首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Two groups of fluconazole mucoadhesive buccal discs were prepared: (a) Fluconazole buccal discs prepared by direct compression containing bioadhesive polymers, namely, Carbopol 974p (Cp), sodium carboxymethyl cellulose (SCMC), or sodium alginate (SALG) in combination with hydroxypropyl methylcellulose (HPMC) or hydroxyethyl cellulose (HEC). (b) Fluconazole buccal discs prepared by freeze drying containing different polymer combinations (SCMC/HPMC, Cp/HPMC, SALG/HPMC, and chitosan/SALG). The prepared discs were evaluated by investigating their release pattern, swelling capacity, mucoadhesion properties, and in vitro adhesion time. In vivo evaluation of the buccal disc and in vivo residence times were also performed. Fluconazole salivary concentration after application of fluconazole buccal systems to four healthy volunteers was determined using microbiological assay and high-performance liquid chromatography. SCMC/HPMC buccal disc prepared by direct compression could be considered comparatively superior mucoadhesive disc regarding its in vitro adhesion time, in vivo residence time, and in vitro/in vivo release rates of the drug. Determination of the amount of drug released in saliva after application of the selected fluconazole disc confirmed the ability of the disc to deliver the drug over a period of approximately 5 h and to reduce side effects and possibility of drug interaction encountered during systemic therapy of fluconazole, which would be beneficial in the case of oral candidiasis.  相似文献   

2.
The objective of this investigation was to prepare sustained release capsule containing coated matrix granules of metoprolol tartrate and to study its in vitro release and in vivo absorption. The design of dosage form was performed by choosing hydrophilic hydroxypropyl methyl cellulose (HPMC K100M) and hydrophobic ethyl cellulose (EC) polymers as matrix builders and Eudragit® RL/RS as coating polymers. Granules were prepared by composing drug with HPMC K100M, EC, dicalcium phosphate by wet granulation method with subsequent coating. Optimized formulation of metoprolol tartrate was formed by using 30% HPMC K100M, 20% EC, and ratio of Eudragit® RS/RL as 97.5:2.5 at 25% coating level. Capsules were filled with free flowing optimized granules of uniform drug content. This extended the release period upto 12 h in vitro study. Similarity factor and mean dissolution time were also reported to compare various dissolution profiles. The network formed by HPMC and EC had been coupled satisfactorily with the controlled resistance offered by Eudragit® RS. The release mechanism of capsules followed Korsemeyer–Peppas model that indicated significant contribution of erosion effect of hydrophilic polymer. Biopharmaceutical study of this optimized dosage form in rabbit model showed 10 h prolonged drug release in vivo. A close correlation (R2 = 0.9434) was established between the in vitro release and the in vivo absorption of drug. The results suggested that wet granulation with subsequent coating by fluidized bed technique, is a suitable method to formulate sustained release capsules of metoprolol tartrate and it can perform therapeutically better than conventional immediate release dosage form.Key words: biopharmaceutical evaluation, coated granules, metoprolol tartrate, sustained release  相似文献   

3.
The present investigation was undertaken to fabricate modified release tablet of metoprolol succinate using hydroxypropyl methylcellulose (HPMC) and xanthan gum as a matrixing agent. A 32 full factorial design was employed for the optimization of formulation. The percentage drug released at a given time (Y 60, Y 240 and Y 720) and the time required for a given percentage of drug to be released (t 50%) were selected as dependent variables. The in vitro drug dissolution study was carried out in pH 6.8 phosphate buffer employing paddle rotated at 50 rpm. The similarity factor (f 2) was calculated for selection of best batch considering mean in vitro dissolution data of Seloken® XL as a reference profile. It is concluded that the desired drug release pattern can be obtained by using a proper combination of HPMC (high gelling ability) and xanthan gum (quick gelling tendency). The economy of xanthan gum and faster hydration rate favors its use in modified release tablets. The matrix integrity during dissolution testing was maintained by using hydroxypropyl methylcellulose.  相似文献   

