首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tumour progression involves the establishment of tumour metastases at distant sites. Resistance to anoikis, a form of cell death that occurs when cells lose contact with the extracellular matrix and with neighbouring cells, is essential for metastases. NO has been associated with anoikis. NO treated HeLa cells and murine melanoma cells in suspension triggered a nitric oxide (NO)-Src kinase signalling circuitry that enabled resistance to anoikis. Two NO donors, sodium nitroprusside (SNP) (500 µM) and DETANO (125 µM), protected against cell death derived from detachment of a growth permissive surface (experimental anoikis). Under conditions of NO-mediated Src activation the following were observed: (a) down-regulation of the pro-apoptotic proteins Bim and cleaved caspase-3 and the cell surface protein, E-cadherin, (b) up-regulation of caveolin-1, and (c) the dissociation of cell aggregates formed when cells are detached from a growth permissive surface. Efficiency of reattachment of tumour cells in suspension and treated with different concentrations of an NO donor, was dependent on the NO concentration. These findings indicate that NO-activated Src kinase triggers a signalling circuitry that provides resistance to anoikis, and allows for metastases.  相似文献   

2.
3.
Abstract: Pseudomonas aeruginosa, P. stutzeri and Azospirillum brasilense showed highest NO production rates and NO consumption rate constants when anaerobically grown cells were tested under anaerobic conditions. Aerobic assay conditions resulted in 20–75-fold lower NO production rates. NO consumption rate constants, however, decreased by less than a factor of four. NO consumption activity was observed even in aerobically grown P. aeruginosa , provided the assay was done under anaerobic conditions. Obviously, NO consumption was less O2-sensitive than NO production so that compensation between production and consumption occurred at lower NO mixing ratios under aerobic than under anaerobic conditions.  相似文献   

4.
The interactions between NO and O(2) in activated macrophages were analysed by incorporating previous cell culture and enzyme kinetic results into a novel reaction-diffusion model for plate cultures. The kinetic factors considered were: (i) the effect of O(2) on NO production by inducible NO synthase (iNOS); (ii) the effect of NO on NO synthesis by iNOS; (iii) the effect of NO on respiratory and other O(2) consumption; and (iv) the effects of NO and O(2) on NO consumption by a possible NO dioxygenase (NOD). Published data obtained by varying the liquid depth in macrophage cultures provided a revealing test of the model, because varying the depth should perturb both the O(2) and the NO concentrations at the level of the cells. The model predicted that the rate of NO(2)(-) production should be nearly constant, and that the net rate of NO production should decline sharply with increases in liquid depth, in excellent agreement with the experimental findings. In further agreement with available results for macrophage cultures, the model predicted that net NO synthesis should be more sensitive to liquid depth than to the O(2) concentration in the headspace. The main reason for the decrease in NO production with increasing liquid depth was the modulation of NO synthesis by NO, with O(2) availability playing only a minor role. The model suggests that it is the ability of iNOS to consume NO, as well as to synthesize it, that creates very sensitive feedback control, setting an upper bound on the NO concentration of approximately 1 microM. The effect of NO consumption by other possible pathways (e.g., NOD) would be similar to that of iNOS, in that it would help limit net NO production. The O(2) utilized during enzymatic NO consumption is predicted to make the O(2) demands of activated macrophages much larger than those of unactivated ones (where iNOS is absent); this remains to be tested experimentally.  相似文献   

5.
iNOS-mediated nitric oxide production and its regulation   总被引:29,自引:0,他引:29  
Aktan F 《Life sciences》2004,75(6):639-653
  相似文献   

6.
Both signaling by nitric oxide (NO) and by the Ca2+/calmodulin (CaM)-dependent protein kinase II α isoform (CaMKIIα) are implicated in two opposing forms of synaptic plasticity underlying learning and memory, as well as in excitotoxic/ischemic neuronal cell death. For CaMKIIα, these functions specifically involve also Ca2+-independent autonomous activity, traditionally generated by Thr-286 autophosphorylation. Here, we demonstrate that NO-induced S-nitrosylation of CaMKIIα also directly generated autonomous activity, and that CaMKII inhibition protected from NO-induced neuronal cell death. NO induced S-nitrosylation at Cys-280/289, and mutation of either site abolished autonomy, indicating that simultaneous nitrosylation at both sites was required. Additionally, autonomy was generated only when Ca2+/CaM was present during NO exposure. Thus, generation of this form of CaMKIIα autonomy requires simultaneous signaling by NO and Ca2+. Nitrosylation also significantly reduced subsequent CaMKIIα autophosphorylation specifically at Thr-286, but not at Thr-305. A previously described reduction of CaMKII activity by S-nitrosylation at Cys-6 was also observed here, but only after prolonged (>5 min) exposure to NO donors. These results demonstrate a novel regulation of CaMKII by another second messenger system and indicate its involvement in excitotoxic neuronal cell death.  相似文献   

