首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rutin, a polyphenolic flavonoid, was investigated for its antioxidant potential in streptozotocin (STZ)-induced diabetic rats. Rats were rendered diabetic by a single intraperitoneal injection of streptozotocin (50 mg/kg). The levels of fasting plasma glucose and insulin were estimated. Lipid peroxidative products and antioxidants were estimated in liver, kidney and brain. Histopathological studies were carried out in these tissues. A significant (p < 0.05) increase in the levels of fasting plasma glucose, lipid peroxidative products (thiobarbituric acid reactive substances [TBARS] and lipid hydroperoxides [HP]) and a significant (p < 0.05) decrease in plasma insulin, enzymic antioxidants (superoxide dismutase [SOD], catalase, glutathione peroxidase [GPx] and glutathione reductase [GRx]) and nonenzymic antioxidants (reduced glutathione [GSH], vitamin C and E) in diabetic liver, kidney and brain were observed. Oral administration of rutin (100 mg/kg) for a period of 45 days significantly (p < 0.05) decreased fasting plasma glucose, increased insulin levels and improved the antioxidant status of diabetic rats by decreasing lipid peroxidative products and increasing enzymic and nonenzymic antioxidants. Normal rats treated with rutin (100 mg/kg) showed no significant (p < 0.05) effect on any of the parameters studied. Histopathological studies of the liver, kidney and brain showed the protective role of rutin. Thus, our study clearly shows that rutin has antioxidant effect in STZ-induced experimental diabetes.  相似文献   

2.
The antioxidant activity of green tea (GT) has been extensively studied; however, the results obtained from dietary intervention studies are controversial. In the present study we investigated the effect of the addition of two cups of GT (containing approximately 250 mg of total catechins) to a controlled diet in a group of healthy volunteers with respect to a group following the same controlled diet but not consuming GT. Antioxidant status and lipid profile in plasma, the resistance from oxidative damage to lipid and DNA, and the activity of glutathione peroxidase (GPX) in isolated lymphocytes were measured at the beginning and the end of the trial. After 42 days, consumption of GT caused a significant increase in plasma total antioxidant activity [from 1.79 to 1.98 micromol Trolox equivalent (TE)/ml, P<.001], significant decreases in plasma peroxides level (from 412 to 288 Carr U, P<.05) and induced DNA oxidative damage in lymphocytes (from 14.2% to 10.1% of DNA in tail, P<.05), a moderate although significant decrease in LDL cholesterol (from 119.9 to 106.6 mg/dL, P<.05) with respect to control. The present study suggests the ability of GT, consumed within a balanced controlled diet, to improve overall the antioxidative status and to protect against oxidative damage in humans.  相似文献   

3.
The purpose of this study was to elucidate the participation of plasma PON1 (paraoxonase activity [PON] and arylesterase activity [ARE]) in antioxidant defense in response to a single bout of maximal exercise. PON, ARE, lipid profile, lipid peroxidation (thiobarbituric acid reactive substances [TBARS]), total antioxidant status (ferric reducing ability of plasma [FRAP]), concentration of uric acid [UA], and total bilirubin (TBil) were determined in the plasma before, at the bout and 2 h after maximal exercise on a treadmill in young sportsmen. Chosen physiological parameters also were controlled during maximal exercise. Following maximal exercise, the unaltered level of TBARS and increased FRAP were registered. ARE increment was the highest (37.6%) of all measured variables but lasted for a short time. UA increment was lower than ARE but long-lasting and correlated with FRAP. PON activity increment was associated with the combined effect of body weight, lean, body mass index (BMI) and basal metabolic rate (BMR). We conclude that PON1 is a co-factor of the first line of antioxidant defense during maximal exercise. Its activity is associated with body composition and not the physical fitness of the subjects.  相似文献   

