首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
MiR-200a has been reported to be able to suppress the epithelial-mesenchymal transition process in pancreatic cancer stem cells, suggesting that miR-200a could suppress the metastasis of pancreatic ductal adenocarcinoma (PDAC). However, its role in proliferation and metastasis of PDAC and the underlying mechanism by which miR-200a works in PDAC have not been elucidated. In our study, we for the first time identified that DEK gene is a direct downstream target of miR-200a. It was found that overexpression of miR-200a decreased DEK expression, suppressing the proliferation, migration, and invasion of PDAC cells. Meanwhile, knockdown of miR-200a can increase DEK level, promoting the proliferation, migration, and invasion of PDAC cells. Our study demonstrated that miR-200a suppresses the metastasis in pancreatic PDAC through downregulation of DEK, suggesting that miR-200a may be used as a novel potential marker in prediction of metastasis of PDAC.  相似文献   

3.
4.
Increasing evidence shows that dysregulation of microRNAs is correlated with tumor development. This study was performed to determine the expression of miR-141 and investigate its clinical significance in pancreatic ductal adenocarcinoma (PDAC). Taqman quantitative RT-PCR was used to detect miR-141 expressions in 94 PDAC tissues and 16 nontumorous pancreatic tissues. Correlations between miR-141 expression and clinicopathologic features and prognosis of patients were statistically analyzed. The effects of miR-141 expression on growth and apoptosis of PDAC cell line (PANC-1) were determined by MTT, colony formation, and flow cytometry assays. Potential target genes were identified by luciferase reporter and Western blot assays. The expression level of miR-141 in PDAC tissues was significantly lower than that in corresponding nontumorous tissues. Downregulation of miR-141 correlated with poorer pT and pN status, advanced clinical stage, and lymphatic invasion. Also, low miR-141 expression in PDAC tissues was significantly correlated with shorter overall survival, and multivariate analysis showed that miR-141 was an independent prognostic factor for PDAC patients. Further, functional researches suggested that miR-141 inhibits growth and colony formation, and enhances caspase-3-dependent apoptosis in PANC-1 cells by targeting Yes-associated protein-1 (YAP1). Therefore, miR-141 is an independent prognostic factor for PDAC patients, and functions as a tumor suppressor gene by targeting YAP1.  相似文献   

5.
6.
Circular RNAs were recently identified as a novel type of noncoding RNAs. An increasing number of reports have demonstrated their essential regulatory roles in various biological processes and human diseases, including cancer. However, the role of circRNA in cervical cancer (CC) remains largely unknown. In the current study, we investigated the physiological functions of circ_0067934 during CC development and progression. We found that circ_0067934 was overexpressed in CC tissues and cell lines. Circ_0067934 upregulation was associated with advanced stage, lymph node metastasis, and poor prognosis in CC patients. Knockdown of circ_0067934 suppressed the proliferation, colony formation, migration, invasion, and epithelial-mesenchymal transition of CC cells in vitro. Circ_0067934 loss also inhibited CC tumor growth in vivo. Mechanistically, silencing circ_0067934 increased miR-545 expression. MiR-545 repressed EIF3C expression through targeting its 3′-untranslated region. MiR-545 suppressed the proliferation, migration, and invasion of CC cells, whereas restoration of EIF3C could rescue the effects of circ_0067934 knockdown. Taken together, our findings revealed that circ_0067934 promotes CC progression via miR-545/EIF3C axis. Our study may provide a new insight into the pathogenesis of CC.  相似文献   

7.
MicroRNAs can function as key tumor suppressors or oncogenes and act as biomarkers for cancer diagnosis or prognosis. Although high-throughput assays have revealed many miRNA biomarkers for pancreatic ductal adenocarcinoma (PDAC), only a few have been validated in independent populations or investigated for functional significance in PDAC pathogenesis. In this study, we correlated the expression of 36 potentially prognostic miRNAs within PDAC tissue with clinico-pathological features and survival in 151 Chinese patients. We then analyzed the functional roles and target genes of two miRNAs in PDAC development. We found that high expression of miR-186 and miR-326 predict poor and improved survival, respectively. miR-186 was over-expressed in PDAC patients compared with controls, especially in patients with large tumors (>2 cm), lymph node metastasis, or short-term survival (< 24 months). In contrast, miR-326 was down-regulated in patients compared with controls and displayed relatively increased expression in the patients with long-term survival or without venous invasion. Functional experiments revealed that PDAC cell proliferation and migration was decreased following inhibition and enhanced following over-expression of miR-186. In contrast, it was enhanced following inhibition and decreased after over-expression of miR-326. A luciferase assay indicated that miR-186 can bind directly to the 3′-UTR of NR5A2 to repress gene expression. These findings suggest that miR-186 over-expression contributes to the invasive potential of PDAC, likely via suppression of NR5A2, thereby leading to a poor prognosis; high miR-326 expression prolongs survival likely via the decreasing invasive potential of PDAC cells. These two miRNAs can be used as markers for clinical diagnosis and prognosis, and they represent therapeutic targets for PDAC.  相似文献   

