首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virulence in Staphylococcus aureus is regulated via agr-dependent quorum sensing in which an autoinducing peptide (AIP) activates AgrC, a histidine protein kinase. AIPs are usually thiolactones containing seven to nine amino acid residues in which the thiol of the central cysteine is linked to the α-carboxyl of the C-terminal amino acid residue. The staphylococcal agr locus has diverged such that the AIPs of the four different S. aureus agr groups self-activate but cross-inhibit. Consequently, although the agr system is conserved among the staphylococci, it has undergone significant evolutionary divergence whereby to retain functionality, any changes in the AIP-encoding gene (agrD) that modifies AIP structure must be accompanied by corresponding changes in the AgrC receptor. Since AIP-1 and AIP-4 only differ by a single amino acid, we compared the transmembrane topology of AgrC1 and AgrC4 to identify amino acid residues involved in AIP recognition. As only two of the three predicted extracellular loops exhibited amino acid differences, site-specific mutagenesis was used to exchange the key AgrC1 and AgrC4 amino acid residues in each loop either singly or in combination. A novel lux-based agrP3 reporter gene fusion was constructed to evaluate the response of the mutated AgrC receptors. The data obtained revealed that while differential recognition of AIP-1 and AIP-4 depends primarily on three amino acid residues in loop 2, loop 1 is essential for receptor activation by the cognate AIP. Furthermore, a single mutation in the AgrC1 loop 2 resulted in conversion of (Ala5)AIP-1 from a potent antagonist to an activator, essentially resulting in the forced evolution of a new AIP group. Taken together, our data indicate that loop 2 constitutes the predicted hydrophobic pocket that binds the AIP thiolactone ring while the exocyclic amino acid tail interacts with loop 1 to facilitate receptor activation.  相似文献   

2.
3.
The accessory gene regulator (agr) locus controls many of the virulence toxins involved in Staphylococcus aureus pathogenesis, and can be divided into four specificity groups. AgrC is the only group-specific receptor to mediate both intra-group activation and inter-group inhibition. We studied the ligand-receptor recognition of the agr system in depth by using a luciferase reporter system to identify the key residues responsible for AgrC activation in two closely related agr groups, AgrC-I, and AgrC-IV. Fusion PCR and site-directed mutagenesis were used to screen for functional residues of AgrC. Our data suggest that for AgrC-IV activation, residue 101 is critical for activating the receptor. In contrast, the key residues for the activation of AgrC-I are located at residues 49∼59, 107, and 116. However, three residue changes, T101A, V107S, I116S, are sufficient to convert the AIP recognizing specificity from AgrC-IV to AgrC-I.  相似文献   

4.
5.
6.
The Staphylococcus aureus accessory gene regulator (agr) is a peptide signalling system that regulates the production of secreted virulence factors required to cause infections. The signal controlling agr function is a 7‐9 residue thiolactone‐containing peptide called an autoinducing peptide (AIP) that is biosynthesized from the AgrD precursor by the membrane peptidase AgrB. To gain insight into AgrB and AgrD function, the agrBD genes were mutagenized and screened for deficiencies in AIP production. In total, single‐site mutations at 14 different residues in AgrD were identified and another 20 within AgrB. In AgrD, novel mutations were characterized in the N‐terminal leader and throughout the central region encoding the AIP signal. In AgrB, most mutations blocked peptidase activity, but mutations in the K129–K131 residues were defective in a later step in AIP biosynthesis, separating the peptidase function from thiolactone ring formation and AIP transport. With the identification of residues in AgrB essential for AgrD processing, we reevaluated the membrane topology and the new model predicts four transmembrane helices and a potential re‐entrant loop on the cytoplasmic face. Finally, co‐immunoprecipitation studies indicate that AgrB forms oligomeric structures within the membrane. These studies provide further insight into the unique structural and functional properties of AgrB.  相似文献   

7.

Background

Community-acquired methicillin-resistant Staphylococcus aureus have become a major problem in Australia. These strains have now been isolated throughout Australia including remote Indigenous communities that have had minimal exposure to healthcare facilities. Some of these strains, belonging to sequence types ST75 and ST883, have previously been reported to harbour highly divergent alleles of the housekeeping genes used in multilocus sequence typing.

Methodology/Principal Findings

ST75-MRSA-IV and ST883-MRSA-IV isolates were characterised in detail. Morphological features as well as 16S sequences were identical to other S. aureus strains. Although a partial rnpB gene sequence was not identical to previously known S. aureus sequences, it was found to be more closely related to S. aureus than to other staphylococci. Isolates also were screened using diagnostic DNA microarrays. These isolates yielded hybridisation results atypical for S. aureus. Primer directed amplification assays failed to detect species markers (femA, katA, sbi, spa). However, arbitrarily primed amplification indicated the presence of unknown alleles of these genes. Isolates could not be assigned to capsule types 1, 5 or 8. The allelic group of the accessory gene regulator (agr) locus was not determinable. Sequencing of a region of agrB, agrC and agrD (approximately 2,100 bp) revealed a divergent sequence. However, this sequence is more related to S. aureus agr alleles I and IV than to agr sequences from other Staphylococcus species. The predicted auto-inducing peptide (AIP) sequence of ST75 was identical to that of agr group I, while the predicted AIP sequence of ST883 was identical to agr group IV.