4.
Effects of garlic extract supplementation on blood lipid profile and oxidant/antioxidant status were investigated in volunteer subjects with high blood cholesterol. A total of 23 volunteer subjects with high blood cholesterol (>5.98 mmol/L) participated in the study. Of them, 13 patients were evaluated as a hypertensive group and the others a normotensive group. Before (first sample) and after (second sample) garlic extract consumption for 4 months, routine blood analyses including lipid parameters and liver and kidney function tests were performed. Additionally, blood oxidant (malondialdehyde [MDA], oxidation resistance [OR]), and antioxidant (antioxidant potential [AOP], nonenzymatic superoxide radical scavenger activity [NSSA]) parameters were measured. Serum total cholesterol, low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL) cholesterols, and triglyceride levels were found to be significantly lowered, but HDL high-density lipoprotein cholesterol level increased after the extract use. The total:HDL cholesterol ratio was also found to be significantly decreased after the extract use. There were no meaningful differences with regard to other routine biochemical parameters. Additionally, blood AOP, OR, and NSSA values were found increased and MDA level decreased in the second samples relative to the first ones. Systolic and diastolic blood pressure values were also found to be significantly lowered after extract supplementation in the hypertensive group, but no similar changes were observed in the normotensive group. We conclude that garlic extract supplementation improves blood lipid profile, strengthens blood antioxidant potential, and causes significant reductions in systolic and diastolic blood pressures. It also leads to a decrease in the level of oxidation product (MDA) in the blood samples, which demonstrates reduced oxidation reactions in the body.  相似文献   

5.
Oxidative cell damage is involved in the pathogenesis of atherosclerosis, cancer, diabetes and other diseases. Uptake of fruit juice with especially high content of antioxidant flavonoids/polyphenols, might reduce oxidative cell damage. Therefore, an intervention study was performed with a red mixed berry juice [trolox equivalent antioxidative capacity (TEAC): 19.1 mmol/L trolox] and a corresponding polyphenol-depleted juice (polyphenols largely removed, TEAC 2.4 mmol/L trolox), serving as control. After a 3-week run-in period, 18 male probands daily consumed 700 mL juice, and 9 consumed control juice, in a 4-week intervention, followed by a 3-week wash-out. Samples were collected weekly to analyze DNA damage (comet assay), lipid peroxidation (plasma malondialdehyde: HPLC/fluorescence; urinary isoprostanes: GC-MS), blood glutathione (photometrically), DNA-binding activity of nuclear factor-kappaB (ELISA) and plasma carotenoid/alpha-tocopherol levels (HPLC-DAD). During intervention with the fruit juice, a decrease of oxidative DNA damage (p<5x10(-4)) and an increase of reduced glutathione (p<5x10(-4)) and of glutathione status (p<0.05) were observed, which returned to the run-in levels in the subsequent wash-out phase. The other biomarkers were not significantly modulated by the juice supplement. Intervention with the control juice did not result in reduction of oxidative damage. In conclusion, the fruit juice clearly reduces oxidative cell damage in healthy probands.  相似文献   

6.
Abstract

Although the importance of glutathione in protection against oxidative stress is well recognised, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13–14) aged 20–30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH)decreased by 13% with exercise. Of the measured red blood cell (RBC)antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

7.
Although the importance of glutathione in protection against oxidative stress is well recognized, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13-14) aged 20-30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH) decreased by 13% with exercise. Of the measured red blood cell (RBC) antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

8.
In this study, the influence of athletic training status and the contractile character of the active muscle on the magnitude of the pressor response (PR) to voluntary and electrically evoked isometric plantar flexion was investigated. Subjects were 10 sprint-trained athletes (sprint) (100-m, 200-m and 400-m) [mean (SD) age, 21 (2) years], 14 endurance trained athletes (distance) [22 (2) years] and 8 untrained men (control) [23 (3) years]. Twitch time to peak tension (TPT) in the sprint group [108 (7) ms] was significantly less (P<0.001) than that of the distance group [124 (10) ms]. During voluntary contraction, the mean change in systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (fc) was not significantly different between groups. During electrically evoked contractions, mean changes in SBP, DBP and fc were not significantly different between the sprint, distance and control groups. However, division of the sprint group into 400-m (sprint I) and 100/200-m athletes (sprint II) showed that an increase in DBP of 1.6 kPa (12 mm Hg) in sprint I was significantly less (P<0.05) than the 2.5 kPa (19 mm Hg) increase observed for both the distance and control groups. Prediction of the DBP response from our previously published relationship between TPT and DBP showed close agreement in all subject groups except sprint I; in these subjects the observed DBP response was only 55% of that predicted. Attenuation of the PR in the involuntary experiment suggests that some aspect of sprint training, but not endurance training, modifies the muscle afferent input to the PR in man.  相似文献   

