125
5LOC_Os05g23880lipoxygenase, putative, expressed84895342.97.6352
6LOC_Os06g04420lipoxygenase 4, putative12614054.76.3516
8LOC_Os08g39840lipoxygenase, chloroplast precursor, putative, expressed9251028196.2564
8LOC_Os08g39850lipoxygenase, chloroplast precursor, putative, expressed9421044947.0056
11LOC_Os11g36719lipoxygenase, putative, expressed86998325.45.3574
12LOC_Os12g37260lipoxygenase 2.1, chloroplast precursor, putative, expressed9231046876.2242
12LOC_Os12g37320lipoxygenase 2.2, chloroplast precursor, putative, expressed35940772.78.5633
Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.

Table 3

Percent homology of rice lipoxygenases against Arabidopsis
Loci (Os)Homolog (At)Identity/similarity (%)No. of aa compared
LOC_Os02g10120LOX260/76534
LOC_Os02g19790LOX554/65159
LOC_Os03g08220LOX366/79892
LOC_Os03g49260LOX556/73860
LOC_Os03g49380LOX560/75861
LOC_Os03g52860LOX156/72877
LOC_Os04g37430LOX361/75631
LOC_Os05g23880LOX549/66810
LOC_Os06g04420LOX549/62114
LOC_Os08g39840LOX249/67915
LOC_Os08g39850LOX253/70808
LOC_Os11g36719LOX552/67837
LOC_Os12g37260LOX253/67608
LOC_Os12g37320LOX248/60160
Open in a separate windowOs, Oryza sativa L.; At, Arabidopsis thaliana L.; aa, amino acids.In plants, programmed cell death (PCD) has been linked to different stages of development and senescence, germination and response to cold and salt stresses.24,25 To conclude, this study indicates that rice genome encodes for more LOX proteins as compared to Arabidopsis. The LOX members are not been thoroughly investigated in rice. The more advanced knowledge on LOXs function might spread light on the significant role of LOXs in PCD, biotic and abiotic stress responses in rice.  相似文献   

11.
Reverse Transcriptase PCR Detection of Astrovirus,Hepatitis A Virus,and Poliovirus in Experimentally Contaminated Mussels: Comparison of Several Extraction and Concentration Methods     
Ousmane Traore  Charlotte Arnal  Berengere Mignotte  Armand Maul  Henri Laveran  Sylviane Billaudel  Louis Schwartzbrod 《Applied and environmental microbiology》1998,64(8):3118-3122
  相似文献   