4.
It is challenging to achieve mechanically robust drug-release profiles from hydrophilic matrices containing a high dose of a drug with good solubility. However, a mechanically robust drug release over prolonged period of time can be achieved, especially if the viscosity and amount of the polymer is sufficiently high, above the “threshold values.” The goal of this research was to determine the hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) polymer threshold amount that would enable robust drug release from matrix tablets containing a high dose of levetiracetam as a class I model drug according to the Biopharmaceutical Classification System (BCS). For this purpose, formulations containing HPC or HPMC of similar viscosity range, but in different amounts, were prepared. Based on the dissolution results, two final formulations were selected for additional in vitro and in vivo evaluation to confirm the robustness and to show bioequivalence. Tablets were exposed to various stress conditions in vitro with the use of different mechanically stress-inducing dissolution methods. The in vitro results were compared with in vivo results obtained from fasted and fed bioequivalence studies. Under both conditions, the formulations were bioequivalent and food had a negligible influence on the pharmacokinetic parameters Cmax and area under the curve (AUC). It was concluded that the drug release from both selected formulations is mechanically robust and that HPC and HPMC polymers with intrinsic viscosities above 9 dL/g and in quantities above 30% enable good mechanical resistance, which ensures bioequivalence. In addition, HPC matrices were found to be more mechanically robust compared to HPMC.KEY WORDS: HPC, HPMC, matrix tablets, mechanically robust dissolution, threshold amount  相似文献   

5.
Therapy with systemic corticosteroids, despite attendant serious risks, is mandatory in diseases such as pemphigus, acute disseminated lupus erythematosus and some cases of exfoliative dermatitis that are ordinarily fatal, for in such cases life may be prolonged and the patients made comfortable. If no contraindications exist, therapy with corticosteroids is desirable, for diseases of short duration-contact dermatitis, serum sickness reactions and drug eruptions of all kinds-provided the causative factors have been removed and the reactions are causing severe distress.On the basis of encouraging reports in the literature corticosteroid therapy may be instituted with justification for a group of unrelated, intractable and discomforting diseases such as maddening pruritus ani, sclerema neonatorum, dermatomyositis, certain cases of sarcoidosis, berylliosis, Behcet's syndrome, universal calcinosis, Reiter's disease and ulcers of sickle-cell anemia. One must always bear in mind the well-defined contraindications to corticosteroid therapy and the hazards of its use, particularly if therapy is to be prolonged. Results from topical hydrocortisone therapy are particularly pleasing in chronic eczematous otitis externa and especially when it is combined with an antibiotic drug. Results are excellent also in nuchal eczema, dermatitis of the eyelids and in pruritus ani. More often than not, hydrocortisone ointment and lotions benefit more than do other standard remedies such diseases as atopic eczema, contact dermatitis, lichen simplex-chronicus and eczematized phases of conditions such as psoriasis and superficial mycotic infections. Preparations containing a combination of hydrocortisone and an antibiotic are more useful than hydrocortisone alone. When used with discrimination, with full attention to the selection of cases and proper concentration in the correct vehicle, hydrocortisone preparations in combination with antibiotics are excellent antieczematous agents.  相似文献   

6.
Forty nine eczematous infants who were still solely and exclusively breast fed and who had never received anything but breast milk were studied for evidence of sensitisation to foods. Thirty four similar infants without eczema formed a control group. The eczematous infants were divided into three groups according to clinical criteria: (1) definite atopic eczema; (2) possible atopic eczema; (3) atopic eczema unlikely. Twenty three infants showed cutaneous hypersensitivity to foods, usually egg and cows'' milk. Seven of 14 infants in group 1 and nine of 20 in group 2 were sensitised compared with four of 15 in group 3 and three of 34 controls (p less than 0.01). Ovalbumin was detected in breast milk from 14 of 19 mothers tested after ingestion of egg, the concentrations being the same for mothers feeding eczematous and normal infants. Breast fed babies developing eczema may be sensitised by foods eaten by their mothers.  相似文献   