9.
Rahimi, R. Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. J Strength Cond Res 25(12): 3448-3455, 2011-Creatine (Cr), or methyl guanidine-acetic acid, can be either ingested from exogenous sources, such as fish or meat, or produced endogenously by the body, primarily in the liver. It is used as an ergogenic aid to improve muscle mass, strength, and endurance. Heretofore, Cr's positive therapeutic benefits in various oxidative stress-associated diseases have been reported in the literature and, recently, Cr has also been shown to exert direct antioxidant effects. Therefore, the purpose of this study was to investigate the effects of an acute bout of resistance exercise (RE) on oxidative stress response and oxidative DNA damage in male athletes and whether supplementation with Cr could negate any observed differences. Twenty-seven resistance-trained men were randomly divided into a Cr supplementation group (the Cr group [21.6 ± 3.6 years], taking 4 × 5 g Cr monohydrate per day) or a placebo (PL) supplementation group (the PL group [21.2 ± 3.2 years], taking 4 × 5 g maltodextrin per day). A double-blind research design was employed for a 7-day supplementation period. Before and after the seventh day of supplementation, the subjects performed an RE protocol (7 sets of 4 exercises using 60-90 1 repetition maximum) in the flat pyramid loading pattern. Blood and urine samples taken before, immediately, and 24-hour postexercise were analyzed for plasma malondialdehyde (MDA) and urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) excretion. Before the supplementation period, a significant increase in the urinary 8-OHdG excretion and plasma MDA levels was observed after RE. The Cr supplementation induces a significant increase in athletics performance, and it attenuated the changes observed in the urinary 8-OHdG excretion and plasma MDA. These results indicate that Cr supplementation reduced oxidative DNA damage and lipid peroxidation induced by a single bout of RE.  相似文献   

10.
Oxidative stress is currently hypothesized to be a mechanism underlying diabetes. The present study was designed to evaluate the effect of umbelliferone (UMB), a derivative of coumarin, on erythrocyte lipid peroxidation, antioxidants, and lipid profile in normal and streptozotocin (STZ) diabetic rats. Diabetes was induced in adult male albino rats of Wistar strain, weighing 180 to 200 g, by the administration of STZ (40 mg/kg/b-wt) intraperitonially. The normal and diabetic rats were treated with UMB in 10 percent dimethyl sulfoxide (DMSO) dissolved in water for 45 days. The diabetic rats had elevated levels of blood glucose and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD), and lipid hydroperoxide (HP) and decreased levels of nonenzymatic antioxidants (Vitamin C and reduced glutathione [GSH]), elevated levels of vitamin E, and elevated levels of enzymatic antioxidants (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]), elevated glucose-6-phosphate dehydrogenase activity, and altered lipid profile (cholesterol and phospholipids) in erythrocytes. These changes were reversed by treatment with UMB. Thus, our results indicate that the administration of UMB shows promising potential for the restoration of normal blood glucose levels, erythrocyte lipid peroxidation, antioxidants, and lipid profile in STZ-diabetic.  相似文献   

11.
A total of 28 adult V-line rabbits were fed ad libitum a control diet or a diet supplemented with 0.5%, 1.0% and 1.5% soybean lecithin (SL) for 12 weeks. Bucks that received 0.5%, 1.0% or 1.5% dietary SL had a higher ejaculate volume, mass motility, sperm concentration, total sperm output and total motile sperm. Dietary SL reduced the percentage of dead sperm and increased the normal sperm, and this concurred with an increase in blood testosterone concentration. Blood and seminal plasma total lipid, acid phosphatase and seminal plasma alkaline phosphatase were significantly increased because of inclusion of SL. Interestingly, SL reduced blood and seminal plasma thiobarbituric acid-reactive substances while increasing blood and seminal plasma glutathione content, glutathione S-transferase, glutathione peroxidase and superoxide dismutase activity. Conception rate and litter size at birth and weaning were also significantly improved. Practically, it could be suggested that SL is a suitable supplement for improving semen quality, antioxidant status, reproductive traits and the economic efficiency of V-line rabbit bucks and 1% is an adequate concentration.  相似文献   

