首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Maximal ADP-stimulated mitochondrial respiration depends on convergent electron flow through Complexes I + II to the Q-junction of the electron transport system (ETS). In most studies of respiratory control in mitochondrial preparations, however, respiration is limited artificially by supplying substrates for electron input through either Complex I or II. High-resolution respirometry with minimal amounts of tissue biopsy (1–3 mg wet weight of permeabilized muscle fibres per assay) provides a routine approach for multiple substrate-uncoupler-inhibitor titrations. Under physiological conditions, maximal respiratory capacity is obtained with glutamate + malate + succinate, reconstituting the operation of the tricarboxylic acid cycle and preventing depletion of key metabolites from the mitochondrial matrix. In human skeletal muscle, conventional assays with pyruvate + malate or glutamate + malate yield submaximal oxygen fluxes at 0.50–0.75 of capacity of oxidative phosphorylation (OXPHOS). Best estimates of muscular OXPHOS capacity at 37 °C (pmol O2 s−1 mg−1 wet weight) with isolated mitochondria or permeabilized fibres, suggest a range of 100–150 and up to 180 in healthy humans with normal body mass index and top endurance athletes, but reduction to 60–120 in overweight healthy adults with predominantly sedentary life style. The apparent ETS excess capacity (uncoupled respiration) over ADP-stimulated OXPHOS capacity is high in skeletal muscle of active and sedentary humans, but absent in mouse skeletal muscle. Such differences of mitochondrial quality in skeletal muscle are unexpected and cannot be explained at present. A comparative database of mitochondrial physiology may provide the key for understanding the functional implications of mitochondrial diversity from mouse to man, and evaluation of altered mitochondrial respiratory control patterns in health and disease.  相似文献   

3.
Rat skeletal muscle calpastatin form is markedly modified in its inhibitory properties by means of a reverse reaction which involves both phosphorylation and dephosphorylation. Dephospho-calpastatin shows greater inhibitory efficiency versus mu-calpain, whereas phospho-calpastatin shows maximal inhibition versus m-calpain. Both forms are present in fresh rat muscle. Phosphorylation has been reproduced "in vitro" using a homologous Ca2+ independent protein kinase and found to result in the incorporation of approximately one mole of 32P per mole of protein. Dephosphorylation was induced by treatment with alkaline phosphatase and 32P release shown found to correlate with modifications of the inhibitory properties. This reversible covalent modification of calpastatin is considered an important advancement in the understanding of how different calpain isoforms can be more efficiently controlled by a single inhibitor isozyme form.  相似文献   

4.
Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.  相似文献   

5.
The mdx mouse, an animal model of the Duchenne muscular dystrophy, was used for the investigation of changes in mitochondrial function associated with dystrophin deficiency. Enzymatic analysis of skeletal muscle showed an approximately 50% decrease in the activity of all respiratory chain-linked enzymes in musculus quadriceps of adult mdx mice as compared with controls, while in cardiac muscle no difference was observed. The activities of cytosolic and mitochondrial matrix enzymes were not significantly different from the control values in both cardiac and skeletal muscles. In saponin-permeabilized skeletal muscle fibers of mdx mice the maximal rates of mitochondrial respiration were about two times lower than those of controls. These changes were also demonstrated on the level of isolated mitochondria. Mdx muscle mitochondria had only 60% of maximal respiration activities of control mice skeletal muscle mitochondria and contained only about 60% of hemoproteins of mitochondrial inner membrane. Similar findings were observed in a skeletal muscle biopsy of a Duchenne muscular dystrophy patient. These data strongly suggest that a specific decrease in the amount of all mitochondrial inner membrane enzymes, most probably as result of Ca2+ overload of muscle fibers, is the reason for the bioenergetic deficits in dystrophin-deficient skeletal muscle.  相似文献   

