首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous paper (Nagy et?al. in J Biol Chem 285:38811–38817, 2010) by using a multilayered model system, we showed that, from α-casein, aggregates (similar to natural casein micelles) can be built up step by step if Ca-phosphate nanocluster incorporation is ensured between the protein adsorption steps. It remained, however, an open question whether the growth of the aggregates can be terminated, similarly to in nature with casein micelles. Here, we show that, in the presence of Ca-phosphate nanoclusters, upon adsorbing onto earlier α-casein surfaces, the secondary structure of α-casein remains practically unaffected, but κ-casein exhibits considerable changes in its secondary structure as manifested by a shift toward having more β-structures. In the absence of Ca-phosphate, only κ-casein can still adsorb onto the underlying casein surface; this κ-casein also expresses considerable shift toward β-structures. In addition, this κ-casein cover terminates casein aggregation; no further adsorption of either α- or κ-casein can be achieved. These results, while obtained on a model system, may show that the Ca-insensitive κ-casein can, indeed, be the outer layer of the casein micelles, not only because of its “hairy” extrusion into the water phase, but because of its “softer” secondary structure, which can “occlude” the interacting motifs serving casein aggregation. We think that the revealed nature of the molecular interactions, and the growth mechanism found here, might be useful to understand the aggregation process of casein micelles also in?vivo.  相似文献   

2.
《Biophysical journal》2021,120(18):4115-4128
Empirically, α-helical membrane protein folding stability in surfactant micelles can be tuned by varying the mole fraction MFSDS of anionic (sodium dodecyl sulfate (SDS)) relative to nonionic (e.g., dodecyl maltoside (DDM)) surfactant, but we lack a satisfying physical explanation of this phenomenon. Cysteine labeling (CL) has thus far only been used to study the topology of membrane proteins, not their stability or folding behavior. Here, we use CL to investigate membrane protein folding in mixed DDM-SDS micelles. Labeling kinetics of the intramembrane protease GlpG are consistent with simple two-state unfolding-and-exchange rates for seven single-Cys GlpG variants over most of the explored MFSDS range, along with exchange from the native state at low MFSDS (which inconveniently precludes measurement of unfolding kinetics under native conditions). However, for two mutants, labeling rates decline with MFSDS at 0–0.2 MFSDS (i.e., native conditions). Thus, an increase in MFSDS seems to be a protective factor for these two positions, but not for the five others. We propose different scenarios to explain this and find the most plausible ones to involve preferential binding of SDS monomers to the site of CL (based on computational simulations) along with changes in size and shape of the mixed micelle with changing MFSDS (based on SAXS studies). These nonlinear impacts on protein stability highlights a multifaceted role for SDS in membrane protein denaturation, involving both direct interactions of monomeric SDS and changes in micelle size and shape along with the general effects on protein stability of changes in micelle composition.  相似文献   

3.
Using the chain build-up procedure based on the program ECEPP, we have computed the lowest energy structures for two terminally blocked subsequences from the antigenic circumsporozoite protein of Plasmodium berghei, that is known to cause malaria in animals. The full antigenic sequence is an octapeptide proline-rich tandem repeat, (Pro–Pro–Pro–Pro–Asn–Pro–Asn–Asp)2. We computed the structures for the first octapeptide plus one Pro from the second octapeptide, terminally blocked CH3CO–Pro–Pro–Pro–Pro–Asn–Pro–Asn–Asp–Pro–NHCH3 as well as the first octpeptide with an additional three Pro residues from the adjoining unit, i.e., CH3CO–Pro–Pro–Pro–Pro–Asn–Pro–Asn–Asp–Pro–Pro–Pro–NHCH3. We find that the first sequence adopts a number of different low energy structures, the most probable of which has a probability of occurrence of 56 %. Addition of two more Pro residues results in the adoption a single, unique lowest energy structure that has a probability of occurrence of over 95 % without solvation effects and 86 % when solvation effects are included in the calculations. We predict that this structure may be the one recognized as a major antigenic determinant.  相似文献   

4.
Summary Linear heptapeptide surfactin was prepared by alkaline cleavage of the lactone ring of cyclic surfactin. The structure of linear surfactin was characterised and confirmed by FAB-mass-spectroscopy, FT-IR and HPLC analysis. It was found that linear surfactin easily forms micelles in aqueous solutions by coordinating -sheet formation from -helical monomolecules, and the cmc value found to be 1.28×10–5 M. The CD spectra indicates conformational change of linear surfactin from -helical below cmc to -sheet above cmc.  相似文献   