Conclusions/Significance

The genetic properties of ST75/ST883-MRSA may be due to a series of evolutionary events in ancient insulated S. aureus strains including a convergent evolution leading to agr group I- or IV-like AIP sequences and a recent acquisition of SCCmec IV elements.  相似文献   

8.
9.
Virulence in Staphylococcus aureus is largely under control of the accessory gene regulator ( agr ) quorum-sensing system. The AgrC receptor histidine kinase detects its autoinducing peptide (AIP) ligand and generates an intracellular signal resulting in secretion of virulence factors. Although agr is a well-studied quorum-sensing system, little is known about the mechanism of AgrC activation. By co-immunoprecipitation analysis and intermolecular complementation of receptor mutants, we showed that AgrC forms ligand-independent dimers that undergo trans- autophosphorylation upon interaction with AIP. Remarkably, addition of specific AIPs to AgrC mutant dimers with only one functional sensor domain caused symmetric activation of either kinase domain despite the sensor asymmetry. Furthermore, mutant dimers involving one constitutive protomer demonstrated ligand-independent activity, irrespective of which protomer was kinase deficient. These results demonstrate that signalling through either individual AgrC protomer causes symmetric activation of both kinase domains. We suggest that such signalling across the dimer interface may be an important mechanism for dimeric quorum-sensing receptors to rapidly elicit a response upon signal detection.  相似文献   

10.
Aims: To detect sensor histidine protein kinases (HPKs) similar to accessory gene regulator C (AgrC) from the rumen microbial ecosystem. Methods and the Results: Genes related to sensor HPKs were amplified by PCR using two pairs of agrC‐specfic primers from DNA extracted from bovine rumen contents. The PCR products were cloned, sequenced and phylogenetically analysed. It appeared that two sequences were HPKs. Conclusions: Although amino acid sequences deduced from the nucleotide sequences obtained in this study showed high similarities with sensor HPKs responding to citrate or C4‐dicarboxylates, they did not show high similarities with AgrC. Significance and Impact of the Study: This study revealed the presence in the rumen of sensor HPKs responding to citrate or C4‐dicarboxylates, which could stimulate rumen fermentation. Therefore, it has been shown that citrate or C4‐dicarboxylate metabolism is partially regulated by a two‐component regulatory system in some rumen bacteria.  相似文献   

11.
A major hurdle in vaccine development is the difficulty in identifying relevant target epitopes and then presenting them to the immune system in a context that mimics their native conformation. We have engineered novel virus-like-particle (VLP) technology that is able to display complex libraries of random peptide sequences on a surface-exposed loop in the coat protein without disruption of protein folding or VLP assembly. This technology allows us to use the same VLP particle for both affinity selection and immunization, integrating the power of epitope discovery and epitope mimicry of traditional phage display with the high immunogenicity of VLPs. Previously, we showed that using affinity selection with our VLP platform identifies linear epitopes of monoclonal antibodies and subsequent immunization generates the proper antibody response. To test if our technology could identify immunologic mimotopes, we used affinity selection on a monoclonal antibody (AP4-24H11) that recognizes the Staphylococcus aureus autoinducing peptide 4 (AIP4). AIP4 is a secreted eight amino acid, cyclized peptide produced from the S. aureus accessory gene regulator (agrIV) quorum-sensing operon. The agr system coordinates density dependent changes in gene expression, leading to the upregulation of a host of virulence factors, and passive transfer of AP4-24H11 protects against S. aureus agrIV-dependent pathogenicity. In this report, we identified a set of peptides displayed on VLPs that bound with high specificity to AP4-24H11. Importantly, similar to passive transfer with AP4-24H11, immunization with a subset of these VLPs protected against pathogenicity in a mouse model of S. aureus dermonecrosis. These data are proof of principle that by performing affinity selection on neutralizing antibodies, our VLP technology can identify peptide mimics of non-linear epitopes and that these mimotope based VLP vaccines provide protection against pathogens in relevant animal models.  相似文献   

12.
Staphylococcus epidermidis is an opportunistic pathogen that is one of the leading causes of medical device infections. Global regulators like the agr quorum-sensing system in this pathogen have received a limited amount of attention, leaving important questions unanswered. There are three agr types in S. epidermidis strains, but only one of the autoinducing peptide (AIP) signals has been identified (AIP-I), and cross talk between agr systems has not been tested. We structurally characterized all three AIP types using mass spectrometry and discovered that the AIP-II and AIP-III signals are 12 residues in length, making them the largest staphylococcal AIPs identified to date. S. epidermidis agr reporter strains were developed for each system, and we determined that cross-inhibitory interactions occur between the agr type I and II systems and between the agr type I and III systems. In contrast, no cross talk was observed between the type II and III systems. To further understand the outputs of the S. epidermidis agr system, an RNAIII mutant was constructed, and microarray studies revealed that exoenzymes (Ecp protease and Geh lipase) and low-molecular-weight toxins were downregulated in the mutant. Follow-up analysis of Ecp confirmed the RNAIII is required to induce protease activity and that agr cross talk modulates Ecp activity in a manner that mirrors the agr reporter results. Finally, we demonstrated that the agr system enhances skin colonization by S. epidermidis using a porcine model. This work expands our knowledge of S. epidermidis agr system function and will aid future studies on cell-cell communication in this important opportunistic pathogen.  相似文献   