7.
This study shows that a non-thermal pulse-modulated RF signal (PRF), configured to modulate calmodulin (CaM) activation via acceleration of Ca2+ binding kinetics, produced an immediate nearly 3-fold increase in nitric oxide (NO) from dopaminergic MN9D cultures (P < 0.001). NO was measured electrochemically in real-time using a NO selective membrane electrode, which showed the PRF effect occurred within the first seconds after lipopolysaccharide (LPS) challenge. Further support that the site of action of PRF involves CaM is provided in human fibroblast cultures challenged with low serum and exposed for 15 min to the identical PRF signal. In this case a CaM antagonist W-7 could be added to the culture 3 h prior to PRF exposure. Those results showed the PRF signal produced nearly a two-fold increase in NO, which could be blocked by W-7 (P < 0.001). To the authors’ knowledge this is the first report of a real-time effect of non-thermal electromagnetic fields (EMF) on NO release from challenged cells. The results provide mechanistic support for the many reported bioeffects of EMF in which NO plays a role. Thus, in a typical clinical application for acute post operative pain, or chronic pain from, e.g., osteoarthritis, EMF therapy could be employed to modulate the dynamics of NO via Ca/CaM-dependent constitutive nitric oxide synthase (cNOS) in the target tissue. This, in turn, would modulate the dynamics of the signaling pathways the body uses in response to the various phases of healing after physical or chemical insult or injury.  相似文献   

8.
Studies of the regulation of iNOS expression have provided many contradictory results. Comparing iNOS expression profile between cell types or organs of the same animal under the same experimental conditions may provide an explanation for these conflicting results. We have examined iNOS mRNA and protein expression in heart and liver of the same group of pigs. We found that there is a sharp difference in iNOS expression between heart and liver. The iNOS mRNA and protein was constitutively expressed in the heart at high level, but was not detectable in the liver of the same control animal. Lipopolysaccharide (LPS, 100 microg/kg, i.v.) caused a marked iNOS induction in the liver, but significantly down-regulated iNOS expression in the heart. This differential iNOS expression appears to be physiologically relevant, since LPS and the iNOS inhibitor, S-methylisothiourea, exerted different effects on hepatic and myocardial blood flow. Our data demonstrate a fundamental difference in iNOS regulation in the heart and liver of swine, and may explain the contradictory data on the regulation of iNOS expression.  相似文献   

9.
Ryu SD  Yi HG  Cha YN  Kang JH  Kang JS  Jeon YC  Park HK  Yu TM  Lee JN  Park CS 《Life sciences》2004,75(21):2559-2572
Nitric oxide (NO) modifies the functions of a variety of proteins containing cysteine thiols or transition-metal centers, particularly by S-nitrosylation. In inflamed liver, NO is overproduced and hepatic drug-metabolizing enzymes, the flavin-containing monooxygenases (FMOs) and cytochrome P450s (CYPs), are suppressed. However, the NO-related mechanisms underlying the loss of these activities are not well understood, particularly for FMOs. In this study, we suggest that FMO3, the major FMO in human liver, is modified post-translationally by NO. This hypothesis is based on the imbalance observed between the decrease in FMO3 expression (40.7% of controls) and FMO3-specific ranitidine N-oxidation activity (15.1%), and on the partial or complete reversibility of FMO inhibition by sulfhydryl-reducing regents such as DTT (effective on both S-S and S-NO adducts) and ascorbate (effective on S-NO only). Furthermore, NO donors (SNP, SNAP, and Sin-1), including the pure NO donor DEA/NO, directly suppressed in vitro FMO activity (N- or S-oxidation of ranitidine, trimethylamine, and thiobenzamide) in human liver microsomal proteins and recombinant human FMO3. These activities were restored completely after treatment with DTT or ascorbate. These results suggest that NO-mediated S-nitrosylation is involved in the rigorous inhibition of FMO activity in vitro and in vivo, resulting in the suppression of FMO-based drug metabolism or detoxification.  相似文献   

