首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A modified laccase gene, CcLCC6, from Coprinopsis cinerea was chemically synthesized according to the yeast codon bias and expressed in Pichia pastoris. The main properties of laccase, effects of ions and inhibitors, and optimal condition for decolouring malachite green (MG) were investigated in this study. The optimal pH level and temperature of laccase are 3.0 and 40 °C, respectively. The metal ions Mn2+, Zn2+, Fe3+ and Al3+ could inhibit laccase activity, as well as 1 mM of sodium dodecyl sulphate and sodium thiosulphate. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), as a mediator, was necessary in decolorizing MG. The optimal pH and temperature for MG decolorization were 3.0 and 50 °C, respectively. Approximately 0.02 μM recombinant laccase could effectively decolour 0.05 mM of MG in 1 h. CcLCC6I could inhibit the toxicity of MG to P. pastoris. This is the first report on the successful expression in P. pastoris of CcLCC6I and its enzymatic property. Laccase can also be considered as a candidate for treating industrial effluent containing MG.  相似文献   

3.
Laccase belongs to a family of multi-copper oxidases which is especially useful for biotechnological and industrial applications. A laccase-producing white-rot fungi strain designated as Trametes sp. 5930 was nearly isolated from Shennongjia Nature Reserve in China. Trametes sp. 5930 had the high yield of laccase and was capable of decolorizing different dyes efficiently. Laccase played a very important role in the decolorization of different dyes by this fungus. The laccase gene lac5930-1 and its corresponding full-length cDNA were then cloned and characterized from Trametes sp. 5930. The 1563 bp full-length cDNA of lac5930-1 encoded a mature laccase protein consisting of 499 amino acids preceded by a signal peptide of 21 amino acids. lac5930-1 gene was successfully expressed in Pichia pastoris, which verified the function of lac5930-1 encoding active laccase by means of gene expression. The recombinant laccase produced by the yeast transformant in which lac5930-1 was efficiently expressed, conferred the ability to decolorize different dyes. The capability of decolorizing different dyes was positively related to the laccase activity, which provided strong evidence for the important function of laccase used in decolorizing industrial dyes.  相似文献   

4.
Trametes trogii BAFC 463 culture fluids (containing 110 U ml−1 laccase; 0.94 U ml−1 manganese peroxidase), as well as its purified laccase were capable of decolorizing azoic, indigoid, triphenylmethane, anthraquinonic and heterocyclic dyes, in the absence of redox mediators. Six dyes: RBBR, Indigo Carmine, Xylidine, Malachite Green, Gentian Violet and Bromophenol Blue were almost completely degraded (more than 85% decolorization after 1 d) by either laccase or T. trogii itself in culture, proving the role of the enzyme in dye decolorization. The purified laccase also decolorized 65% of Fast Blue RR and 30% of Azure B and Methylene Blue after 24 h. The use of redox mediators significantly increased the decolorization rates (90% decolorization of Azure B after 1 h). 1-hydroxybenzotriazole resulted the best redox mediator, but the natural mediator p-hydroxybenzoic acid also demonstrated its efficiency for dye decolorization. Due to their ability to decolorize recalcitrant dyes without addition of redox mediators, high laccase activities, high thermostability and efficient decolorization at 70 °C and pH 7.0, even in the presence of high concentrations of heavy metals (100 mM Cu+2, Pb+2 or Cd+2) or in a synthetic dyebath, T. trogii culture fluids could be effectively used to decolorize synthetic dyes from effluents.  相似文献   

5.
Trametes villosa laccase was used for direct azo dye degradation, and the reaction products that accumulated after 72 h of incubation were analyzed. Liquid chromatography-mass spectrometry (LC-MS) analysis showed the formation of phenolic compounds during the dye oxidation process as well as a large amount of polymerized products that retain azo group integrity. The amino-phenol reactions were also investigated by 13C-nuclear magnetic resonance and LC-MS analysis, and the polymerization character of laccase was shown. This study highlights the fact that laccases polymerize the reaction products obtained during long-term batch decolorization processes with azo dyes. These polymerized products provide unacceptable color levels in effluents, limiting the application of laccases as bioremediation agents.  相似文献   

