共查询到20条相似文献,搜索用时 0 毫秒
1.
Kainate receptors (KARs) are a subfamily of ionotropic glutamate receptors (iGluRs) mediating excitatory synaptic transmission. Cell surface expressed KARs modulate the excitability of neuronal networks. The transfer of iGluRs from the endoplasmic reticulum (ER) to the cell surface requires occupation of the agonist binding sites. Here we used molecular modelling to produce a range of ligand binding domain (LBD) point mutants of GluK1–3 KAR subunits with and without altered agonist efficacy to further investigate the role of glutamate binding in surface trafficking and activation of homomeric and heteromeric KARs using endoglycosidase digestion, cell surface biotinylation and imaging of changes in intracellular Ca2+ concentration [Ca2+]i. Mutations of conserved amino acid residues in the LBD that disrupt agonist binding to GluK1–3 (GluK1-T675V, GluK2-A487L, GluK2-T659V and GluK3-T661V) reduced both the total expression levels and cell surface delivery of all of these mutant subunits compared to the corresponding wild type in transiently transfected human embryonic kidney 293 (HEK293) cells. In contrast, the exchange of non-conserved residues in the LBD that convert antagonist selectivity of GluK1–3 (GluK1-T503A, GluK2-A487T, GluK3-T489A, GluK1-N705S/S706N, GluK2-S689N/N690S, GluK3-N691S) did not alter the biosynthesis and trafficking of subunit proteins. Co-assembly of mutant GluK2 with an impaired LBD and wild type GluK5 subunits enables the cell surface expression of both subunits. However, [Ca2+]i imaging indicates that the occupancy of both GluK2 and GluK5 LBDs is required for the full activation of GluK2/GluK5 heteromeric KAR channels. 相似文献
4.
Transforming growth factor β (TGFβ) family ligands initiate a cascade of events capable of modulating cellular growth and differentiation. The receptors responsible for transducing these cellular signals are referred to as the type I and type II TGFβ receptors. Ligand binding to the type II receptor results in the transphosphorylation and activation of the type I receptor. This heteromeric complex then propagates the signal(s) to downstream effectors. There is presently little data concerning the fate of TGFβ receptors after ligand binding, with conflicting reports indicating no change or decreasing cell surface receptor numbers. To address the fate of ligand-activated receptors, we have used our previously characterized chimeric receptors consisting of the ligand binding domain from the granulocyte/macrophage colony-stimulating factor α or β receptor fused to the transmembrane and cytoplasmic domain of the type I or type II TGFβ receptor. This system not only provides the necessary sensitivity and specificity to address these types of questions but also permits the differentiation of endocytic responses to either homomeric or heteromeric intracellular TGFβ receptor oligomerization. Data are presented that show, within minutes of ligand binding, chimeric TGFβ receptors are internalized. However, although all the chimeric receptor combinations show similar internalization rates, receptor down-regulation occurs only after activation of heteromeric TGFβ receptors. These results indicate that effective receptor down-regulation requires cross-talk between the type I and type II TGFβ receptors and that TGFβ receptor heteromers and homomers show distinct trafficking behavior. 相似文献
5.
Ligand binding site structure has profound consequences for the evolution of function of protein complexes, particularly in homomers—complexes comprising multiple copies of the same protein. Previously, we have shown that homomers with multichain binding sites (MBSs) are characterized by more conserved binding sites and quaternary structure, and qualitatively different allosteric pathways than homomers with single-chain binding sites (SBSs) or monomers. Here, using computational methods, we show that the folds of single-domain MBS and SBS homomers are different, and SBS homomers are likely to be folded cotranslationally, while MBS homomers are more likely to form post-translationally and rely on more advanced folding-assistance and quality control mechanisms, which include chaperonins. In addition, our findings demonstrate that MBS homomers are qualitatively different from monomers, while SBS homomers are much less distinct, supporting the hypothesis that the evolution of quaternary structure in SBS homomers is significantly influenced by stochastic processes. 相似文献
6.
用酵母双杂交系统发现 SMAD4的中间连接区能与 SMAD3相互作用 ,而 SMAD4的 N区和 C区不能与 SMAD3相互作用 ,此结果与前人报道的结果有出入 .用细胞免疫共沉淀的方法进一步证实此现象 .结果与酵母双杂交的结果完全吻合 .说明 SMAD4与 SMAD3相互作用形成异源复合物时确实是通过 SMAD4的中间连接区实现的 相似文献
8.