7.
Fluticasone propionate is a synthetic corticosteroid drug distinguished by its potent anti-inflammatory action with low systemic side effects in comparison to other corticosteroids making it a potential drug for local buccal delivery. The aim of the present study was to design mucoadhesive buccal film containing fluticasone that is aesthetically acceptable and could maintain local drug release for a sustained period to manage the sign and symptoms of severe erosive mouth lesions. Solvent casting technique was used in film preparation. Different polymeric blends were used either alone or in combination with mucoadhesive polymers, sodium carboxymethyl cellulose (SCMC), or Carbopol 971P at different concentrations. The physicochemical properties, in vitro mucoadhesion time as well as the drug release properties for all prepared formulations were determined. Selected formulations with adequate properties were further examined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) and subjected to in vivo evaluation. Films containing hydroxypropyl methylcellulose (HPMC)/ethyl cellulose (EC) showed acceptable physicochemical properties, homogenous drug distribution, convenient mucoadhesion time, moderate swelling as well as sustained drug release up to 12 h. The biological performance of these formulations was assessed on healthy human volunteers and compared with a prepared mouthwash which showed enhanced pharmacokinetic parameters for the selected films in comparison to the mouthwash. The results revealed that the optimized formulation containing HPMC/EC and 10% SCMC could successfully achieve sustained drug release for 10 h which is considered promising for local treatment of severe mouth lesions.  相似文献   

8.
Psoriasis is a chronic, autoimmune skin disease affecting approximately 2% of the world's population. Clobetasol propionate which is a superpotent topical corticosteroid is widely used for topical treatment of psoriasis. Conventional dosage forms like creams and ointments are commonly prefered for the therapy. The purpose of this study was to develop a new topical delivery system in order to provide the prolonged release of clobetasol propionate and to reduce systemic absorption and side effects of the drug. Clobetasol propionate loaded-poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres were prepared by oil-in-water emulsion–solvent evaporation technique. Particle size analysis, morphological characterization, DSC and XRD analyses and in vitro drug release studies were performed on the microparticle formulations. Emulgel formulations were prepared as an alternative for topical delivery of clobetasol propionate. In vitro drug release studies were carried out from the emulgel formulations containing pure drug and drug-loaded microspheres. In addition, the same studies were performed to determine the drug release from the commercial cream product of clobetasol propionate. The release of clobetasol propionate from the emulgel formulations was significantly higher than the commercial product. In addition, the encapsulation of clobetasol propionate in the PLGA microspheres significantly delayed the drug release from the emulgel formulation. As a result, the decrease in the side effects of clobetasol propionate by the formulation containing PLGA microspheres is expected.  相似文献   

9.
The aim of the present study was to design a novel topical skin-target drug-delivery system, the paeonol microsponge, and to investigate its drug-release patterns in dosage form, both in vitro and in vivo. Paeonol microsponges were prepared using the quasi-emulsion solvent-diffusion method. In vitro release studies were carried out using Franz diffusion cells, while in vivo studies were investigated by microdialysis after the paeonol microsponges were incorporated into a cream base. In vitro release studies showed that the drug delivered via microsponges increased the paeonol permeation rate. Ex vivo drug-deposition studies showed that the microsponge formulation improved drug residence in skin. In addition, in vivo microdialysis showed that the values for the area under the concentration versus time curve (AUC) for the paeonol microsponge cream was much higher than that of paeonol cream without microsponges. Maximum time (Tmax) was 220 min for paeonol microsponge cream and 480 min for paeonol cream, while the half-life (t1/2) of paeonol microsponge cream (935.1 min) was almost twice that of paeonol cream (548.6 min) in the skin (n = 3). Meanwhile, in the plasma, the AUC value for paeonol microsponge cream was half that of the paeonol cream. Based on these results, paeonol-loaded microsponge formulations could be a better alternative for treating skin disease, as the formulation increases drug bioavailability by lengthening the time of drug residence in the skin and should reduce side-effects because of the lower levels of paeonol moving into the circulation.  相似文献   

10.