12.
Disease Mutations in the Human Mitochondrial DNA Polymerase Thumb Subdomain Impart Severe Defects in Mitochondrial DNA Replication     
Rajesh Kasiviswanathan  Matthew J. Longley  Sherine S. L. Chan    William C. Copeland 《The Journal of biological chemistry》2009,284(29):19501-19510
Forty-five different point mutations in POLG, the gene encoding the catalytic subunit of the human mitochondrial DNA polymerase (pol γ), cause the early onset mitochondrial DNA depletion disorder, Alpers syndrome. Sequence analysis of the C-terminal polymerase region of pol γ revealed a cluster of four Alpers mutations at highly conserved residues in the thumb subdomain (G848S, c.2542g→a; T851A, c.2551a→g; R852C, c.2554c→t; R853Q, c.2558g→a) and two Alpers mutations at less conserved positions in the adjacent palm subdomain (Q879H, c.2637g→t and T885S, c.2653a→t). Biochemical characterization of purified, recombinant forms of pol γ revealed that Alpers mutations in the thumb subdomain reduced polymerase activity more than 99% relative to the wild-type enzyme, whereas the palm subdomain mutations retained 50–70% wild-type polymerase activity. All six mutant enzymes retained physical and functional interaction with the pol γ accessory subunit (p55), and none of the six mutants exhibited defects in misinsertion fidelity in vitro. However, differential DNA binding by these mutants suggests a possible orientation of the DNA with respect to the polymerase during catalysis. To our knowledge this study represents the first structure-function analysis of the thumb subdomain in pol γ and examines the consequences of mitochondrial disease mutations in this region.As the only DNA polymerase found in animal cell mitochondria, DNA polymerase γ (pol γ)3 bears sole responsibility for DNA synthesis in all replication and repair transactions involving mitochondrial DNA (1, 2). Mammalian cell pol γ is a heterotrimeric complex composed of one catalytic subunit of 140 kDa (p140) and two 55-kDa accessory subunits (p55) that form a dimer (3). The catalytic subunit contains an N-terminal exonuclease domain connected by a linker region to a C-terminal polymerase domain. Whereas the exonuclease domain contains essential motifs I, II, and III for its activity, the polymerase domain comprising the thumb, palm, and finger subdomains contains motifs A, B, and C that are crucial for polymerase activity. The catalytic subunit is a family A DNA polymerase that includes bacterial pol I and T7 DNA polymerase and possesses DNA polymerase, 3′ → 5′ exonuclease, and 5′-deoxyribose phosphate lyase activities (for review, see Refs. 1 and 2). The 55-kDa accessory subunit (p55) confers processive DNA synthesis and tight binding of the pol γ complex to DNA (4, 5).Depletion of mtDNA as well as the accumulation of deletions and point mutations in mtDNA have been observed in several mitochondrial disorders (for review, see Ref. 6). mtDNA depletion syndromes are caused by defects in nuclear genes responsible for replication and maintenance of the mitochondrial genome (7). Mutation of POLG, the gene encoding the catalytic subunit of pol γ, is frequently involved in disorders linked to mutagenesis of mtDNA (8, 9). Presently, more than 150 point mutations in POLG are linked with a wide variety of mitochondrial diseases, including the autosomal dominant (ad) and recessive forms of progressive external ophthalmoplegia (PEO), Alpers syndrome, parkinsonism, ataxia-neuropathy syndromes, and male infertility (tools.niehs.nih.gov/polg) (9).Alpers syndrome, a hepatocerebral mtDNA depletion disorder, and myocerebrohepatopathy are rare heritable autosomal recessive diseases primarily affecting young children (1012). These diseases generally manifest during the first few weeks to years of life, and symptoms gradually develop in a stepwise manner eventually leading to death. Alpers syndrome is characterized by refractory seizures, psychomotor regression, and hepatic failure (11, 12). Mutation of POLG was first linked to Alpers syndrome in 2004 (13), and to date 45 different point mutations in POLG (18 localized to the polymerase domain) are associated with Alpers syndrome (9, 14, 15). However, only two Alpers mutations (A467T and W748S, both in the linker region) have been biochemically characterized (16, 17).During the initial cloning and sequencing of the human, Drosophila, and chicken pol γ genes, we noted a highly conserved region N-terminal to motif A in the polymerase domain that was specific to pol γ (18). This region corresponds to part of the thumb subdomain that tracks DNA into the active site of both Escherichia coli pol I and T7 DNA polymerase (1921). A high concentration of disease mutations, many associated with Alpers syndrome, is found in the thumb subdomain.Here we investigated six mitochondrial disease mutations clustered in the N-terminal portion of the polymerase domain of the enzyme (Fig. 1A). Four mutations (G848S, c.2542g→a; T851A, c.2551a→g; R852C, c.2554c→t; R853Q, c.2558g→a) reside in the thumb subdomain and two (Q879H, c.2637g→t and T885S, c.2653a→t) are located in the palm subdomain. These mutations are associated with Alpers, PEO, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), ataxia-neuropathy syndrome, Leigh syndrome, and myocerebrohepatopathy (POLG mutationDiseaseGeneticsReferenceG848SAlpers syndromeIn trans with A467T, Q497H, T251I-P587L, or W748S-E1143G in Alpers syndrome15, 35, 4350Leigh syndromeIn trans with R232H in Leigh syndrome49MELASIn trans with R627Q in MELAS38PEO with ataxia-neuropathyIn trans with G746S and E1143G in PEO with ataxia50PEOIn trans with T251I and P587L in PEO51, 52T851AAlpers syndromeIn trans with R1047W48, 53In trans with H277CR852CAlpers syndromeIn trans with A467T14, 48, 50In cis with G11D and in trans with W748S-E1143G or A467TAtaxia-neuropathyIn trans with G11D-R627Q15R853QMyocerebrohepatopathyIn trans with T251I-P587L15Q879HAlpers syndrome with valproate-induced hepatic failureIn cis with E1143G and in trans with A467T-T885S35, 54T885SAlpers syndrome with valproate-induced hepatic failureIn cis with A467T and in trans with Q879H-E1143G35, 54Open in a separate windowOpen in a separate windowFIGURE 1.POLG mutations characterized in this study. A, the location of the six mutations characterized is shown in red in the primary sequence of pol γ. Four mutations, the G848S, T851A, R852C, and R853Q, are located in the thumb domain, whereas two mutations, the Q879H and T885S, are in the palm domain of the polymerase region. B, sequence alignment of pol γ from yeast to humans. The amino acids characterized in this study are shown in red. Yellow-highlighted amino acids are highly conserved, and blue-highlighted amino acids are moderately conserved.  相似文献   