10.
A new bacterial strain isolated from soil consumed nitric oxide (NO) under oxic conditions by oxidation to nitrate. Phenotypic and phylogenetic characterization of the new strain PS88 showed that it represents a previously unknown species of the genus Pseudomonas, closely related to Pseudomonas fluorescens and Pseudomonas putida. The heterotrophic, obligately aerobic strain PS88 was not able to denitrify or nitrify; however, strain PS88 oxidized NO to nitrate. NO was not reduced to nitrous oxide (N2O). Nitrogen dioxide (NO2) and nitrite (NO2 ) as possible intermediates of NO oxidation to nitrate (NO3 ) could not be detected. NO oxidation was inhibited under anoxic conditions and by high osmolarity, but not by nitrite. NO oxidation activity was inhibited by addition of formaldehyde, HgCl2, and antimycin, and by autoclaving or disintegrating the cells, indicating that the process was enzyme-mediated. However, the mechanism remains unclear. A stepwise oxidation at a metalloenzyme and a radical mechanism are discussed. NO oxidation in strain PS88 seems to be a detoxification or a co-oxidation mechanism, rather than an energy-yielding process. Received: 15 November 1995 / Accepted: 24 February 1996  相似文献   

11.
12.
Using headspace gas chromatography-mass spectrometry, we detected significant amounts of nitrous oxide in the reaction products of the monooxygenase reaction catalyzed by neuronal nitric oxide synthase. Nitrous oxide is a dimerization product of nitroxyl anion; its presence in the reaction products indicates that the nitroxyl anion is a product of the neuronal nitric oxide synthase-catalyzed reaction.  相似文献   

13.
14.
There is evidence that sympathetically innervated mammalian pineal glands contain cells that exhibit action potentials. It is unknown whether ex vivo pineal glands deprived of their nervous input are still capable of firing. In the present study, multiple-unit recordings from rat pineals revealed spontaneously active cell clusters with a mean firing frequency of 1.5 ± 0.3 Hz which could be abolished by tedrodotoxin. Regularly firing clusters showed no inherent periodicity in the minute range, whereas rhythmical clusters with periodically repeated bursts had period lengths of 12.6 min (day) and 9.5 min (night). Superfusion of norepinephrine reduced the firing frequency of both cluster types, or had no effect, and the rhythmical clusters became regular. The effects of norepinephrine appear to be mediated via β-adrenoceptors because isoproterenol, a β-agonist, had the same effect as norepinephrine and as the α-agonist phenylephrine was without effect. Evidence was obtained that the inhibitory effect of norepinephrine may be mediated by nitric oxide, which appears to affect the electrical discharge of the cells directly or indirectly through cGMP. It is discussed whether the spontaneously active pineal cells represent an intrapineal oscillator or are driven by an intrinsic oscillator which has yet to be defined. Accepted: 11 August 1998  相似文献   

15.
We have recently demonstrated that NO-mediated polymorphonuclear (PMN)-dependent inhibition of rat platelet aggregation is significantly enhanced in the presence of ascorbate. Consequently, the present study was undertaken to elucidate the underlying mechanisms involved in ascorbate-mediated potentiation of NO synthesis in PMNs. We observed that ascorbate or its oxidized product, dehydroascorbate (DHA), enhanced NOS activity, as measured by nitrite content, diaminofluorescein fluorescence or conversion of L-[3H]arginine to L-[3H]citrulline in rat, monkey, and human PMNs. The increase in NO generation following ascorbate treatment was due to the intracellular ascorbate as iodoacetamide-mediated inhibition of DHA to ascorbate conversion attenuated the DHA-mediated increase in NO synthesis. The augmentation of NOS activity in the PMN homogenate by tetrahydrobiopterin was significantly enhanced by ascorbate, while ascorbate alone did not influence the NOS activity. Ascorbate-mediated enhancement of NOS activity in the cultured PMNs was significantly reduced in the presence of biopterin synthesis inhibitors. Ascorbate, thus, seems to regulate the NOS activity in the PMNs through tetrahydrobiopterin.  相似文献   