6.
Although previous studies from this and other laboratories have extensively characterized insulin degrading activity in animal tissues, little information has been available on insulin responsive human tissues. The present study describes the insulin degrading activity in skeletal muscle from normal human subjects. Fractionation of a sucrose homogenate of skeletal muscle demonstrated that 97% of the total neutral insulin degrading activity was in the 100 000 × g supernatant with no detectable glutathione-insulin transhydrogenase activity. The 100 000×g pellet contained 85% of the total acid protease activity and all the glutathione-insulin transhydrogenase activity. The soluble insulin degrading activity was purified 1400-fold by ammonium sulfate fractionation, molecular exclusion, ion-exchange and affinity chromatography. Enzymatic activity was determined by measuring an increase in trichloroacetic acid-soluble products of the 125I-labeled hormone substrates. The purified enzyme showed marked proteolytic specificity for insulin with a Km of 1.63·10?7 M (±0.32) and was competitively inhibited by proinsulin and glucagon with Ki values of 2.1 · 10?6 M and 4.0 · 10?6 M, respectively. This insulin protease exhibited a pH optimum between 7 and 8, a molecular weight of 120 000 and was capable of degrading glucagon. Inhibition studies demonstrated that a sulfhydryl group is essential for activity. Molecular exclusion chromatography of [125I]insulin degraded products revealed a time-dependent increase in degradation products with molecular weights intermediate between intact insulin and iodotyrosine. These studies demonstrate that the major enzymatic system responsible for insulin degrading activity is a soluble cysteine protease capable of rapidly metabolizing insulin under physiologic conditions.  相似文献   

7.
The classical concept of ATP-demand control of energy metabolism in skeletal muscle has to be modified on the basis of studies showing the influence of additional controlling parameters (reducing equivalent supply, oxygen availability, proton leak, diffusion restrictions and the creatine kinase system) and on the basis of applications of metabolic control analysis showing very clearly multistep control. This concept of multistep control allows to quantify the individual influence of any parameter on mitochondrial oxidative phosphorylation and is extremely helpful to analyze the metabolic consequences of enzyme deficiencies in skeletal muscle occurring in mitochondrial myopathies.  相似文献   

8.
Objective: This study investigated gender-dependent differences of mitochondrial function and sensitivity to in vitro ROS exposure in rat skeletal muscle at rest and after exercise training.

Methods: Wistar rats underwent running training for 6 weeks. In vitro measurements of hydroxyl radical production, oxygen consumption (under basal and maximal respiration conditions) and ATP production were made on permeabilized fibers. Mitochondrial function was examined after exposure and non-exposure to an in vitro generator system of reactive oxygen species (ROS). Antioxidant enzyme activities and malondialdehyde (MDA) content were also determined.

Results: Compared with sedentary males, females showed a greater resistance of mitochondrial function (oxygen consumption and ATP production) to ROS exposure, and lower MDA content and antioxidant enzyme activities. The training protocol had more beneficial effects in males than females with regard to ROS production and oxidative stress. In contrast to male rats, the susceptibility of mitochondrial function to ROS exposure in trained females was unchanged.

Discussion: Exercise training improves mitochondrial function oxidative capacities in both male and female rats, but is more pronounced in males as a result of different mechanisms. The resistance of mitochondrial function to in vitro oxidative stress exposure and the antioxidant responses are gender- and training-dependent, and may be related to the protective effects of estrogen.  相似文献   


9.
10.
Mitochondrial damage has implicated a major contributor for ageing process. In the present study, we measured mitochondrial membrane swelling, mitochondrial respiration (state 3 and 4) by using oxygen electrode in skeletal muscle of young (3–4 months old) and aged rats (above 24 months old) with supplementation of l-carnitine and dl-α-lipoic acid. Our results shows that the mitochondrial membrane swelling and state 4 respiration were increased more in skeletal muscle mitochondria of aged rats than in young control rats, whereas the state 3 respiration, respiratory control ratio (RCR) and ADP:O ratio decreased more in aged rats than in young rats. After supplementation of carnitine and lipoic acid to aged rats for 30 days, the state 3 respiration and RCR were increased, whereas the state 4 and mitochondrial membrane swelling were decreased to near normal rats. From our results, we conclude that combined supplementation of carnitine and lipoic acids to aged rats increases the skeletal muscle mitochondrial respiration, thereby increasing the level of ATP. (Mol Cell Biochem xxx: 83–89, 2005)  相似文献   