13.
Inhibition of Lysine Acetyltransferase KAT3B/p300 Activity by a Naturally Occurring Hydroxynaphthoquinone, Plumbagin     
Kodihalli C. Ravindra  B. Ruthrotha Selvi  Mohammed Arif  B. A. Ashok Reddy  Gali R. Thanuja  Shipra Agrawal  Suman Kalyan Pradhan  Natesh Nagashayana  Dipak Dasgupta    Tapas K. Kundu 《The Journal of biological chemistry》2009,284(36):24453-24464
  相似文献   

14.
Normalization and Statistical Analysis of Multiplexed Bead-based Immunoassay Data Using Mixed-effects Modeling     
David C. Clarke  Melody K. Morris  Douglas A. Lauffenburger 《Molecular & cellular proteomics : MCP》2013,12(1):245-262
  相似文献   

15.
The Pre-mRNA Splicing Machinery of Trypanosomes: Complex or Simplified?     
Arthur Günzl 《Eukaryotic cell》2010,9(8):1159-1170
  相似文献   

16.
Phosphoprotein Secretome of Tumor Cells as a Source of Candidates for Breast Cancer Biomarkers in Plasma     
Anna M. Zawadzka  Birgit Schilling  Michael P. Cusack  Alexandria K. Sahu  Penelope Drake  Susan J. Fisher  Christopher C. Benz  Bradford W. Gibson 《Molecular & cellular proteomics : MCP》2014,13(4):1034-1049
Breast cancer is a heterogeneous disease whose molecular diversity is not well reflected in clinical and pathological markers used for prognosis and treatment selection. As tumor cells secrete proteins into the extracellular environment, some of these proteins reach circulation and could become suitable biomarkers for improving diagnosis or monitoring response to treatment. As many signaling pathways and interaction networks are altered in cancerous tissues by protein phosphorylation, changes in the secretory phosphoproteome of cancer tissues could reflect both disease progression and subtype. To test this hypothesis, we compared the phosphopeptide-enriched fractions obtained from proteins secreted into conditioned media (CM) derived from five luminal and five basal type breast cancer cell lines using label-free quantitative mass spectrometry. Altogether over 5000 phosphosites derived from 1756 phosphoproteins were identified, several of which have the potential to qualify as phosphopeptide plasma biomarker candidates for the more aggressive basal and also the luminal-type breast cancers. The analysis of phosphopeptides from breast cancer patient plasma and controls allowed us to construct a discovery list of phosphosites under rigorous collection conditions, and second to qualify discovery candidates generated from the CM studies. Indeed, a set of basal-specific phosphorylation CM site candidates derived from IBP3, CD44, OPN, FSTL3, LAMB1, and STC2, and luminal-specific candidates derived from CYTC and IBP5 were selected and, based on their presence in plasma, quantified across all cell line CM samples using Skyline MS1 intensity data. Together, this approach allowed us to assemble a set of novel cancer subtype specific phosphopeptide candidates for subsequent biomarker verification and clinical validation.Breast cancer (BC)1 is a heterogeneous disease whose molecular complexity and diversity is not well reflected in current clinical and pathological markers. Therefore, there is a critical need to increase the number of clinically suitable biomarkers that better reflect the many molecular subtypes of BC (13). BC can be categorized by gene expression profiling and molecular pathology into three major clinical types, each with different natural histories and therapeutic recommendations, and exhibiting significant molecular and clinical heterogeneity. First, luminal estrogen receptor (ER) positive breast cancers exist in luminal A and B subtypes; they are the most numerous and clinically diverse of all breast cancers, with luminal A tumors having the more favorable prognosis because of their responsiveness to targeted endocrine therapy compared with the more proliferative luminal B tumors. Second, human epidermal growth factor receptor-2 (HER2/ErbB2) amplified breast cancers, despite having poor prognosis in the absence of any systemic adjuvant therapy, can now be successfully treated with HER2-targeted agents. Third, basal-like breast cancers are among the most aggressive tumors, and are further subdivided. Those with BRCA1-like features are modeled by basal-A breast cancer cell lines, and those with mesenchymal and stem/progenitor-cell features are modeled by basal-B breast cancer cell lines (4). This latter subtype of