12.
The relationship between prolonged exercise, oxidative stress, and the protective capacity of the antioxidant defense system has been determined. Venous blood samples were removed from seven trained athletes before and up to 120 h after completion of a half-marathon for measurements of blood antioxidants, antioxidant enzymes, and indices of lipid peroxidation. Plasma creatine kinase (CK) activity, an index of muscle damage, increased (P less than 0.05) to a maximum 24 h after the race but this was not accompanied by changes in conjugated dienes and thiobarbituric acid reactive substances (TBARS), which are indices of lipid peroxidation. An increase (P less than 0.05) in plasma cholesterol concentration (4%) immediately after the race was similar to the change in plasma volume (6%). However, transient increases (P less than 0.05) immediately postrace in the plasma concentrations of uric acid (24%), vitamin A (18%), and vitamin C (34%) were only partly accounted for by the fluid shifts. The immediate postrace increases in alpha- and gamma-tocopherol did not attain statistical significance. Erythrocyte antioxidant enzyme activities were unaffected by the exercise but the alpha- and gamma-tocopherol concentrations progressively increased (P less than 0.001 and P less than 0.05, respectively) up to 48 h postrace. Paradoxically, 24 h after the race erythrocyte susceptibility to in vitro peroxidation was markedly elevated (P less than 0.01). This enhanced susceptibility to peroxidation was maintained even at 120 h postrace and did not correspond to changes in the age of the red cell population. A decrease (P less than 0.001) in total erythrocyte glutathione immediately after the half-marathon was mainly due to a reduction in the reduced form (GSH). The results show that when trained athletes run a comparatively short distance sufficient to result in some degree of muscle damage but which is insufficient to cause elevations in plasma indices of lipid peroxidation, significant alterations in erythrocyte antioxidant status do occur.  相似文献   

13.
This study investigated the supplementation with vitamin C or/and E on the antioxidant system in hemodialysis patients. Thirty-eight hemodialysis patients (27 males and 11 females) with the average of 60 years old were divided into four groups: placebo (400 mg starch/time), vitamin C (400 mg/time)-, vitamin E (400 mg d,l- alpha-tocopheryl acetate/time)-, and vitamin C (400 mg/time) + E (400 mg d,l- alpha-tocopheryl acetate/time)-supplemented groups for 6-week supplementation. The patients orally received three capsules of placebo or antioxidant(s) three times a week after finishing hemodialysis. Thirty-six healthy subjects (22 males and 14 females) with the average of 58 years old were recruited as the control group. Hemodialysis patients significantly decreased plasma vitamin C by 32%, erythrocyte glutathione by 26%, and plasma total antioxidant status by 9%, but increased plasma lipid peroxide levels by 102% compared with the control group at the baseline. The levels of plasma vitamin C and total antioxidant status significantly decreased by 24% and 18%, respectively, from the post-dialysate compared with those from the pre-dialysate. At week 6, vitamin C + E-supplemented group significantly increased plasma vitamin C and E, erythrocyte glutathione, and plasma antioxidant status, and inhibited plasma lipid peroxides compared with placebo group. Additionally, vitamin C + E-supplemented group had higher plasma vitamin C, vitamin E, and total antioxidant status, and lower plasma lipid peroxides than placebo group even at least 2 weeks after the termination of the supplements. Therefore, antioxidant vitamin supplements could improve antioxidant status and decrease lipid peroxides of hemodialysis patients.  相似文献   