6.
In this study, we investigated the efficacy of phenolic extract of wheat bran and lignin-related phenolic compounds as natural redox mediators on laccase-mediated transformation of malachite green (MG) using purified laccase from the white-rot fungus Ganoderma lucidum. G. lucidum laccase was able to decolorize 40.7% MG dye (at 25 mg l−1) after 24 h of incubation. Whereas, the addition of phenolic extract of wheat bran enhanced the decolorization significantly (p < 0.001) by two- to threefold than that of purified laccase alone. Among various natural phenolic compounds, acetovanillone, p-coumaric acid, ferulic acid, syringaldehyde, and vanillin were the most efficient mediators, as effective as the synthetic mediator 1-hydroxybenzotriazole. Characterization of MG transformation products by HPLC, UV–Vis, and liquid chromatography-mass spectrometry-electrospray ionization analysis revealed that N-demethylation was the key mechanism of decolorization of MG by laccase. Growth inhibition test based on mycelial growth inhibition of white rot fungus Phanerochaete chrysosporium revealed that treatment with laccase plus natural mediators effectively reduced the growth inhibitory levels of MG than that of untreated one. Among all the tested compounds, syringaldehyde showed the highest enhanced decolorization, as a consequence reduced growth inhibition was observed in syringaldehyde-treated samples. The results of the present study revealed that the natural phenolic compounds could alternatively be used as potential redox mediators for effective laccase-mediated decolorization of MG.  相似文献   

7.
Carbendazim (methyl 1H-benzimidazol-2-yl carbamate) is one of the most widely used fungicides in agriculture worldwide, but has been reported to have adverse effects on animal health and ecosystem function. A highly efficient carbendazim-degrading bacterium (strain dj1-11) was isolated from carbendazim-contaminated soil samples via enrichment culture. Strain dj1-11 was identified as Rhodococcus erythropolis based on morphological, physiological and biochemical characters, including sequence analysis of the 16S rRNA gene. In vitro degradation of carbendazim (1000 mg·L−1) by dj1-11 in minimal salts medium (MSM) was highly efficient, and with an average degradation rate of 333.33 mg·L−1·d−1 at 28°C. The optimal temperature range for carbendazim degradation by dj1-11 in MSM was 25–30°C. Whilst strain dj1-11 was capable of metabolizing cabendazim as the sole source of carbon and nitrogen, degradation was significantly (P<0.05) increased by addition of 12.5 mM NH4NO3. Changes in MSM pH (4–9), substitution of NH4NO3 with organic substrates as N and C sources or replacing Mg2+ with Mn2+, Zn2+ or Fe2+ did not significantly affect carbendazim degradation by dj1-11. During the degradation process, liquid chromatography-mass spectrometry (LC-MS) detected the metabolites 2-aminobenzimidazole and 2-hydroxybenzimidazole. A putative carbendazim-hydrolyzing esterase gene was cloned from chromosomal DNA of djl-11 and showed 99% sequence homology to the mheI carbendazim-hydrolyzing esterase gene from Nocardioides sp. SG-4G.  相似文献   