basal-like tumors include triple negative breast cancers (TNBC), lacking expression of ER, progesterone receptor (PR), and HER2, and therefore not susceptible to more advanced targeted treatment options and requiring aggressive chemotherapy with otherwise very poor prognosis (5).BC is the leading cause of adult female mortality worldwide, caused by recurrent spread of metastatic disease that is thought to have seeded prior to the time of primary tumor excision (6). Thus, blood-based biomarkers that are highly specific as well as capable of detecting BC prior to primary tumor diagnosis offer the potential to decrease BC morbidity as well as identify the most appropriate treatment options (7). As cancer cells are known to secrete proteins into the extracellular microenvironment that modify cell adhesion, intercellular communication, motility, and invasiveness (8), it is expected that some will enter the blood stream and become suitable targets for early noninvasive diagnosis or monitoring of treatment progression.It is well recognized that blood contains hormones, cytokines, and other nonhormonal proteins, as well as a tissue leakage products and secretions from diseased tissues and tumors (9). Secreted proteins are often in the low abundance range of plasma protein concentrations, and likely contain proteins specific for distinct tumor and/or tissue types. Because tumorogenesis is known to involve changes in cellular signaling pathways involving protein kinases, protein phosphorylation is a particularly promising target for the detection of such activated pathways in BC (10). For example, almost half of the tyrosine kinases of the human “kinome” are implicated in human cancers (11) as well as numerous serine-threonine kinases, including Akt and mTOR (12, 13). Kinases participating in signal transduction pathways phosphorylate their substrates altering their conformation, localization, and activity, which in turn modulates downstream protein effectors and alters cellular processes. Like other posttranslational modifications, changes in the phosphorylation status of a protein do not directly correlate with changes in expression, and are therefore not accounted for in most gene expression or protein array analyses (14). Therefore, we hypothesized that phosphoproteins secreted or shed by cancer cells constitute a largely overlooked source of biomarker candidates that could be correlated with BC subtypes and/or disease status (15, 16).To test this hypothesis, we analyzed the conditioned media (CM) from human cancer cell lines, a well-established model for the discovery of disease-specific biomarkers (17, 18). Breast cancer cell lines derived from primary tumors or pleural effusions are a good model of BC, mirroring molecular characteristics of primary breast tumors (19). The use of CM is also advantageous in that it provides sufficient amounts of sample to identify candidates that can subsequently be targeted in more limited breast cancer patient plasma samples. To examine the phosphorylation status of secreted proteins, we examined a panel of five luminal and five basal type BC cell lines thought to emulate the molecular characteristics of most primary breast tumor types, including four basal-B subtypes corresponding to TNBC (19). A mass spectrometry-based proteomic approach was used that employed HILIC fractionation, TiO2 affinity enrichment of phosphopeptides, and final mass spectrometric analysis by reverse-phase liquid chromatography and label-free quantification (Fig. 1). MS1 Filtering in Skyline (20, 21) was used to quantify relative differences in site-specific protein phosphorylation between secretomes of BC cell lines derived from breast tumor subtypes to discern luminal or basal tumor specificity. Lastly, plasma obtained from breast cancer patients and controls were analyzed in an optimized workflow suitable to both preserve and identify phosphopeptides, and to qualify a subset of biomarker candidates selected from the CM analysis (Fig. 1). Overall, we identified 107 phosphorylation sites specific for basal-type tumors derived from 84 proteins and 95 phosphorylation sites specific for luminal-type tumors derived from 64 proteins. Moreover, we qualified the presence of seven basal type specific and two luminal specific phosphosites derived from eight phosphoproteins in BC patient and control plasma.