8.
MicroRNA-214 (MiR-214) is aberrantly expressed in several human tumors such as ovarian cancer and breast cancer. However, the role of miR-214 in nasopharyngeal carcinoma (NPC) is still unknown. In this study, we report that miR-214 was overexpressed in NPC cell lines and tissues. Silencing of miR-214 by LNA-antimiR-214 in NPC cells resulted in promoting apoptosis and suppressing cell proliferation in vitro, and suppressed tumor growth in nude mice in vivo. Luciferase reporter assay was performed to identify Bim as a direct target of miR-214. Furthermore, this study showed that low Bim expression in NPC tissues correlated with poor survival of NPC patients. Taken together, our findings suggest that miR-214 plays an important role in NPC carcinogenesis.  相似文献   

9.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is projected to rise to the second leading cause of U.S. cancer-related deaths by 2020. Novel therapeutic targets are desperately needed. MicroRNAs (miRs) are small noncoding RNAs that function by suppressing gene expression and are dysregulated in cancer. miR-21 is overexpressed in PDAC tumor cells (TC) and is associated with decreased survival, chemoresistance and invasion. Dysregulation of miR regulatory networks in PDAC tumor-associated fibroblasts (TAFs) have not been previously described. In this study, we show that miR-21 expression in TAFs promotes TC invasion.

Methods

In-situ hybridization for miR-21 was performed on the 153 PDAC patient UCLA tissue microarray and 23 patient-matched lymph node metastases. Stromal and TC histoscores were correlated with clinicopathologic parameters by univariate and multivariate Cox regression. miR-21 positive cells were further characterized by immunofluorescence for mesenchymal/epithelial markers. For in vitro studies, TAFs were isolated from freshly resected human PDAC tumors by the outgrowth method. miR-21 was overexpressed/inhibited in fibroblasts and then co-cultured with GFP-MiaPaCa TCs to assess TC invasion in modified Boyden chambers.

Results

miR-21 was upregulated in TAFs of 78% of tumors, and high miR-21 significantly correlated with decreased overall survival (P = 0.04). Stromal miR-21 expression was also significantly associated with lymph node invasion (P = 0.004), suggesting that it is driving TC spread. Co-immunofluorescence revealed that miR-21 colocalized with peritumoral fibroblasts expressing α-smooth muscle actin. Moreover, expression of miR-21 in primary TAFs correlated with miR-21 in TAFs from patient-matched LN metastases; evidence that PDAC tumor cells induce TAFs to express miR-21. miR-21 expression in TAFs and TCs promotes invasion of TCs and is inhibited with anti-miR-21.

Conclusions

miR-21 expression in PDAC TAFs is associated with decreased overall survival and promotes TC invasion. Anti-miR-21 may represent a novel therapeutic strategy for dual targeting of both tumor and stroma in PDAC.  相似文献   

10.
MiR-206 was involved in a series of cellular activities, such as the growth and development of skeletal muscle and the tumorigenesis. MiR-206 was characterized previously as a differentially expressed gene in sodium arsenite (SA)-induced neural tube defects (NTDs) in chick embryos via miRNA microarray analysis. However, the role of miR-206 in the pathological process of nerve cells remained elusive. In this study we found differential expression of miR-206 in SA-treated chick embryos by Northern blot analysis. Ectopic expression of miR-206 inhibited cell proliferation, and promoted cell apoptosis in U343 and SK-N-SH cell by using MTT, Edu Apollo assay and Flow cytometry analysis. Further investigation revealed that miR-206 can interact with 3'-untranslated region (UTR) of Otx2. MiR-206 mimics down-regulated the endogeneous Otx2 expression, whereas the miR-206 inhibitor obviously up-regulated the expression of Otx2. These findings indicate that overexpression of miR-206 promotes cell apoptosis and low expression of miR-206 inhibits cell apoptosis. Otx2 may play an important role in the process of miR-206-mediated cell apoptosis.  相似文献   

11.
Modulation of KRAS activity by upstream signals has revealed a promising new approach for pancreatic cancer therapy; however, it is not clear whether microRNA-associated KRAS axis is involved in the carcinogenesis of pancreatic cancer. Here, we identified miR-193b as a tumor-suppressive miRNA in pancreatic ductal adenocarcinoma (PDAC). Expression analyses revealed that miR-193b was downregulated in (10/11) PDAC specimens and cell lines. Moreover, we found that miR-193b functioned as a cell-cycle brake in PDAC cells by inducing G1-phase arrest and reducing the fraction of cells in S phase, thereby leading to dampened cell proliferation. miR-193b also modulated the malignant transformation phenotype of PDAC cells by suppressing anchorage-independent growth. Mechanistically, KRAS was verified as a direct effector of miR-193b, through which the AKT and ERK pathways were modulated and cell growth of PDAC cells was suppressed. Taken together, our findings indicate that miR-193b-mediated deregulation of the KRAS axis is involved in pancreatic carcinogenesis, and suggest that miR-193b could be a potentially effective target for PDAC therapy.  相似文献   

12.