Introduction

Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT). Conventional imatinib mesylate (Gleevec) tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets.

Methodology

Floating sustained-release Imatinib mesylate tablets were prepared using the wet granulation method. Tablets were formulated using Hydroxypropyl Methylcellulose (HPMC K4M), with Sodium alginate (SA) and Carbomer 934P (CP) as release-retarding polymers, sodium bicarbonate (NaHCO3) as the effervescent agent and lactose as a filler. Floating behavior, in vitro drug release, and swelling index studies were conducted. Initial and total drug release duration was compared with a commercial tablet (Gleevec) in 0.1 N HCl (pH 1.2) at 37 ± 0.5°C for 24 hours. Tablets were then evaluated for various physical parameters, including weight variation, thickness, hardness, friability, and drug content. Consequently, 6 months of physical stability studies and in vitro gastro-retentive studies were conducted.

Results and Discussion

Statistical data analysis revealed that tablets containing a composition of 14.67% w/w HPMC K4M, 10.67%, w/w Na alginate, 1.33%, w/w Carbomer 934P and 9.33%, w/w NaHCO3 produced the most favorable formulation to develop 24-hour sustained-release tablets with optimum floating behavior and satisfactory physicochemical characteristics. Furthermore, in vitro release study revealed that the formulated SR tablet had significantly lower Cmax and higher Tmax compared to the conventional tablet (Gleevec). Thus, formulated SR tablets preserved persistent concentration of plasma up to 24 hours.

Conclusion

In conclusion, in order to suggest a better drug delivery system with constant favorable release, resulting in optimized absorption and less side effects, formulated CP-HPMC-SA based imatinib mesylate floating sustained-release tablets can be a promising candidate for cancer chemotherapy.  相似文献   

11.
Altered Gut Microbiota Composition Associated with Eczema in Infants   总被引:1,自引:0,他引:1  
Eczema is frequently the first manifestation of an atopic diathesis and alteration in the diversity of gut microbiota has been reported in infants with eczema. To identify specific bacterial communities associated with eczema, we conducted a case-control study of 50 infants with eczema (cases) and 51 healthy infants (controls). We performed high-throughput sequencing for V3–V4 hypervariable regions of the 16S rRNA genes from the gut fecal material. A total of 12,386 OTUs (operational taxonomic units) at a 97% similarity level were obtained from the two groups, and we observed a difference in taxa abundance, but not the taxonomic composition, of gut microbiota between the two groups. We identified four genera enriched in healthy infants: Bifidobacterium, Megasphaera, Haemophilus and Streptococcus; and five genera enriched in infants with eczema: Escherichia/Shigella, Veillonella, Faecalibacterium, Lachnospiraceae incertae sedis and Clostridium XlVa. Several species, such as Faecalibacterium prausnitzii and Ruminococcus gnavus, that are known to be associated with atopy or inflammation, were found to be significantly enriched in infants with eczema. Higher abundance of Akkermansia muciniphila in eczematous infants might reduce the integrity of intestinal barrier function and therefore increase the risk of developing eczema. On the other hand, Bacteroides fragilis and Streptococcus salivarius, which are known for their anti-inflammatory properties, were less abundant in infants with eczema. The observed differences in genera and species between cases and controls in this study may provide insight into the link between the microbiome and eczema risk.  相似文献   

12.
Probiotics have been extensively reviewed for decades, emphasizing on improving general gut health. Recently, more studies showed that probiotics may exert other health‐promoting effects beyond gut well‐being, attributed to the rise of the gut–brain axis correlations. Some of these new benefits include skin health such as improving atopic eczema, atopic dermatitis, healing of burn and scars, skin‐rejuvenating properties and improving skin innate immunity. Increasing evidence has also showed that bacterial compounds such as cell wall fragments, their metabolites and dead bacteria can elicit certain immune responses on the skin and improve skin barrier functions. This review aimed to underline the mechanisms or the exact compounds underlying the benefits of bacterial extract on the skin based on evidences from in vivo and in vitro studies. This review could be of help in screening of probiotic strains with potential dermal enhancing properties for topical applications.  相似文献   