Table I

Luminal and basal breast cancer cell lines
Cell lineaTumor subtypeERbPRcHER2dDiagnosise
MCF7Luminal++NoIDC
T47DLuminal++NoIDC
BT474Luminal++YesIDC
MDAMB361Luminal+YesAdenocarcinoma
SKBR3LuminalYesAdenocarcinoma
HCC1954Basal AYesDuctal carcinoma
MCF10ABasal BNoFibrocystic disease
MDAMB231Basal BNoAdenocarcinoma
HCC38Basal BNoDuctal carcinoma
BT549Basal BNoIDC, papillary
Open in a separate windowa This table was populated with information from Neve et al. (19).b Estrogen (ER).c Progesterone receptor (PR) expression.d Human epidermal growth factor receptor 2 (HER2/ERBB2) overexpression.e Invasive ductal carcinoma (IDC).Open in a separate windowFig. 1.The experimental workflow developed for preparation of phosphopeptides from CM samples from breast cancer cell lines derived from five luminal and five basal tumors.  相似文献   

17.
Borna Disease Virus Nucleoprotein (p40) Is a Major Target for CD8+-T-Cell-Mediated Immune Response          下载免费PDF全文
Oliver Planz  Lothar Stitz 《Journal of virology》1999,73(2):1715-1718
  相似文献   

18.
Genome-wide analysis of thioredoxin fold superfamily peroxiredoxins in Arabidopsis and rice     
Pavan Umate 《Plant signaling & behavior》2010,5(12):1543-1546
A broad range of peroxides generated in subcellular compartments, including chloroplasts, are detoxified with peroxidases called peroxiredoxins (Prx). The Prx are ubiquitously distributed in all organisms including bacteria, fungi, animals and also in cyanobacteria and plants. Recently, the Prx have emerged as new molecules in antioxidant defense in plants. Here, the members which belong to Prx gene family in Arabidopsis and rice are been identified. Overall, the Prx members constitute a small family with 10 and 11 genes in Arabidopsis and rice respectively. The prx genes from rice are assigned to their functional groups based on homology search against Arabidopsis protein database. Deciphering the Prx functions in rice will add novel information to the mechanism of antioxidant defense in plants. Further, the Prx also forms the part of redox signaling cascade. Here, the Prx gene family has been described for rice.Key words: antioxidant defense, chloroplast, gene family, oxidative stress, reactive oxygen speciesThe formation of free radicals and reactive oxygen species (ROS) occur in several enzymatic and non-enzymatic reactions during cellular metabolism. The accumulation of these reactive and deleterious intermediates is suppressed by antioxidant defense mechanism comprised of low molecular weight antioxidants and enzymes. In photosynthetic organisms, the defense against the damage from free radicals and oxidative stress is crucial. For instance, the ROS production occurs in photosystem II with generation of singlet oxygen (1O2) and hydrogen peroxide (H2O2),1,2 photosystem I from superoxide anion radicals (O2),3 and during photorespiration with generation of H2O2.4 ROS production may exceed under environmental stress conditions like excess light, low temperature and drought.5The antioxidant defense mechanism is activated by antioxidant metabolities and enzymes which detoxify ROS and lipid peroxides. The detoxification of ROS can occur in various cellular compartments such as chloroplasts, mitochondria, peroxisomes and cytosol.6 The enzymes like ascorbate peroxidase, catalase, glutathione peroxidase and superoxide dismutase are prominent antioxidant enzymes.6 The peroxiredoxins (Prx) emerged as new components in the antioxidant defense network of barley.7,8 Later, Prx were studied in other plants.914Prx can be classified into four different functional groups, PrxQ, 1-Cys Prx, 2-Cys Prx and Type-2 Prx.15,16 They are members of the thioredoxin fold superfamily.17,18 In this study, the prx genes found in Arabidopsis and rice genomes are been identified. The Arabidopsis genome encodes 10 prx genes classified into four functional categories, 1-Cys Prx, 2-Cys Prx, PrxQ and Type-2 Prx.13 Of these, one each of 1-Cys Prx and PrxQ, two of 2-Cys Prx (2-Cys PrxA and 2-Cys PrxB) and six Type-2 Prx (PrxA–F) are identified13 (LocusAnnotationSynonymA*B*C*AT1G481301-Cysteine peroxiredoxin 1 (ATPER1)1-Cys Prx21624081.36.603AT1G60740Peroxiredoxin type 2Type-2 PrxD16217471.95.2297AT1G65970Thioredoxin-dependent peroxidase 2 (TPX2)Type-2 PrxC16217413.95.2297AT1G65980Thioredoxin-dependent peroxidase 1 (TPX1)Type-2 PrxB16217427.84.9977AT1G65990Type 2 peroxiredoxin-relatedType-2 PrxA55362653.66.4368AT3G06050Peroxiredoxin IIF (PRXIIF)Type-2 PrxF20121445.29.3905AT3G116302-Cys Peroxiredoxin A (2CPA, 2-Cys PrxA)2-Cys PrxA26629091.77.5686AT3G26060ATPRX Q, periredoxin QPrxQ21623677.810.0565AT3G52960Peroxiredoxin type 2Type-2 PrxE23424684.09.572AT5G062902-Cysteine Peroxiredoxin B (2CPB, 2-Cys PrxB)2-Cys PrxB27329779.55.414Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.In rice (rice.plantbiology.msu.edu/), there are 11 genomic loci which encode for Prx proteins (and33). Interestingly, a new prx gene (LOC_Os07g15670) annotated as “peroxiredoxin, putative, expressed” is identified making the tally of prx genes to eleven in rice as compared to ten in Arabidopsis (and22). The BLAST search has identified its counterpart in Arabidopsis which has been annotated as “antioxidant/oxidoreductase” (AT1G21350) in the TAIR database (www.arabidopsis.org). The rice LOC_Os07g15670 and Arabidopsis AT1G21350 share protein homology %68/78 for 236 amino acids (ChromosomeLocus IdPutative function/AnnotationA*B*C*1LOC_Os01g16152peroxiredoxin, putative, expressed19920873.68.22091LOC_Os01g24740peroxiredoxin-2E-1, chloroplast precursor, putative10711591.56.79061LOC_Os01g48420peroxiredoxin, putative, expressed16317290.85.68282LOC_Os02g09940peroxiredoxin, putative, expressed22623179.56.5352LOC_Os02g33450peroxiredoxin, putative, expressed26228096.95.77094LOC_Os04g339702-Cys peroxiredoxin BAS1, chloroplast precursor, putative, expressed12213410.24.37056LOC_Os06g09610peroxiredoxin, putative, expressed2662892610.50976LOC_Os06g42000peroxiredoxin, putative, expressed23323688.39.20597LOC_Os07g15670peroxiredoxin, putative, expressed25327684.69.85457LOC_Os07g44440peroxiredoxin, putative, expressed22124232.65.36187LOC_Os07g44430peroxiredoxin, putative25627785.36.8544Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.