Background

microRNAs (miRNAs) play a critical role in tumorigenesis, either as a tumor suppressor or as an oncogenic miRNA, depending on different tumor types. To date, scientists have obtained a substantial amount of knowledge with regard to miRNAs in pancreatic cancer. However, the expression and function of miR-371-5p in pancreatic cancer has not been clearly elucidated. The aim of this study was to investigate the roles of miR-371-5p in pancreatic cancer and its association with the survival of patients with pancreatic cancer.

Methods

The expression of miR-371-5p was examined in pancreatic duct adenocarcinoma (PDAC) and their adjacent normal pancreatic tissues (ANPT) or in pancreatic cancer cell lines by qRT-PCR. The association of miR-371-5p expression with overall survival was determined. The proliferation and apoptosis of SW-1990 and Panc-1 cells, transfected with miR-371-5p mimics or inhibitor, were assessed using MTT assay and flow cytometry, respectively. The tumorigenicity was evaluated via mice xenograft experiments. miR-371-5p promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). Protein expression was analyzed by Western blot.

Results

The expression level of miR-371-5p was dramatically upregulated in clinical PDAC tissues compared with ANPT. Patients with high miR-371-5p expression had a significantly shorter survival than those with low miR-371-5p expression. The in vitro and in vivo assays showed that overexpression of miR-371-5p resulted in cell proliferation and increased tumor growth, which was associated with inhibitor of growth 1 (ING1) downregulation. Interestingly, we also found that ING1, in turn, inhibited expression of miR-371-5p in the promoter region.

Conclusions

our study demonstrates a novel ING1-miR-371-5p regulatory feedback loop, which may have a critical role in PDAC. Thus miR-371-5p can prove to be a novel prognostic factor and therapeutic target for pancreatic cancer treatment.  相似文献   

13.
14.
《Cellular signalling》2014,26(7):1420-1426
The activation of homeobox A10 (HOXA10) has been proved to be an important event in epithelial ovarian carcinogenesis, yet its regulation in epithelial ovarian cancer (EOC) is still not fully understood. Here, we aimed to reveal the mechanism that a predicted target miRNA regulates HOXA10 expression and the association of its expression with progression of EOC. Here, by using computer-assisted algorithms from PicTar, TargetScan, and miRBase, we identified that the predicted target miRNA of HOXA10 was miR-135a. MiR-135a expression in EOC tissues and controls was measured with quantitative RT-PCR. The role of miR-135a and HOXA10 in the growth and survival of several EOC cell lines was determined with several in vitro approaches. We found that miR-135a expression was downregulated in an EOC patient cohort. Also, patients with low miR-135a expression had shorter overall survival and progression-free survival durations than those with high expression. Functional analysis of three EOC-derived cell lines (SKOV-3, HEY, and OVCAR-3) demonstrated that miR-135a directly regulated HOXA10 expression by targeting its 3′-UTR. Inhibition of HOXA10 expression with miR-135a mimics and HOXA10 siRNA consistently resulted in cell apoptosis with concomitant enhancement of caspase-3, increase of p53 expression and reduction of Bcl-2 expression, and also suppressed cell growth and adhesion. These findings suggest that ubiquitous loss of miR-135a expression is a critical mechanism for the overexpression of HOXA10 in EOC cells, which is implicated in epithelial ovarian carcinogenesis. Furthermore, miR-135a may be predictive of EOC prognosis.  相似文献   