8.
Laccases have been used for the decolorization and detoxification of synthetic dyes due to their ability to oxidize a wide variety of dyes with water as the sole byproduct. A putative laccase gene (LacTT) from Thermus thermophilus SG0.5JP17-16 was screened using the genome mining approach, and it was highly expressed in Pichia pastoris, yielding a high laccase activity of 6130 U/L in a 10-L fermentor. The LacTT open reading frame encoded a protein of 466 amino acid residues with four putative Cu-binding regions. The optimal pH of the recombinant LacTT was 4.5, 6.0, 7.5 and 8.0 with 2,2''-azino-bis(3-ethylbenzothazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ), guaiacol, and 2,6-dimethoxyphenol (2,6-DMP) as the substrate, respectively. The optimal temperature of LacTT was 90°C with guaiacol as the substrate. LacTT was highly stable at pH 4.0–11.0 and thermostable at 40°C–90°C, confirming that it is a pH-stable and thermostable laccase. Furthermore, LacTT also exhibited high tolerance to halides such as NaCl, NaBr and NaF, and decolorized 100%, 94%, 94% and 73% of Congo Red, Reactive Black B and Reactive Black WNN, and Remazol Brilliant Blue R, respectively. Interestingly, addition of high concentration of NaCl increased the RBBR decolorization efficiency of LacTT. These results suggest that LacTT is a good candidate for industrial applications such as dyestuff processing and degradation of dyes in textile wastewaters.  相似文献   

9.
采用LNAS(低氮天冬酰胺-琥珀酸)培养基添加方式,对红平菇Pleurotus djamor HP1进行培养,检测不同时间培养液对不同底物的氧化作用,进而得到光密度值的变化情况,作为漆酶的产生及活性测定的主要依据。结果表明:在含Cu2+的培养液中漆酶最大酶活为235.4 U/L。含Cu2+的培养液添加底物木屑后漆酶最大酶活为458.8 U/L。提取经优化筛选后的培养基培养出的漆酶粗酶液,对4种具有不同化学结构的染料进行了脱色试验。结果表明:三苯基甲烷类的孔雀绿在6 h时脱色率为87.5%,蒽醌类的SN4R在24 h时脱色率为49.4%,偶氮类的甲基橙在24 h时脱色率为45%,杂环类的中性红在24 h时脱色率为23.6%。因此,显示出红平菇漆酶对孔雀绿染料脱色具有较大的应用潜力,进而对废水处理具有更好的应用前景。  相似文献   

10.
For the first time, the investigation of Indigo carmine decolorization was done using an atypical Scytalidium thermophilum laccase. Crude and purified laccases required high temperatures and slight acidic pH to achieve maximum Indigo decolorization. Kinetic parameters (Km and kcat) of the homotrimeric laccase toward Indigo carmine were determined and laccase efficacy toward repeated dye decolorization process was studied. For the first time, 5 g l−1 as initial Indigo carmine concentration were efficiently transformed up to 50% within 6 h of incubation using 0.1 U ml−1 of laccase and without presence of any mediators. In this study, we showed that the atypical laccase transformed the indigoid dye structure, confirmed by the color changing from blue to red. This intermediate (red) was a subject to an efficient microbial consortium treatment monitored by measuring the decrease in optical density and the total organic carbon removal efficiencies. Toxicological studies via micro-toxicity test showed that the released enzymatic and adapted consortium degradation products were both non-toxic while the initial product was toxic.  相似文献   

11.
Neonicotinoid insecticides are one of the most important commercial insecticides used worldwide. The potential toxicity of the residues present in environment to humans has received considerable attention. In this study, a novel Ochrobactrum sp. strain D-12 capable of using acetamiprid as the sole carbon source as well as energy, nitrogen source for growth was isolated and identified from polluted agricultural soil. Strain D-12 was able to completely degrade acetamiprid with initial concentrations of 0–3000 mg·L−1 within 48 h. Haldane inhibition model was used to fit the special degradation rate at different initial concentrations, and the parameters q max, K s and K i were determined to be 0.6394 (6 h)−1, 50.96 mg·L−1 and 1879 mg·L−1, respectively. The strain was found highly effective in degrading acetamiprid over a wide range of temperatures (25–35°C) and pH (6–8). The effects of co-substrates on the degradation efficiency of acetamiprid were investigated. The results indicated that exogenously supplied glucose and ammonium chloride could slightly enhance the biodegradation efficiency, but even more addition of glucose or ammonium chloride delayed the biodegradation. In addition, one metabolic intermediate identified as N-methyl-(6-chloro-3-pyridyl)methylamine formed during the degradation of acetamiprid mediated by strain D-12 was captured by LC-MS, allowing a degradation pathway for acetamiprid to be proposed. This study suggests the bacterium could be a promising candidate for remediation of environments affected by acetamiprid.  相似文献   