Table 3

Identification of rice homologs of peroxiredoxins in A. thaliana
Locus Id (Os*)Homolog (At*)NomenclatureIdentitity/Similarity (%)No. of aa* compared
LOC_Os01g16152AT3G06050Type-2 PrxF73/84201
LOC_Os01g24740AT1G65980Type-2 PrxB42/5977
LOC_Os01g48420AT1G65970Type-2 PrxC74/86162
LOC_Os02g09940AT1G60740Type-2 PrxD56/72166
LOC_Os02g33450AT5G062902-Cys Prx B74/82272
LOC_Os04g33970AT3G116302-Cys PrxA92/9688
LOC_Os06g09610AT3G26060PrxQ78/89159
LOC_Os06g42000AT3G52960Type-2 PrxE61/74240
LOC_Os07g15670AT1G21350Antioxidant68/78236
LOC_Os07g44440AT1G65990Type-2 PrxA27/4483
LOC_Os07g44430AT1G481301-Cys Prx69/83221
Open in a separate window*Os, Oryza sativa L.; At, Arabidopsis thaliana L.; aa, amino acids.The protein alignment study of Prx members in rice with the canonical Prx2-B and Prx2-E of Arabidopsis is shown in Figure 1. The Type-2 Prx proteins are characterized by the presence of catalytic cysteine (Cys) residues (Fig. 1). The alignment of rice Prx proteins shows that the Cys residue is well conserved in members like LOC_Os02g09940 (Type-2 PrxD), LOC_Os06g42000 (Type-2 Prx E), LOC_Os01g48420 (Type-2 Prx C), LOC_Os01g16152 (Type-2 Prx F), LOC_Os02g33450 (2-Cys Prx B), LOC_Os07g44440 (Type-2 Prx A), LOC_Os07g44430 (1-Cys Prx) and LOC_Os06g09610 (PrxQ) (Fig. 1). However, LOC_Os01g24740 (Type-2 PrxB) and LOC_Os04g33970 (2-Cys PrxA) which contain a chloroplast precursor do not have the catalytic Cys residues (Fig. 1). The newly identified LOC_Os07g15670 and AT1G21350 with annotations “peroxiredoxin, putative, expressed” and “antioxidant/oxidoreductase” respectively do not have catalytic Cys residues as well (Fig. 1).Open in a separate windowFigure 1Amino acid alignment of peroxiredoxins (Prx) in rice. The rice proteins are aligned with the canonical Arabidopsis Prx2-B and Prx2-E. The conserved cysteine residues are indicated by arrows on top of the alignment. Note the sequence conservation between the newly identified LOC_Os07g15670 and AT1G21350. The rice locus Ids are identified on left and amino acid positions on right. The alignment was made with ClustalX.Taken together, the results demonstrate that like Arabidopsis, the Prx constitute a small gene family in rice. However, the functional role of Prx in rice is not clearly understood.  相似文献   