13.
14.
The P2 operon of the staphylococcal accessory gene regulator (agr) encodes four genes (agrA, -B, -C, and -D) whose products compose a quorum sensing system: AgrA and AgrC resemble a two-component signal transduction system of which AgrC is a sensor kinase and AgrA is a response regulator; AgrD, a polypeptide that is integrated into the cytoplasmic membrane via an amphipathic alpha-helical motif in its N-terminal region, is the propeptide for an autoinducing peptide that is the ligand for AgrC; and AgrB is a novel membrane protein that involves in the processing of AgrD propeptide and possibly the secretion of the mature autoinducing peptide. In this study, we demonstrated that AgrB had endopeptidase activity, and identified 2 amino acid residues in AgrB (cysteine 84 and histidine 77) that might form a putative cysteine endopeptidase catalytic center in the proteolytic cleavage of AgrD at its C-terminal processing site. Computer analysis revealed that the cysteine and histidine residues were conserved among the potential AgrB homologous proteins, suggesting that the Agr quorum sensing system homologues might also exist in other Gram-positive bacteria.  相似文献   

15.
16.
《Small Ruminant Research》2007,73(2-3):197-199
Staphylococcus aureus is one of the major causes of dairy sheep mastitis. The S. aureus agr locus (accessory gene regulator) regulates the production of most staphylococcal exoproteins, including exoenzymes, toxins, surface proteins, and other virulence factors. S. aureus have four agr groups (alleles) determined by PCR. In this study, 46 S. aureus isolates, recovered in south-east of France, were also characterized by their properties of adherence to smooth surfaces, slime production and resistance to 10 antibiotics. For 46 S. aureus associated with dairy sheep mastitis (subclinical mastitis, clinical mastitis, environment of dairy sheep farm), 80% (37/46) belonged to agr group 3, 39% (18/46) were adherent (adherent, strongly adherent or with maximal adherence). For the same isolates, 26% (12/46) were slime producers (moderate or strong producers). All the 46 isolates were susceptible to oxacillin, except for two isolates including two sheep subclinical mastitis isolates. The dairy sheep subclinical mastitis isolates were for 79% (22/28), susceptible to nine other antibiotics tested.  相似文献   

17.
18.
The population genetic structure of the animal pathogen Staphylococcus intermedius is poorly understood. We carried out a multilocus sequence phylogenetic analysis of isolates from broad host and geographic origins to investigate inter- and intraspecies diversity. We found that isolates phenotypically identified as S. intermedius are differentiated into three closely related species, S. intermedius, Staphylococcus pseudintermedius, and Staphylococcus delphini. S. pseudintermedius, not S. intermedius, is the common cause of canine pyoderma and occasionally causes zoonotic infections of humans. Over 60 extant STs were identified among the S. pseudintermedius isolates examined, including several that were distributed on different continents. As the agr quorum-sensing system of staphylococci is thought to have evolved along lines of speciation within the genus, we examined the allelic variation of agrD, which encodes the autoinducing peptide (AIP). Four AIP variants were encoded by S. pseudintermedius isolates, and identical AIP variants were shared among the three species, suggesting that a common quorum-sensing capacity has been conserved in spite of species differentiation in largely distinct ecological niches. A lack of clonal association of agr alleles suggests that assortive recombination may have contributed to the distribution of agr diversity. Finally, we discovered that the recent emergence of methicillin-resistant strains was due to multiple acquisitions of the mecA gene by different S. pseudintermedius clones found on different continents. Taken together, these data have resolved the population genetic structure of the S. intermedius group, resulting in new insights into its ancient and recent evolution.  相似文献   

19.
Staphylococcus aureus is a major cause of food poisoning outbreaks associated with dairy products, because of the ingestion of preformed enterotoxins. The biocontrol of S. aureus using lactic acid bacteria (LAB) offers a promising opportunity to fight this pathogen while respecting the product ecosystem. We had previously established the ability of Lactococcus lactis, a lactic acid bacterium widely used in the dairy industry, to downregulate a major staphylococcal virulence regulator, the accessory gene regulator (agr) system, and, as a consequence, agr-controlled enterotoxins. In the present paper, we have shown that the oxygen-independent reducing properties of L. lactis contribute to agr downregulation. Neutralizing lactococcal reduction by adding potassium ferricyanide or maintaining the oxygen pressure constant at 50% released agr downregulation in the presence of L. lactis. This downregulation still occurred in an S. aureus srrA mutant, indicating that the staphylococcal respiratory response regulator SrrAB was not the only component in the signaling pathway. Therefore, this study clearly demonstrates the ability of L. lactis reducing properties to interfere with the expression of S. aureus virulence, thus highlighting this general property of LAB as a lever to control the virulence expression of this major pathogen in a food context and beyond.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号