12.
The induction of laccase isoforms in Trametes versicolor HEMIM-9 by aqueous extracts (AE) from softwood and hardwood was studied. Samples of sawdust of Pinus sp., Cedrela sp., and Quercus sp. were boiled in water to obtain AE. Different volumes of each AE were added to fungal cultures to determine the amount of AE needed for the induction experiments. Laccase activity was assayed every 24 h for 15 days. The addition of each AE (50 to 150 μl) to the fungal cultures increased laccase production compared to the control (0.42 ± 0.01 U ml?1). The highest laccase activities detected were 1.92 ± 0.15 U ml?1 (pine), 1.87 ± 0.26 U ml?1 (cedar), and 1.56 ± 0.34 U ml?1 (oak); laccase productivities were also significantly increased. Larger volumes of any AE inhibited mycelial growth. Electrophoretic analysis revealed two laccase bands (lcc1 and lcc2) for all the treatments. However, when lcc2 was analyzed by isoelectric focusing, inducer-dependent isoform patterns composed of three (pine AE), four (oak AE), and six laccase bands (cedar AE) were observed. Thus, AE from softwood and hardwood had induction effects in T. versicolor HEMIM-9, as indicated by the increase in laccase activity and different isoform patterns. All of the enzymatic extracts were able to decolorize the dye Orange II. Dye decolorization was mainly influenced by pH. The optimum pH for decolorization was pH 5 (85 %), followed by pH 7 (50 %) and pH 3 (15 %). No significant differences in the dye decolorizing capacity were detected between the control and the differentially induced laccase extracts (oak, pine and cedar). This could be due to the catalytic activities of isoforms with pI 5.4 and 5.8, which were detected under all induction conditions.  相似文献   

13.
Printing and dyeing wastewater (PDW) normally has a high pH of 9.0–13.0, but alkaliphilic bacteria capable of treating PDW have rarely been isolated. Here we report an alkaliphilic and halotolerant, humus-reducing facultative anaerobe, Planococcus sp. MC01 (CGMCC 4771 = KCTC 33120), which can effectively reduce AQDS (anthraquinone-2, 6-disulphonate, humus analog) and decolorize Orange I (>94.0%) under alkaline and anaerobic conditions. The decolorization process of Orange I fits a pseudo-first-order kinetics well, and the rate constants (k) were 0.12, 0.17, 0.14, and 0.12 h−1 when acetate, glucose, sucrose, and lactate, respectively, served as electron donor. When 0.5 mmol l−1 AQDS and 2.0 mmol l−1 γ-FeOOH were added as electron shuttles, the decolorization process was stimulated by 44.4% and 32.8%, respectively. Additionally, strain MC01 showed high decolorizing activity with low initial concentrations of Orange I (0.01–0.2 mmol l−1), and the optimal glucose concentration for decolorization was 10.0 mmol l−1. Results of UV/vis spectra suggested the cleavage of the double azo bond during decolorization. To the best of our knowledge, this is the first report of an alkaliphilic facultative anaerobe capable of decolorizing Orange I under alkaline conditions.  相似文献   