13.
Cetirizine is a piperazine-derived second-generation antihistaminic drug recommended for treatment of pruritus associated with atopic dermatitis. The present investigation encompasses development of a nanosized novel elastic vesicle-based topical formulation of cetirizine dihydrochloride using combination of Phospholipon® 90G and edge activators with an aim to have targeted peripheral H1 antihistaminic activity. The formulation was optimized with respect to phospholipid/drug/charge inducer ratio along with type and concentration of edge activator. The optimized formulation was found to be satisfactory with respect to stability, drug content, entrapment efficiency, pH, viscosity, vesicular size, spreadability, and morphological characteristics. The ex vivo permeation studies through mice skin were performed using Franz diffusion cell assembly. It was found that the mean cumulative percentage amount permeated in 8 h was almost twice (60.001 ± 0.332) as compared to conventional cream (33.268 ± 0.795) and aqueous solution of drug (32.616 ± 0.969), suggesting better penetration and permeation of cetirizine from the novel vesicular delivery system. Further, therapeutic efficacy of optimized formulation was assessed against oxazolone-induced atopic dermatitis in mice. It was observed that the developed formulation was highly efficacious in reducing the itching score (4.75 itches per 20 min) compared to conventional cream (9.75 itches per 20 min) with profound reduction in dermal eosinophil count and erythema score. To conclude, a novel vesicular, dermally safe, and nontoxic topical formulation of cetirizine was successfully developed and may be used to treat atopic dermatitis after clinical investigation.KEY WORDS: atopic dermatitis, cetirizine, elastic vesicles, oxazolone, topical  相似文献   

14.
A menthol-based solid dispersion was designed to improve the intrinsic solubility of the poorly soluble sulfamethoxazole- a class II drug molecule of Biopharmaceutics Classification System (BCS) displaying widespread antibacterial activity. Solid dispersions of menthol and sulfamethoxazole were compressed with hydroxypropyl methylcellulose (HPMC) into suitable sulfamethoxazole-loaded matrix tablets for oral drug delivery. The sulfamethoxazole-loaded solid dispersions and compressed tablets were characterized for their physicochemical and physicomechanical properties such as changes in crystallinity, melting point, molecular transitions, and textural analysis for critical analysis of their effects on the solubility and dissolution of sulfamethoxazole. The formulations were further evaluated for swelling, degradation, solubility, and in vitro drug release behavior. In vitro drug release from the sulfamethoxazole-loaded matrix tablets displayed a minimum and maximum fractional release of 0.714 and 0.970, respectively. The tablets further displayed different release rate profiles over the study periods of 12, 16, 48, and 56 h which were attributed to the varying concentrations of menthol within each formulation. Menthol was determined as a suitable hydrophilic carrier for sulfamethoxazole since it functioned as a solubilizing and release-retarding agent for improving the solubility and dissolution of sulfamethoxazole as well as controlling the rate at which it was released.KEY WORDS: crystallinity, menthol, oral solubility and dissolution, solid dispersion, sulfamethoxazole  相似文献   