15.
16.
17.
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal solid tumor due to the lack of reliable early detection markers and effective therapies. MicroRNAs (miRNAs), noncoding RNAs that regulate gene expression, are involved in tumorigenesis and have a remarkable potential for the diagnosis and treatment of malignancy. In this study, we investigated aberrantly expressed miRNAs involved in PDAC by comparing miRNA expression profiles in PDAC cell lines with a normal pancreas cell line and found that miR-135a was significantly down-regulated in the PDAC cell lines. The microarray results were validated by qRT-PCR in PDAC tissues, paired adjacent normal pancreatic tissues, PDAC cell lines, and a normal pancreas cell line. We then defined the tumor-suppressing significance and function of miR-135a by constructing a lentiviral vector to express miR-135a. The overexpression of miR-135a in PDAC cells decreased cell proliferation and clonogenicity and also induced G1 arrest and apoptosis. We predicted Bmi1 may be a target of miR-135a using bioinformatics tools and found that Bmi1 expression was markedly up-regulated in PDAC. Its expression was inversely correlated with miR-135a expression in PDAC. Furthermore, a luciferase activity assay revealed that miR-135a could directly target the 3''-untranslated region (3''-UTR) of Bmi1. Taken together, these results demonstrate that miR-135a targets Bmi1 in PDAC and functions as a tumor suppressor. miR-135a may offer a new perspective for the development of effective miRNA-based therapy for PDAC.  相似文献   

18.
MicroRNAs are small non-coding RNAs that physiologically modulate proteins expression, and regulate numerous cellular mechanisms. Alteration of microRNA expression has been described in cancer and is associated to tumor initiation and progression. The microRNA 148a (miR-148a) is frequently down-regulated in cancer. We previously demonstrated that its down-regulation by DNA hypermethylation is an early event in pancreatic ductal adenocarcinoma (PDAC) carcinogenesis, suggesting a tumor suppressive function. Here, we investigate the potential role of miR-148a over-expression in PDAC as a therapeutic tool. We first report the consequences of miR-148a over-expression in PDAC cell lines. We demonstrate that miR-148a over-expression has no dramatic effect on cell proliferation and cell chemo-sensitivity in four well described PDAC cell lines. We also investigate the modulation of protein expression by a global proteomic approach (2D-DIGE). We show that despite its massive over-expression, miR-148a weakly modulates protein expression, thus preventing the identification of protein targets in PDAC cell lines. More importantly, in vivo data demonstrate that modulating miR-148a expression either in the epithelia tumor cells and/or in the tumor microenvironment does not impede tumor growth. Taken together, we demonstrate herein that miR-148a does not impact PDAC proliferation both in vitro and in vivo thus suggesting a weak potential as a therapeutic tool.  相似文献   

19.
Non-small cell lung cancers (NSCLCs) cause high mortality worldwide, and the cancer progression can be activated by several genetic events causing receptor dysregulation, including mutation or amplification. MicroRNAs are a group of small non-coding RNA molecules that function in gene silencing and have emerged as the fine-tuning regulators during cancer progression. MiR-133a is known as a key regulator in skeletal and cardiac myogenesis, and it acts as a tumor suppressor in various cancers. This study demonstrates that miR-133a expression negatively correlates with cell invasiveness in both transformed normal bronchial epithelial cells and lung cancer cell lines. The oncogenic receptors in lung cancer cells, including insulin-like growth factor 1 receptor (IGF-1R), TGF-beta receptor type-1 (TGFBR1), and epidermal growth factor receptor (EGFR), are direct targets of miR-133a. MiR-133a can inhibit cell invasiveness and cell growth through suppressing the expressions of IGF-1R, TGFBR1 and EGFR, which then influences the downstream signaling in lung cancer cell lines. The cell invasive ability is suppressed in IGF-1R- and TGFBR1-repressed cells and this phenomenon is mediated through AKT signaling in highly invasive cell lines. In addition, by using the in vivo animal model, we find that ectopically-expressing miR-133a dramatically suppresses the metastatic ability of lung cancer cells. Accordingly, patients with NSCLCs who have higher expression levels of miR-133a have longer survival rates compared with those who have lower miR-133a expression levels. In summary, we identified the tumor suppressor role of miR-133a in lung cancer outcome prognosis, and we demonstrated that it targets several membrane receptors, which generally produce an activating signaling network during the progression of lung cancer.  相似文献   

20.
MicroRNAs, a group of small endogenous, noncoding RNAs, are aberrantly expressed in many human cancers and can act as oncogene or anti-oncogene. Recent evidence suggests that some miRNAs have prognostic value for tumors. MiR-328 is known as a tumor suppressor; however, its relationship with the clinicopathological features of glioblastoma (GBM) and its prognostic value has yet not been investigated. We found that expression of miR-328 was significantly decreased both in anaplastic and GBM cohorts and that low miR-328 expression also conferred poor survival in primary GBM (PGBM) patients. MiR-328 might, therefore, serve as an independent prognostic marker. Furthermore, expression profiles of miR-328-associated mRNAs were established via microarrays for 60 GBM samples. The ontology of the miR-328-associated genes was then analyzed, which identified gene sets tightly related to cell mitosis. In addition, ectopic expression of miR-328 inhibited U87 cell proliferation and induced U87 cell cycle arrest. In conclusion, this is the first report showing that miR-328 is associated with patient’s survival time and that miR-328 might serve as an independent prognostic biomarker for GBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号