14.
Polyporus sp. S133 decolorized the Amaranth in 72 h (30 mg L?1) under static and shaking conditions. Liquid medium containing glucose has shown the highest decolorization of Amaranth by Polyporus sp. S133. When the effect of increasing inoculum concentration on decolorization of Amaranth was studied, maximum decolorization was observed with 15 % inoculum concentration. Significant increase in the enzyme production of laccase (102.2 U L?1) was observed over the period of Amaranth decolorization compared to lignin peroxidase and manganese peroxidase. Germination rate of Sorghum vulgare and Triticum aestivum was less with Amaranth treatment as compared to metabolites obtained after its decolorization. Based on the metabolites detected by GC–MS, it was proposed that Amaranth was bio-transformed into two intermediates, 1-hydroxy-2-naphthoic acid and 1,4-naphthaquinone. Overall findings suggested the ability of Polyporus sp. S133 for the decolorization of azo dye and ensured the ecofriendly degradation of Amaranth.  相似文献   

15.
Filamentous fungi show great promise in remediation of environmental contaminants such as industrial dyes. In the current study, Aspergillus niger (Genbank ID: JF437542) decolorized 82 % of the test dye malachite green (MG; 50 mg/l) during cultivation for 24 h. The organism decolorized only 6 % of the MG at higher concentration (250 mg MG/l) during the same time period and growth was inhibited at this higher MG concentration. Exposing A. niger to different types of stress resulted in variable impacts on ability to decolorize MG. CaCl2 had the largest positive impact on decolorization. A. niger cultures treated with CaCl2 (1 M) decolorized 46 % of the MG (250 mg/l) in 1 h compared to 6 % in untreated control cultures. CaCl2 also increased catalase production in A. niger which strongly supported a direct relationship between stress response and decolorizing ability. Spectrophotometric measurement confirmed MG decolorization while Fourier transform infrared spectroscopy suggested that biodegradation of MG occurred. Cultures treated with CaCl2 accumulated fewer toxic MG by-products than untreated cultures. CaCl2-induced stress increased the permeability and conductivity of the fungal cell membrane. An observed increase in medium [H+] also suggested a change in Ca2+/H+ exchange capacity in the fungal cell. Calcium ions had a pronounced effect on membrane properties and this may have had an important impact on signal transduction. We conclude that A. niger decolorizes MG and that CaCl2 enhances this process; the CaCl2 effect appears to be associated with stress response.  相似文献   

16.
Lignocellulose facilitates the fungal oxidization of recalcitrant organic pollutants through the extracellular ligninolytic enzymes induced by lignin in wood or other plant tissues. However, available information on this phenomenon is insufficient. Free radical chain reactions during lignin metabolism are important in xenobiotic removal. Thus, the effect of lignin on azo dye decolorization in vivo by Echinodontium taxodii was evaluated. In the presence of lignin, optimum decolorization percentages for Remazol Brilliant Violet 5R, Direct Red 5B, Direct Black 38, and Direct Black 22 were 91.75% (control, 65.96%), 76.89% (control, 43.78%), 43.44% (control, 17.02%), and 44.75% (control, 12.16%), respectively, in the submerged cultures. Laccase was the most important enzyme during biodecolorization. Aside from the stimulating of laccase activity, lignin might be degraded by E. taxodii, and then these degraded low-molecular-weight metabolites could act as redox mediators promoting decolorization of azo dyes. The relationship between laccase and lignin degradation was investigated through decolorization tests in vitro with purified enzyme and dozens of aromatics, which can be derivatives of lignin and can function as laccase mediators or inducers. Dyes were decolorized at triple or even higher rates in certain laccase–aromatic systems at chemical concentrations as low as 10 µM.  相似文献   

17.
The decolorization potential of two bacterial consortia developed from a textile wastewater treatment plant showed that among the two mixed bacterial culture SKB-II was the most efficient in decolorizing individual as well as mixture of dyes. At 1.3 g L?1 starch supplementation in the basal medium by the end of 120 h decolorization of 80–96% of four out of the six individual azo dyes Congo red, Bordeaux, Ranocid Fast Blue and Blue BCC (10 mg L?1) was noted. The culture exhibited good potential ability in decolorizing 50–60% of all the dyes (Congo red, Bordeaux, Ranocid Fast Blue and Blue BCC) when present as a mixture at 10 mg L?1. The consortium SKB-II consisted of five different bacterial types identified by 16S rDNA sequence alignment as Bacillus vallismortis, Bacillus pumilus, Bacillus cereus, Bacillus subtilis and Bacillus megaterium which were further tested to decolorize dyes. The efficient ability of this developed consortium SKB-II to decolorize individual dyes and textile effluent using packed bed reactors is being carried out.  相似文献   