11.
The process of skeletal muscle aging is characterized by a progressive loss of muscle mass and functionality. The underlying mechanisms are highly complex and remain unclear. This study was designed to further investigate the consequences of aging on mitochondrial oxidative phosphorylation in rat gastrocnemius muscle, by comparing young (6 months) and aged (21 months) rats. Maximal oxidative phosphorylation capacity was clearly reduced in older rats, while mitochondrial efficiency was unaffected. Inner membrane properties were unaffected in aged rats since proton leak kinetics were identical to young rats. Application of top-down control analysis revealed a dysfunction of the phosphorylation module in older rats, responsible for a dysregulation of oxidative phosphorylation under low activities close to in vivo ATP turnover. This dysregulation is responsible for an impaired mitochondrial response toward changes in cellular ATP demand, leading to a decreased membrane potential which may in turn affect ROS production and ion homeostasis. Based on our data, we propose that modification of ANT properties with aging could partly explain these mitochondrial dysfunctions.  相似文献   

12.
This study deals with mitochondrial energy efficiency in liver and skeletal muscle mitochondria in 15 days cold exposed rats. Cold exposure strongly increases the sensitivity to uncoupling by added palmitate of skeletal muscle but not liver mitochondria, while mitochondrial energy coupling in the absence of fatty acids is only slightly affected by cold in liver and skeletal muscle. In addition, uncoupling protein 3 content does not follow changes in skeletal muscle mitochondrial coupling. It is therefore concluded that skeletal muscle could play a direct thermogenic role based on fatty acid-induced mild uncoupling of mitochondrial oxidative phosphorylation.  相似文献   

13.
We have investigated the presence of diazoxide- and nicorandil-activated K+ channels in rat skeletal muscle. Activation of potassium transport in the rat skeletal muscle myoblast cell line L6 caused a stimulation of cellular oxygen consumption, implying a mitochondrial effect. Working with isolated rat skeletal muscle mitochondria, both potassium channel openers (KCOs) stimulate respiration, depolarize the mitochondrial inner membrane and lead to oxidation of the mitochondrial NAD-system in a strict potassium-dependent manner. This is a strong indication for KCO-mediated stimulation of potassium transport at the mitochondrial inner membrane. Moreover, the potassium-specific effects of both diazoxide and nicorandil on oxidative phosphorylation in skeletal muscle mitochondria were completely abolished by the antidiabetic sulfonylurea derivative glibenclamide, a well-known inhibitor of ATP-regulated potassium channels (K(ATP) channels). Since both diazoxide and nicorandil facilitated swelling of de-energised mitochondria in KSCN buffer at the same concentrations, our results implicate the presence of a mitochondrial ATP-regulated potassium channel (mitoK(ATP) channel) in rat skeletal muscle which can modulate mitochondrial oxidative phosphorylation.  相似文献   

14.
15.
A dynamic computer model of oxidative phosphorylation in oxidative mammalian skeletal muscle was developed. The previously published model of oxidative phosphorylation in isolated skeletal muscle mitochondria was extended by incorporation of the creatine kinase system (creatine kinase plus phosphocreatine/creatine pair), cytosolic proton production/consumption system (proton production/consumption by the creatine kinase-catalysed reaction, efflux/influx of protons), physiological size of the adenine nucleotide pool and some additional minor changes. Theoretical studies performed by means of the extended model demonstrated that the CK system, which allows for large changes in P(i) in relation to isolated mitochondria system, has no significant influence on the kinetic properties of oxidative phosphorylation, as inorganic phosphate only slightly modifies the relationship between the respiration rate and [ADP]. Computer simulations also suggested that the second-order dependence of oxidative phosphorylation on [ADP] proposed in the literature refers only to the ATP synthesis flux, but not to the oxygen consumption flux (the difference between these two fluxes being due to the proton leak). Next, time courses of changes in fluxes and metabolite concentrations during transition between different steady-states were simulated. The model suggests, in accordance with previous theoretical predictions, that activation of oxidative phosphorylation by an increase in [ADP] can (roughly) explain the behaviour of the system only at low work intensities, while at higher work intensities parallel activation of different steps of oxidative phosphorylation is involved.  相似文献   

16.
We investigated the oxidative phosphorylation efficiency of liver and gastrocnemius muscle mitochondria in thermoneutral and cold-acclimated ducklings. The yield of oxidative phosphorylation was lower in muscle than in liver mitochondria, a difference that was associated with a higher proton conductance in muscle mitochondria. Cold exposure did not affect oxidative phosphorylation efficiency or basal proton leak in mitochondria. We conclude that the basal proton conductance of mitochondria may regulate mitochondrial oxidative phosphorylation efficiency, but is not an important contributor to thermogenic processes in cold-acclimated ducklings.  相似文献   