16.
Nitrosothiols are increasingly regarded as important participants in a range of physiological processes, yet little is known about their biological generation. Nitrosothiols can be formed from the corresponding thiols by nitric oxide in a reaction that requires the presence of oxygen and is mediated by reactive intermediates (NO2 or N2O3) formed in the course of NO autoxidation. Because the autoxidation of NO is second order in NO, it is extremely slow at submicromolar NO concentrations, casting doubt on its physiological relevance. In this paper we present evidence that at submicromolar NO concentrations the aerobic nitrosation of glutathione does not involve NO autoxidation but a reaction that is first order in NO. We show that this reaction produces nitrosoglutathione efficiently in a reaction that is strongly stimulated by physiological concentrations of Mg2+. These observations suggest that direct aerobic nitrosation may represent a physiologically relevant pathway of nitrosothiol formation.  相似文献   

17.
18.
The mechanism of the nitric oxide reduction in a bacterial nitric oxide reductase (NOR) has been investigated in two model systems of the heme-b3-FeB active site using density functional theory (B3LYP). A model with an octahedral coordination of the non-heme FeB consisting of three histidines, one glutamate and one water molecule gave an energetically feasible reaction mechanism. A tetrahedral coordination of the non-heme iron, corresponding to the one of CuB in cytochrome oxidase, gave several very high barriers which makes this type of coordination unlikely. The first nitric oxide coordinates to heme b3 and is partly reduced to a more nitroxyl anion character, which activates it toward an attack from the second NO. The product in this reaction step is a hyponitrite dianion coordinating in between the two irons. Cleaving an NO bond in this intermediate forms an FeB (IV)O and nitrous oxide, and this is the rate determining step in the reaction mechanism. In the model with an octahedral coordination of FeB the intrinsic barrier of this step is 16.3 kcal/mol, which is in good agreement with the experimental value of 15.9 kcal/mol. However, the total barrier is 21.3 kcal/mol, mainly due to the endergonic reduction of heme b3 taken from experimental reduction potentials. After nitrous oxide has left the active site the ferrylic FeB will form a μ-oxo bridge to heme b3 in a reaction step exergonic by 45.3 kcal/mol. The formation of a quite stable μ-oxo bridge between heme b3 and FeB is in agreement with this intermediate being the experimentally observed resting state in oxidized NOR. The formation of a ferrylic non-heme FeB in the proposed reaction mechanism could be one reason for having an iron as the non-heme metal ion in NOR instead of a Cu as in cytochrome oxidase.  相似文献   

19.
20.
The present study was designed to investigate the expression of nitric oxide synthase (NOS) isoforms in buffalo ovarian preantral (PFs), antral (AFs) and ovulatory (OFs) follicles (Experiment 1); effect of NO on in vitro survival and growth of PFs (Experiment 2) and NOS activity in immature oocytes by NADPH-diaphorase test (Experiment 3). In Experiment 1, NOS isoforms (neuronal, inducible and endothelial) were localized immunohistochemically; mRNA and protein expression was analyzed by semi-quantitative RT-PCR and western blot, respectively. In Experiment 2, PFs were isolated by micro-dissection method from buffalo ovaries and cultured in 0 (control), 10−3, 10−5, 10−7 and 10−9 M sodium nitroprusside (SNP). PFs were further cultured with 10−5 M SNP + 1.0 mM Nω-nitro-L-arginine methyl ester (L-NAME) or 1.0 μg/ml hemoglobin (Hb) to examine the reversible effect of SNP. Immunohistochemical studies demonstrated that inducible nitric oxide synthase (iNOS) immunoreactivity was predominantly localized in granulosa and theca cells whereas, neuronal (nNOS) and endothelial (eNOS) nitric oxide synthase in the theca, granulosa and cumulus cells of PFs, AFs and OFs. The amount of mRNA as well as protein of nNOS and eNOS was found similar between different stages of follicles. In contrast, higher level of iNOS mRNA was observed in OFs and protein in the AFs. Higher doses of SNP (10−3, 10−5, 10−7 M) inhibited (P < 0.05) while, lower dose of SNP (10−9 M) stimulated (P < 0.05) the survival, growth, and antrum formation of PFs. The inhibitory effects of SNP were reversed by Hb, while L-NAME was not found effective. In conclusion, expression of NOS isoforms mRNA and protein in PFs, AFs, and OFs and NOS enzyme activity in immature follicular oocytes suggest a role for NO during ovarian folliculogenesis in buffalo. NO plays a dual role on growth and survival of PFs depending on its concentration in the culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号