15.
Transdermal films of the furosemide were developed employing ethyl cellulose and hydroxypropyl methylcellulose as film formers. The effect of binary mixture of polymers and penetration enhancers on physicochemical parameters including thickness, moisture content, moisture uptake, drug content, drug–polymer interaction, and in vitro permeation was evaluated. In vitro permeation study was conducted using human cadaver skin as penetration barrier in modified Keshary–Chein diffusion cell. In vitro skin permeation study showed that binary mixture, ethyl cellulose (EC)/hydroxypropyl methylcellulose (HPMC), at 8.5:1.5 ratio provided highest flux and also penetration enhancers further enhanced the permeation of drug, while propylene glycol showing higher enhancing effect compared to dimethyl sulfoxide and isopropyl myristate. Different kinetic models, used to interpret the release kinetics and mechanism, indicated that release from all formulations followed apparent zero-order kinetics and non-Fickian diffusion transport except formulation without HPMC which followed Fickian diffusion transport. Stability studies conducted as per International Conference on Harmonization guidelines did not show any degradation of drug. Based on the above observations, it can be reasonably concluded that blend of EC–HPMC polymers and propylene glycol are better suited for the development of transdermal delivery system of furosemide.  相似文献   

16.
The aim of the present investigation was to develop oral controlled release matrix tablet formulations of isoniazid using hydroxypropyl methylcellulose (HPMC) as a hydrophilic release retardant polymer and to study the influence of various formulation factors like proportion of the polymer, polymer viscosity grade, compression force, and release media on the in vitro release characteristics of the drug. The formulations were developed using wet granulation technology. The in vitro release studies were performed using US Pharmacopoeia type 1 apparatus (basket method) in 900 ml of pH 7.4 phosphate buffer at 100 rpm. The release kinetics was analyzed using Korsmeyer–Peppas model. The release profiles were also analyzed using statistical method (one-way analysis of variance) and f 2 metric values. The release profiles found to follow Higuchi’s square root kinetics model irrespective of the polymer ratio and the viscosity grade used. The results in the present investigation confirm that the release rate of the drug from the HPMC matrices is highly influenced by the drug/HPMC ratio and viscosity grade of the HPMC. Also, the effect of compression force and release media was found to be significant on the release profiles of isoniazid from HPMC matrix tablets. The release mechanism was found to be anomalous non-Fickian diffusion in all the cases. In the present investigation, a series of controlled release formulations of isoniazid were developed with different release rates and duration so that these formulations could further be assessed from the in vivo bioavailability studies. The formulations were found to be stable and reproducible.  相似文献   

17.
The purpose of this study was to investigate the effect of a hydrophilic polymer, hydroxypropyl methylcellulose (HPMC), on the crystallinity and drug release of metronidazole (MNZ) in spray-congealed polyethylene glycol (PEG) microparticles and to further modify the drug release using other additives in the formulation. HPMC has been used in many pharmaceutical formulations and processes but to date, it has not been employed as an additive in spray congealing. Crystallinity of a drug is especially important to the development of pharmaceutical products as active pharmaceutical ingredients (APIs) are mostly crystalline in nature. A combination of X-ray diffractometry, differential scanning calorimetry, Raman spectroscopy and Fourier transform-infrared spectroscopy (FT-IR) spectroscopy was employed to investigate the degree of crystallinity and possible solid-state structure of MNZ in the microparticles. The microparticles with HPMC were generally spherical. Spray congealing decreased MNZ crystallinity, and the presence of HPMC reduced the drug crystallinity further. The reduction in MNZ crystallinity was dependent on the concentration of HPMC. Smaller HPMC particles also resulted in a greater percentage reduction in MNZ crystallinity. Appreciable modification to MNZ release could be obtained with HPMC. However, this was largely attributed to the role of HPMC in forming a diffusion barrier. Further modification of drug release from spray-congealed PEG-HPMC microparticles was achieved with the addition of 5% w/w dicalcium phosphate but not with magnesium stearate, methyl cellulose, polyvinylpyrrolidone, silicon dioxide and sodium oleate/citric acid. Dicalcium phosphate facilitated formation of the diffusion barrier.KEY WORDS: crystallinity, drug release, hydroxypropyl methylcellulose, metronidazole, spray congealing  相似文献   