14.
A variety of resistance training interventions are used to improve field sport acceleration (e.g., free sprinting, weights, plyometrics, resisted sprinting). The effects these protocols have on acceleration performance and components of sprint technique have not been clearly defined in the literature. This study assessed 4 common protocols (free sprint training [FST], weight training [WT], plyometric training [PT], and resisted sprint training [RST]) for changes in acceleration kinematics, power, and strength in field sport athletes. Thirty-five men were divided into 4 groups (FST: n = 9; WT: n = 8; PT: n = 9; RST: n = 9) matched for 10-m velocity. Training involved two 60-minute sessions per week for 6 weeks. After the interventions, paired-sample t-tests identified significant (p ≤ 0.05) within-group changes. All the groups increased the 0- to 5-m and 0- to 10-m velocity by 9-10%. The WT and PT groups increased the 5- to 10-m velocity by approximately 10%. All the groups increased step length for all distance intervals. The FST group decreased 0- to 5-m flight time and step frequency in all intervals and increased 0- to 5-m and 0- to 10-m contact time. Power and strength adaptations were protocol specific. The FST group improved horizontal power as measured by a 5-bound test. The FST, PT, and RST groups all improved reactive strength index derived from a 40-cm drop jump, indicating enhanced muscle stretch-shortening capacity during rebound from impacts. The WT group increased absolute and relative strength measured by a 3-repetition maximum squat by approximately 15%. Step length was the major limiting sprint performance factor for the athletes in this study. Correctly administered, each training protocol can be effective in improving acceleration. To increase step length and improve acceleration, field sport athletes should develop specific horizontal and reactive power.  相似文献   

15.
It has been reported that exercise induces oxidative stress and causes adaptations in antioxidant defences. The aim of this study was to determine the adaptations of lymphocytes to the oxidative stress induced by an exhaustive exercise. Nine voluntary male subjects participated in the study. The exercise was a cycling mountain stage (171.8 km), and the cyclists took a mean of 283 min to complete it. Blood samples were taken the morning of the cycling stage day, after overnight fasting, and 3 h after finishing the stage. We determined the blood glutathione redox status (GSSG/GSH), lymphocyte antioxidant enzyme activities and superoxide dismutase (SOD) levels; the plasma and lymphocyte vitamin E levels; the serum lactate dehydrogenase (LDH) and creatine kinase (CK) activities and urate levels; the plasma carotene and malonaldehyde (MDA) levels; and the lymphocyte carbonyl index. The cycling stage induced significant increases in blood-oxidized (glutathione/GSSG), plasma MDA and serum urate levels. The exercise also produced increases in CK and LDH serum activities. The mountain cycling stage induced significant increases in lymphocyte vitamin E levels, glutathione peroxidase and glutathione reductase activities as well as increased SOD activity and protein levels. The protein carbonyl levels increased significantly in lymphocytes after the stage. In conclusion, in spite of increasing antioxidant defences in response to the oxidative stress induced by the exhaustive exercise, lymphocyte oxidative damage was produced after the stage as demonstrated by the increased carbonyl index even in very well trained athletes.  相似文献   

16.
To determine the factors responsible for changes in [H+] during and after sprint exercise in the racing greyhound, Stewart's quantitative acid-base analysis was applied to arterial blood plasma samples taken at rest, at 8-s intervals during exercise, and at various intervals up to 30 min after a 402-m spring (approximately 30 s) on the track. [Na+], [K+], [Cl-], [total Ca], [lactate], [albumin], [Pi], PCO2, and pH were measured, and the [H+] was calculated from Stewart's equations. This short sprint caused all measured variables to change significantly. Maximal changes were strong ion difference decreased from 36.7 meq/l at rest to 16.1 meq/l; [albumin] increased from 3.1 g/dl at rest to 3.7 g/dl; PCO2, after decreasing from 39.6 Torr at rest to 27.9 Torr immediately prerace, increased during exercise to 42.8 Torr and then again decreased to near 20 Torr during most of recovery; and [H+] rose from 36.6 neq/l at rest to a peak of 76.6 neq/l. The [H+] calculated using Stewart's analysis was not significantly different from that directly measured. In addition to the increase in lactate and the change in PCO2, changes in [albumin], [Na+], and [Cl-] also influenced [H+] during and after sprint exercise in the running greyhound.  相似文献   