Sm ad3 和 Sm ad4 是将 T G F β的信号从细胞外传递到细胞核内的重要的信号传导蛋白. T G F β与其受体结合后,激活受体的磷酸激酶,使 Sm ad3 发生磷酸化,活化的 Sm ad3 与 Sm ad4 结合,形成异源复合物,进入到核中.然后 Sm ad4 以 D N A 结合蛋白的形式与特定的 D N A 结合,将 T G F β的信号传到核内.激活转录,诱导背中胚层的形成,抑制细胞的分化等.经研究利用酵母双杂交试验,鉴定了 Sm ad3 和 Sm ad4 相互作用的功能区域.构建 Sm ad3 和 Sm ad4 的 C 端、 N 端和中间连接区的突变体,将这些突变体克隆到 p G A D424 和 p G B T9 载体中,并转化到 H F7 C 酵母中.通过 Leu- / Trp- / His- S D 平板上菌落的形成,和 X- gal显色反应鉴定转化到酵母中的两个克隆质粒的相互作用.结果显示 Sm ad4 与 Sm ad3 异源相五作用时,主要是通过 Sm ad4 的中间连接区.在同源作用时, Sm ad3 是通过 C 端,而 Sm ad4 是通过中间连接区进行的. 相似文献
10.
Epsin possesses a conserved epsin N-terminal homology (ENTH) domain that acts as a phosphatidylinositol 4,5-bisphosphate‐lipid‐targeting and membrane‐curvature‐generating element. Upon binding phosphatidylinositol 4,5‐bisphosphate, the N-terminal helix (H 0) of the ENTH domain becomes structured and aids in the aggregation of ENTH domains, which results in extensive membrane remodeling. In this article, atomistic and coarse-grained (CG) molecular dynamics (MD) simulations are used to investigate the structure and the stability of ENTH domain aggregates on lipid bilayers. EPR experiments are also reported for systems composed of different ENTH-bound membrane morphologies, including membrane vesicles as well as preformed membrane tubules. The EPR data are used to help develop a molecular model of ENTH domain aggregates on preformed lipid tubules that are then studied by CG MD simulation. The combined computational and experimental approach suggests that ENTH domains exist predominantly as monomers on vesiculated structures, while ENTH domains self-associate into dimeric structures and even higher‐order oligomers on the membrane tubes. The results emphasize that the arrangement of ENTH domain aggregates depends strongly on whether the local membrane curvature is isotropic or anisotropic. The molecular mechanism of ENTH‐domain-induced membrane vesiculation and tubulation and the implications of the epsin's role in clathrin-mediated endocytosis resulting from the interplay between ENTH domain membrane binding and ENTH domain self-association are also discussed. 相似文献
11.
The matrix (M) proteins of rhabdoviruses are multifunctional proteins essential for virus maturation and budding that also regulate the expression of viral and host proteins. We have solved the structures of M from the vesicular stomatitis virus serotype New Jersey (genus: Vesiculovirus) and from Lagos bat virus (genus: Lyssavirus), revealing that both share a common fold despite sharing no identifiable sequence homology. Strikingly, in both structures a stretch of residues from the otherwise-disordered N terminus of a crystallographically adjacent molecule is observed binding to a hydrophobic cavity on the surface of the protein, thereby forming non-covalent linear polymers of M in the crystals. While the overall topology of the interaction is conserved between the two structures, the molecular details of the interactions are completely different. The observed interactions provide a compelling model for the flexible self-assembly of the matrix protein during virion morphogenesis and may also modulate interactions with host proteins. 相似文献
14.
Autoantibodies to the GluR3-subtype of AMPA/glutamate receptors are found in the sera and cerebrospinal fluid of some individuals with epilepsy. They could possibly play a role in the pathophysiology of epilepsy since anti-GluR3 sera display glutamatergic agonist activity. We have investigated here the ability of affinity-purified antibodies (Abs) directed against the immunogenic peptide GluR3B (amino-acid 372–395) to interact with and activate recombinant GluR3-receptor channels expressed by Xenopus oocytes. We report here that the affinity-purified anti-GluR3B Abs directly activate GluR3-containing homomeric and heteromeric AMPA receptor complexes without the requirement of neuronal, glial or blood ancillary molecules. We present some of the properties of the purified anti-GluR3B Abs and discuss the possible physiological or pathological consequences of their activation of glutamate receptors. 相似文献
15.
The 78-kDa gastrin-binding protein (GBP) is a likely target for the antiproliferative effects of gastrin/cholecystokinin receptor antagonists on colorectal carcinoma cell lines. Both the N- and C-terminal halves of the GBP bind gastrin, but the affinity of the N-terminal half for gastrin is 7.2-fold higher than the affinity of the C-terminal half. In order to define the gastrin-binding sites of the GBP in greater detail, we have constructed a truncation mutant lacking residues 221-318 of the N-terminal domain and a series of point mutants in which the lysine residues in the first 220 residues of the N-terminal domain were mutated to arginine residues. The effect of these mutations on both the extent of covalent cross-linking of iodinated gastrin 2,17 and on the affinity for gastrin 17 was investigated. Deletion of residues 221-318 of the GBP decreased the affinity 5.5-fold and reduced, but did not abolish, the extent of covalent cross-linking. Mutation of the 17 lysines in residues 1-220 of the GBP decreased the affinity for gastrin between 1.7- and 3.5-fold and in some cases reduced, but did not abolish, the extent of covalent cross-linking. We conclude that one or more lysine residues are involved in binding of gastrin to the GBP, but that no single lysine residue is the preferred target for covalent cross-linking of iodinated gastrin 2,17 to the GBP. 相似文献
16.