18.
Inhibition of angiogenesis is a promising addition to current cancer treatment strategies. Neutralization of vascular endothelial growth factor by monoclonal antibodies is clinically effective but may cause side effects due to thrombosis. Low molecular weight angiogenesis inhibitors are currently less effective than antibody treatment and are also associated with serious side effects. The discovery of new chemotypes with efficient antiangiogenic activity is therefore of pertinent interest. (S)-Levamisole hydrochloride, an anthelminthic drug approved for human use and with a known clinical profile, was recently shown to be an inhibitor of angiogenesis in vitro and exhibited tumor growth inhibition in mice. Here we describe the synthesis and in vitro evaluation of a series of N-alkylated analogues of levamisole with the aim of characterizing structure–activity relationships with regard to inhibition of angiogenesis. N-Methyllevamisole and p-bromolevamisole proved more effective than the parent compound, (S)-levamisole hydrochloride, with respect to inhibition of angiogenesis and induction of undifferentiated cluster morphology in human umbilical vein endothelial cells grown in co-culture with normal human dermal fibroblasts. Interestingly, the cluster morphology caused by N-methyllevamisole was different than the clusters observed for levamisole, and a third “cord-like” morphology resembling that of the known drug suramin was observed for an aniline-containing derivative. New chemotypes exhibiting antiangiogenic effects in vitro are thus described, and further investigation of their underlying mechanism of action is warranted.  相似文献   

19.
The objective of the present studies was systematic development of floating-bioadhesive gastroretentive tablets of cefuroxime axetil employing rational blend of hydrophilic polymers for attaining controlled release drug delivery. As per the QbD-based approach, the patient-centric target product profile and quality attributes of tablet were earmarked, and preliminary studies were conducted for screening the suitability of type of polymers, polymer ratio, granulation technique, and granulation time for formulation of tablets. A face-centered cubic design (FCCD) was employed for optimization of the critical material attributes, i.e., concentration of release controlling polymers, PEO 303 and HPMC K100 LV CR, and evaluating in vitro buoyancy, drug release, and ex vivo mucoadhesion strength. The optimized formulation was embarked upon through numerical optimization, which yield excellent floatation characteristic with drug release control (i.e., T 60%?>?6 h) and bioadhesion strength. Drug-excipient compatibility studies through FTIR and P-XRD revealed the absence of any interaction between the drug and polymers. In vivo evaluation of the gastroretentive characteristics through X-ray imaging and in vivo pharmacokinetic studies in rabbits revealed significant extension in the rate of drug absorption (i.e., T max, K a, and MRT) from the optimized tablet formulation as compared to the marketed formulation. Successful establishment of various levels of in vitro/in vivo correlations (IVIVC) substantiated high degree of prognostic ability of in vitro dissolution conditions in predicting the in vivo performance. In a nutshell, the studies demonstrate successful development of the once-a-day gastroretentive formulations of cefuroxime axetil with controlled drug release profile and improved compliance.  相似文献   

20.
Jojoba oil-based emulgel formulations were prepared using different concentrations of various gelling agents, such as hydroxypropyl methylcellulose (HPMC) and Carbopol 934 P and combination of both. The prepared emulgels were physically evaluated for their stability after temperature cycle test, centrifugation and long-term shelf storage for 1 year at room temperature. The in vitro release at 37°C was studied to define the effect of the concentration and type of the gelling agent. A comparison between the formulated emulgels and two commercially available products, Candistan® and Canesten® creams, was carried out to judge their efficacy and stability. The prepared emulgels exhibited non-Newtonian shear thinning behavior with little or no thixotropy. Four emulgels showed excellent stability as they demonstrated consistent rheological model under different treatment conditions. The in vitro release test showed variation in the extent of percent drug released. The drug release from the commercial preparation was lower than some of the prepared emulgel formulae. One formula containing combination of the two gelling agents (HPMC and Carbopol 934 P), showed excellent stability and high extent of clotrimazole release was microbiologically evaluated against Candida albicans using cylinder and plate method. The selected formula showed superior antimycotic activity compared to the commercially available formulation. Further in vivo animal studies for the obtained stable formula is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号