19.
Stress-induced flowering     
Kaede C Wada  Kiyotoshi Takeno 《Plant signaling & behavior》2010,5(8):944-947
Many plant species can be induced to flower by responding to stress factors. The short-day plants Pharbitis nil and Perilla frutescens var. crispa flower under long days in response to the stress of poor nutrition or low-intensity light. Grafting experiments using two varieties of P. nil revealed that a transmissible flowering stimulus is involved in stress-induced flowering. The P. nil and P. frutescens plants that were induced to flower by stress reached anthesis, fruited and produced seeds. These seeds germinated, and the progeny of the stressed plants developed normally. Phenylalanine ammonialyase inhibitors inhibited this stress-induced flowering, and the inhibition was overcome by salicylic acid (SA), suggesting that there is an involvement of SA in stress-induced flowering. PnFT2, a P. nil ortholog of the flowering gene FLOWERING LOCUS T (FT) of Arabidopsis thaliana, was expressed when the P. nil plants were induced to flower under poor-nutrition stress conditions, but expression of PnFT1, another ortholog of FT, was not induced, suggesting that PnFT2 is involved in stress-induced flowering.Key words: flowering, stress, phenylalanine ammonia-lyase, salicylic acid, FLOWERING LOCUS T, Pharbitis nil, Perilla frutescensFlowering in many plant species is regulated by environmental factors, such as night-length in photoperiodic flowering and temperature in vernalization. On the other hand, a short-day (SD) plant such as Pharbitis nil (synonym Ipomoea nil) can be induced to flower under long days (LD) when grown under poor-nutrition, low-temperature or high-intensity light conditions.19 The flowering induced by these conditions is accompanied by an increase in phenylalanine ammonia-lyase (PAL) activity.10 Taken together, these facts suggest that the flowering induced by these conditions might be regulated by a common mechanism. Poor nutrition, low temperature and high-intensity light can be regarded as stress factors, and PAL activity increases under these stress conditions.11 Accordingly, we assumed that such LD flowering in P. nil might be induced by stress. Non-photoperiodic flowering has also been sporadically reported in several plant species other than P. nil, and a review of these studies suggested that most of the factors responsible for flowering could be regarded as stress. Some examples of these factors are summarized in 1214

Table 1

Some cases of stress-induced flowering
Stress factorSpeciesFlowering responseReference
high-intensity lightPharbitis nilinduction5
low-intensity lightLemna paucicostatainduction29
Perilla frutescens var. crispainduction14
ultraviolet CArabidopsis thalianainduction23
droughtDouglas-firinduction30
tropical pasture Legumesinduction31
lemoninduction3235
Ipomoea batataspromotion36
poor nutritionPharbitis nilinduction3, 4, 13
Macroptilium atropurpureumpromotion37
Cyclamen persicumpromotion38
Ipomoea batataspromotion36
Arabidopsis thalianainduction39
poor nitrogenLemna paucicostatainduction40
poor oxygenPharbitis nilinduction41
low temperaturePharbitis nilinduction9, 12
high conc. GA4/7Douglas-firpromotion42
girdlingDouglas-firinduction43
root pruningCitrus sp.induction44
Pharbitis nilinduction45
mechanical stimulationAnanas comosusinduction46
suppression of root elongationPharbitis nilinduction7
Open in a separate window  相似文献   

20.
TATA Binding Protein Discriminates between Different Lesions on DNA,Resulting in a Transcription Decrease     
Frédéric Coin  Philippe Frit  Benoit Viollet  Bernard Salles  Jean-Marc Egly 《Molecular and cellular biology》1998,18(7):3907-3914
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号