The four mammalian SPRY (a sequence repeat in dual-specificity kinase splA and ryanodine receptors) domain-containing suppressor of cytokine signalling (SOCS) box proteins (SSB-1 to -4) are characterised by a C-terminal SOCS box and a central SPRY domain. The latter is a protein interaction module found in over 1600 proteins, with more than 70 encoded in the human genome. Here we report the crystal structure of the SPRY domain of murine SSB-2 and compare it with the SSB-2 solution structure and crystal structures of other B30.2/SPRY domain-containing family proteins. The structure is a bent β-sandwich, consisting of two seven-stranded β-sheets wrapped around a long loop that extends from the centre strands of the inner or concave β-sheet; it closely matches those of GUSTAVUS and SSB-4. The structure is also similar to those of two recently determined Neuralized homology repeat (NHR) domains (also known as NEUZ domains), with detailed comparisons, suggesting that the NEUZ/NHR domains form a subclass of SPRY domains. The binding site on SSB-2 for the prostate apoptosis response-4 (Par-4) protein has been mapped in finer detail using mutational analyses. Moreover, SSB-1 was shown to have a Par-4 binding surface similar to that identified for SSB-2. Structural perturbations of SSB-2 induced by mutations affecting its interaction with Par-4 and/or c-Met have been characterised by NMR. These comparisons, in conjunction with previously published dynamics data from NMR relaxation studies and coarse-grained dynamics simulation using normal mode analysis, further refine our understanding of the structural basis for protein recognition of SPRY domain-containing proteins. 相似文献
18.
Prior studies suggested that the core 1 β3-galactosyltransferase (T-synthase) is a specific client of the endoplasmic reticulum chaperone Cosmc, whose function is required for T-synthase folding, activity, and consequent synthesis of normal O-glycans in all vertebrate cells. To explore whether the T-synthase encodes a specific recognition motif for Cosmc, we used deletion mutagenesis to identify a cryptic linear and relatively hydrophobic peptide in the N-terminal stem region of the T-synthase that is essential for binding to Cosmc (Cosmc binding region within T-synthase, or CBRT). Using this sequence information, we synthesized a peptide containing CBRT and found that it directly interacts with Cosmc and also inhibits Cosmc-assisted in vitro refolding of denatured T-synthase. Moreover, engineered T-synthase carrying mutations within CBRT exhibited diminished binding to Cosmc that resulted in the formation of inactive T-synthase. To confirm the general recognition of CBRT by Cosmc, we performed a domain swap experiment in which we inserted the stem region of the T-synthase into the human β4GalT1 and found that the CBRT element can confer Cosmc binding onto the β4GalT1 chimera. Thus, CBRT is a unique recognition motif for Cosmc to promote its regulation and formation of active T-synthase and represents the first sequence-specific chaperone recognition system in the ER/Golgi required for normal protein O-glycosylation. 相似文献
19.
Protein–protein interactions are challenging targets for modulation by small molecules. Here, we propose an approach that harnesses the increasing structural coverage of protein complexes to identify small molecules that may target protein interactions. Specifically, we identify ligand and protein binding sites that overlap upon alignment of homologous proteins. Of the 2,619 protein structure families observed to bind proteins, 1,028 also bind small molecules (250–1000 Da), and 197 exhibit a statistically significant (p<0.01) overlap between ligand and protein binding positions. These “bi-functional positions”, which bind both ligands and proteins, are particularly enriched in tyrosine and tryptophan residues, similar to “energetic hotspots” described previously, and are significantly less conserved than mono-functional and solvent exposed positions. Homology transfer identifies ligands whose binding sites overlap at least 20% of the protein interface for 35% of domain–domain and 45% of domain–peptide mediated interactions. The analysis recovered known small-molecule modulators of protein interactions as well as predicted new interaction targets based on the sequence similarity of ligand binding sites. We illustrate the predictive utility of the method by suggesting structural mechanisms for the effects of sanglifehrin A on HIV virion production, bepridil on the cellular entry of anthrax edema factor, and fusicoccin on vertebrate developmental pathways. The results, available at http://pibase.janelia.org, represent a comprehensive collection of structurally characterized modulators of protein interactions, and suggest that homologous structures are a useful resource for the rational design of interaction modulators. 相似文献
|