18.
The efficiency of crude and partially purified Trichoderma harzianum WL1 laccase for the decolorization of synthetic dyes (Rhodamine 6G, Erioglaucine and Trypan blue) with complex aromatic structures were evaluated. Selection of dyes was based on their extensive usage in local dyeing and textile industries around the study area. Studies on the role of redox potential of laccases on dye decolorization are rarely discussed and hence, for the first time we have shown the redox mediated dye decolorizing efficiency of T. harzianum WL1 laccase with the commonly employed redox mediator 1-hydroxybenzotriazole (HBT). The process parameters such as initial dye concentration, enzyme load and HBT concentration were studied and found that they had a great influence on dye removal process. When the dyes were treated with increased concentration of enzyme, it showed a greater percentage of decolorization. Compared to the crude laccase, partially purified laccase accounts for maximum decolorization of all the dyes studied. In addition, the rate of dye decolorization was considerably enhanced in presence of 4 mM HBT. Maximum and minimum decolorization were recorded for Rhodamine 6G and Trypan blue, respectively. The results of this study further confirmed that, T. harzianum laccase was found to be suitable with HBT and this laccase-mediator system (LMS) could be applied for the decolorization of various classes of dyes.  相似文献   

19.
Summary Colour removal from phenplic industrial effluents by phenol oxidase enzymes and white-rot fungi was compared. Soluble laccase and horseradish peroxidase (HRP) removed colour from pulp mill (E), cotton mill hydroxide (OH) and cotton mill sulphide (S) effluents, but rapid and irreversible enzyme inactivation took place. Entrapment of laccase in alginate beads improved decolorization by factors of 3.5 (OH) and 2 (E); entrapment of HRP improved decolorization by 36 (OH), 20 (E) and 9 (S). Beads were unsuitable for continuous use because the enzymes were rapidly released into solution. Co-polymerization of laccase or HRP with L-tyrosine gave insoluble polymers with enzyme activity. Entrapment of the co-polymers in gel beads further increased the efficiency of decolorization of E by 28 (laccase) and by 132 (HRP) compared with soluble enzymes. Maximum decolorization of all three effluents by batch cultures of Coriolus versicolor (70%–80% in 8 days) was greater than the maximum enzymic decolorization (48% of OH in 3 days by entrapped laccase). Soluble laccase (222 units ml–1) precipitated 1.2 g l–1 phenol from artificial coal conversion effluent at pH 6.0 and the rate of precipitation and enzyme inactivation was faster at pH 6.0 than at pH 8.5.Offprint requests to: R. G. Burns  相似文献   

20.
Cultures of the anamorphic fungus Bjerkandera adusta CCBAS 930 decolorizing, in stationary cultures, 0.01 % solutions of carminic acid and Poly R-478, were characterised by a strong increase in the activity of the horseradish peroxidase (HRP-like) and manganese-dependent peroxidase (MnP) at a low activity of lignin peroxidase. Genotypically modified mutants of B. adusta CCBAS 930: 930-5 and 930-14, with total or partial loss of decolorization capabilities relative to anthraquinonic dyes, showed inhibition of the activity of HRP-like peroxidase and MnP. Whereas, compared to the parental strain, in the mutant cultures there was an increase in the activity of lignin peroxidase and laccase. The paper presents a discussion of the role of the studied enzymatic activities in the process of decolorization of anthraquinonic dyes by the strain B. adusta CCBAS 930.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号