5.
Aβ (16-35) is the hydrophobic central core of β-amyloid peptide, the main component of plaques found in the brain tissue of Alzheimer's disease patients. Depending on the conditions present, β-amyloid peptides undergo a conformational transition from random coil or α-helical monomers, to highly toxic β-sheet oligomers and aggregate fibrils. The behavior of β-amyloid peptide at plasma membrane level has been extensively investigated, and membrane charge has been proved to be a key factor modulating its conformational properties. In the present work we probed the conformational behavior of Aβ (16-35) in response to negative charge modifications of the micelle surface. CD and NMR conformational analyses were performed in negatively charged pure SDS micelles and in zwitterionic DPC micelles “doped” with small amounts of SDS. To analyze the tendency of Aβ (16-35) to interact with these micellar systems, we performed EPR experiments on three spin-labeled analogues of Aβ (16-35), bearing the methyl 3-(2,2,5,5-tetramethyl-1-oxypyrrolinyl) methanethiolsulfonate spin label at the N-terminus, in the middle of the sequence and at the C-terminus, respectively. Our conformational data show that, by varying the negative charge of the membrane, Aβ (16-35) undergoes a conformational transition from a soluble helical-kink-helical structure, to a U-turn shaped conformation that resembles protofibril models.  相似文献   

6.
7.
8.
A parametric nonorthogonal tight-binding model (NTBM1) with the set of parameters for H–C–N–O systems is presented. This model compares well with widely used semi-empirical AM1 and PM3/PM7 models but contains less fitting parameters per atom. All NTBM1 parameters are derived based on a criterion of the best agreement between the calculated and experimental values of bond lengths, valence angles and binding energies for various H–C–N–O molecules. Results for more than 200 chemical compounds are reported. Parameters are currently available for hydrogen, carbon, nitrogen, oxygen atoms and corresponding interatomic interactions. The model has a good transferability and can be used for both relaxation of large molecular systems (e.g., high-molecular compounds or covalent cluster complexes) and long-timescale molecular dynamics simulation (e.g., modelling of thermal decomposition processes). The program package based on this model is available for download at no cost from http://ntbm.info.  相似文献   

9.
The centromere is a specific genomic region upon which the kinetochore is formed to attach to spindle microtubules for faithful chromosome segregation. To distinguish this chromosomal region from other genomic loci, the centromere contains a specific chromatin structure including specialized nucleosomes containing the histone H3 variant CENP–A. In addition to CENP–A nucleosomes, we have found that centromeres contain a nucleosome-like structure comprised of the histone-fold CENP–T–W–S–X complex. However, it is unclear how the CENP–T–W–S–X complex associates with centromere chromatin. Here, we demonstrate that the CENP–T–W–S–X complex binds preferentially to ∼100 bp of linker DNA rather than nucleosome-bound DNA. In addition, we find that the CENP–T–W–S–X complex primarily binds to DNA as a (CENP–T–W–S–X)2 structure. Interestingly, in contrast to canonical nucleosomes that negatively supercoil DNA, the CENP–T–W–S–X complex induces positive DNA supercoils. We found that the DNA-binding regions in CENP–T or CENP–W, but not CENP–S or CENP–X, are required for this positive supercoiling activity and the kinetochore targeting of the CENP–T–W–S–X complex. In summary, our work reveals the structural features and properties of the CENP–T–W–S–X complex for its localization to centromeres.  相似文献   

10.
11.
Gemini surfactants from the homologous series of alkane-α,ω-diyl-bis(dodecyldimethylammonium bromide) (CnCS12, number of spacer carbons n = 2  12) and dioleoylphosphatidylethanolamine (DOPE) were used for cationic liposome (CL) preparation. CLs condense highly polymerized DNA creating complexes. Small-angle X-ray diffraction identified them as condensed lamellar phase LαC in the studied range of molar ratios CnGS12/DOPE in the temperature range 20  60 °C. The DNA–DNA distance (dDNA) is studied in dependence to CnGS12 spacer length and membrane surface charge density. The high membrane surface charge densities (CnGS12/DOPE = 0.35 and 0.4 mol/mol) lead to the linear dependence of dDNA vs. n correlating with the interfacial area of the CnGS12 molecule.  相似文献   

12.
Lifespan mutants of the nematode Caenorhabditis elegans are a much studied aging model, however, aging-related changes at the metabolome level remain largely unexplored. To identify metabolic features connected to mitochondrial dysfunction, a hallmark of aging and age-related disease, we analyzed a short-lived mitochondrial mutant (mev-1(kn1)), a long-lived mutant with enhanced cellular maintenance (ife-2(ok306)) and the novel double mutant ife-2(ok306);mev-1(kn1) which is normal-lived, possibly through attenuation of the metabolic mev-1 phenotype. Metabolomic analysis involved coupled gas chromatography–mass spectrometry with electron ionization (GC–EI–MS) and, in addition, recently introduced GC with soft atmospheric pressure chemical ionization coupled to time-of-flight mass spectrometry (GC–APCI–TOF–MS) to yield complementary mass spectrometric information for enhanced metabolite annotation. Multivariate analysis allowed distinction of mev-1 and ife-2 mutants from the wild type, while suggesting still another, distinct metabolic phenotype for the ife-2;mev-1 double mutant. In mev-1(kn1), disturbed energy metabolism was indicated by upset TCA cycle homeostasis, elevated glycolytic substrate and lactic acid levels as well as depletion of free amino acids pools. Surprisingly, these mitochondrially related changes were retained in the ife-2;mev-1 mutant, as were highly elevated levels of the dipeptide glycylproline indicative of increased collagen catabolism. However, the double mutant reverted mev-1(kn1) changes in uric acid and long-chain fatty alcohol metabolism, two pathways connected to the peroxisomal compartment. Our results are in line with recent evidence for a critical role of this organelle in aging and demonstrate the usefulness of non-targeted metabolomics approaches for detecting complex metabolic changes in the study of mitochondrial dysfunction.  相似文献   