17.
Reactive oxygen species (ROS) have been widely implicated in the pathogenesis of diabetes and more recently in mitochondrial alterations in skeletal muscle of diabetic mice. However, so far the exact sources of ROS in skeletal muscle have remained elusive. Aiming at better understanding the causes of mitochondrial alterations in diabetic muscle, we designed this study to characterize the sites of ROS production in skeletal muscle of streptozotocin (STZ)-induced diabetic mice. Hyperglycemic STZ mice showed increased markers of systemic and muscular oxidative stress, as evidenced by increased circulating H(2)O(2) and muscle carbonylated protein levels. Interestingly, insulin treatment reduced hyperglycemia and improved systemic and muscular oxidative stress in STZ mice. We demonstrated that increased oxidative stress in muscle of STZ mice is associated with an increase of xanthine oxidase (XO) expression and activity and is mediated by an induction of H(2)O(2) production by both mitochondria and XO. Finally, treatment of STZ mice, as well as high-fat and high-sucrose diet-fed mice, with oxypurinol reduced markers of systemic and muscular oxidative stress and prevented structural and functional mitochondrial alterations, confirming the in vivo relevance of XO in ROS production in diabetic mice. These data indicate that mitochondria and XO are the major sources of hyperglycemia-induced ROS production in skeletal muscle and that the inhibition of XO reduces oxidative stress and improves mitochondrial alterations in diabetic muscle.  相似文献   

18.
The rate of oxygen consumption of mitochondria from rat muscles at pH 7.4 is elevated by 1-lactate. The respiratory control ratio and the ADP/O-ratio are decreased under these conditions. Acidification to pH 6.5 in the absence of 1-lactate does not change the interpreted mitochondrial functions. The experimental data are discussed as a partial uncoupling effect of 1-lactate on the oxidative phosphorylation. Similar changes in those mitochondrial functions are found after short-time intensive swimming exercise of rats. These variations might be a reason for the sometimes described reduced aerobic performance after intensive work.  相似文献   

19.
Intrauterine growth retardation (IUGR) has been linked to the development of type 2 diabetes in later life. We have developed a model of uteroplacental insufficiency, a common cause of intrauterine growth retardation, in the rat. Early in life, the animals are insulin resistant and by 6 mo of age they develop diabetes. Glycogen content and insulin-stimulated 2-deoxyglucose uptake were significantly decreased in muscle from IUGR rats. IUGR muscle mitochondria exhibited significantly decreased rates of state 3 oxygen consumption with pyruvate, glutamate, alpha-ketoglutarate, and succinate. Decreased pyruvate oxidation in IUGR mitochondria was associated with decreased ATP production, decreased pyruvate dehydrogenase activity, and increased expression of pyruvate dehydrogenase kinase 4. Such a defect in IUGR mitochondria leads to a chronic reduction in the supply of ATP available from oxidative phosphorylation. Impaired ATP synthesis in muscle compromises energy-dependent GLUT4 recruitment to the cell surface, glucose transport, and glycogen synthesis, which contribute to insulin resistance and hyperglycemia of type 2 diabetes.  相似文献   

20.
Anabolic androgenic steroids are used in the sport context to enhance muscle mass and strength and to increase muscle fatigue resistance. Since muscle fatigue has been related to oxidative stress caused by an exercise-linked reactive oxygen species (ROS) production, we investigated the potential effects of a treatment with the anabolic androgenic steroid stanozolol against oxidative damage induced on rat skeletal muscle mitochondria by an acute bout of exhaustive exercise. Mitochondrial ROS generation with complex I- and complex II-linked substrates was increased in exercised control rats, whereas it remained unchanged in the steroid-treated animals. Stanozolol treatment markedly reduced the extent of exercise-induced oxidative damage to mitochondrial proteins, as indicated by the lower levels of the specific markers of protein oxidation, glycoxidation, and lipoxidation, and the preservation of the activity of the superoxide-sensitive enzyme aconitase. This effect was not due to an enhancement of antioxidant enzyme activities. Acute exercise provoked changes in mitochondrial membrane fatty acid composition characterized by an increased content in docosahexaenoic acid. In contrast, the postexercise mitochondrial fatty acid composition was not altered in stanozolol-treated rats. Our results suggest that stanozolol protects against acute exercise-induced oxidative stress by reducing mitochondrial ROS production, in association with a preservation of mitochondrial membrane properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号