13.
The tetrapeptide AcSDKP, a natural and specific substrate of angiotensin I-converting enzyme (ACE), is a negative regulator of hematopoiesis. AcSDKP has been measured in various biological media using an enzyme immunoassay (EIA), but its presence in human plasma and urine has not been formally established. By using immunoaffinity extraction and liquid chromatography–electrospray mass spectrometry, we demonstrate that AcSDKP-like immunoreactivity measured with EIA in plasma and urine samples from untreated, captopril- (an ACE inhibitor) and AcSDKP-treated subjects corresponds to AcSDKP. The present study confirms that AcSDKP is naturally present in human plasma and urine and that EIA is reliable for its measurement in such media.  相似文献   

14.
Buchnera aphidicola is an endosymbiont of aphids. The nucleotide sequence of an 11.5-kilobase DNA fragment from this prokaryotic organism was determined. Eight open reading frames were found coding for putative proteins involved in protein synthesis, serine and aromatic amino acid biosynthesis, as well as thioredoxin and carbohydrate metabolism. These results indicate that B. aphidicola has many genetic properties of free-living bacteria. Received: 31 December 1996 / Accepted: 6 January 1997  相似文献   

15.
16.
17.
The bimetallic core–shell nanoparticles show unique plasmonic properties and their preparations and characterizations are currently under investigation. A new type of Au core–Ag shell (Au@Ag) nanoparticles is prepared by sandwiching the chemically attached Raman reporter molecules (RRMs) and a 12-base-long oligonucleotide between the 13 nm average size core-gold nanoparticles (AuNPs) and 9 nm and 21 nm average size of Ag shell. The synthesized Au@Ag nanoparticles are tested for their surface-enhanced Raman scattering (SERS) performance. It is found that the chemical attachment of the oligonucleotides along with the RRM improved the enhancement in Raman scattering more than one order of the magnitude with the Au@Ag nanoparticles with an average 9-nm shell thickness while the Au@Ag nanoparticles with 21 nm average shell thickness have poor SERS activity. A minimum enhancement factor of 1.0 × 107 is estimated for the SERS active oligonucleotide-mediated Au@Ag nanoparticles. The approach may provide new routes for preparation of highly sensitive new generation of bimetallic core–shell nanoparticles.  相似文献   

18.
19.
The importance of water in biological systems has long been recognized in chemistry and biology communities. In this article we describe a new manner by which water affects biomolecular behaviors, called halogen–water–hydrogen bridge (XWH bridge), that is, one hydrogen bonding (H-bonding) in water-mediated H-bond bridge is replaced by halogen bonding (X-bonding). Although behaving similarly to water-mediated H-bond motif, the XWH bridge usually stands in multifurcated forms and possesses stronger directionality. Quantum mechanical analysis on several model and real systems reveals that the XWH bridges are more thermodynamically stable than other water-involved interactions, and this stability is further enhanced by the cooperation of X-bonding and H-bonding. Crystal structure survey clearly demonstrates the significance of XWH bridges in stabilization of biomolecular conformations and in mediation of protein–protein, protein–nucleic acid, and receptor–ligand recognition and binding. These findings shed light into the potential value of XWH bridges in drug design and biological engineering.  相似文献   

20.
Plant–pollinator–robber systems are considered, where the plants and pollinators are mutualists, the plants and nectar robbers are in a parasitic relation, and the pollinators and nectar robbers consume a common limiting resource without interfering competition. My aim is to show a mechanism by which pollination–mutualism could persist when there exist nectar robbers. Through the dynamics of a plant–pollinator–robber model, it is shown that (i) when the plants alone (i.e., without pollination–mutualism) cannot provide sufficient resources for the robbers’ survival but pollination–mutualism can persist in the plant–pollinator system, the pollination–mutualism may lead to invasion of the robbers, while the pollinators will not be driven into extinction by the robbers’ invasion. (ii) When the plants alone cannot support the robbers’ survival but persistence of pollination–mutualism in the plant–pollinator system is density-dependent, the pollinators and robbers could coexist if the robbers’ efficiency in translating the plant–robber interactions into fitness is intermediate and the initial densities of the three species are in an appropriate region. (iii) When the plants alone can support the robbers’ survival, the pollinators will not be driven into extinction by the robbers if their efficiency in translating the plant–pollinator interactions into fitness is relatively larger than that of the robbers. The analysis leads to an explanation for the persistence of pollination–mutualism in the presence of nectar robbers in real situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号