17.
The primary purpose of this study was to examine the effect of energy restriction on antioxidant capacity in trained athletes. Secondly, our study determined whether dietary protein source influenced the antioxidant response, performance, and immunity. Twenty male cyclists consumed either whey or casein supplement (40 g/day) in addition to their diet for 17 days. All subjects subsequently underwent 4 days of energy restriction using a formula diet (20 kcal/kg) while continuing protein supplementation. Energy restriction caused 2.7 +/- 0.3 kg weight loss, increased lymphocyte total glutathione (tGSH) 37%, red blood cell glutathione peroxidase 48%, plasma cysteine 12%, and decreased whole blood reduced to oxidized GSH (rGSH/GSSG) ratio by 52%. The only immunity factor altered by energy restriction was an increase in stimulated phagocytosis (65%). Acute submaximal exercise reduced blood tGSH but increased glutathione peroxidase. Performance of a high intensity cycle test following 45 min of moderate exercise tended to be reduced by energy restriction (P = 0.06) but was unaffected by protein source. Energy restriction caused a negative nitrogen balance with no difference from dietary protein source. In conclusion, acute energy restriction increased plasma cysteine and several markers of the glutathione antioxidant system in trained athletes. A high cysteine dietary protein source did not influence these responses.  相似文献   

18.
Strenuous physical activity is known to increase the production of reactive oxygen species (ROS), associated with depletion of antioxidant defence. In the present work we evaluated the level of lipid peroxidation and antioxidant components in blood of sportsmen under resting conditions and compared the data obtained with those in age- and sex-matched sedentary controls. A significant increase was noted in the levels of thiobarbituric acid reactive substances (TBARS) and conjugated dienes while a decrease was observed in ascorbic acid and glutathione levels in sportsmen. α-Tocopherol was unaltered in plasma of sportsmen as compared to controls. The activity of superoxide dismutase was increased (52 per cent) and glutathione peroxidase was decreased (43 per cent) in the erythrocytes of sportsmen compared to controls. Basal glutathione levels were negatively correlated with conjugated dienes and maximal oxygen uptake (VO2max) of the subjects. Dietary supplementation with antioxidant vitamins has been shown to be beneficial in combating oxidative stress without enhancing performance while exogenous glutathione was found to influence the endurance capacity of athletes. Such studies demonstrate the critical role played by glutathione and suggest that intervention trials should include a mixture of antioxidants rather than a single antioxidant. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of the study was to analyse the effect of Val 16Ala polymorphism in SOD2 gene on oxidative stress parameters and lipid profile of the blood during a three-month wrestling training. The study included 53 Polish young wrestlers. Blood samples were collected at the beginning of the programme and following three months of the training. The list of analysed parameters included erythrocyte and serum activities of superoxide dismutase (SOD), whole blood glutathione peroxidase (GPx) activity, total glutathione (tGSH) level, concentration of lipid hydroperoxides (LHs), total antioxidant capacity (TAC) and creatine kinase (CK) activity in the serum, as well as lipid profile parameters: triglycerides (TG), total cholesterol (TC), high-density (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Three-month training resulted in a decrease in CK activity, an increase in serum SOD activity, as well as in unfavourable changes in serum lipid profile: an increase in TC, LDL-C, and TG, and a decrease in HDL-C. Aside from CK activity, all these changes seemed to be associated with presence of Val allele. Prior to the training programme, subjects with Ala/Ala genotype presented with lower levels of LHs, lower whole blood GPx activity, and lower serum concentrations of TC than the individuals with Ala/Val genotype. Both prior to and after three-month training, higher levels of tGSH were observed in Val/Val genotype as compared to Ala/Val genotype carriers. Moreover, multiple regression analysis demonstrated that SOD2 genotype was a significant predictor of pre-training whole blood GPx activity and erythrocyte SOD activity (Val/Val?>?Ala/Val?>?Ala/Ala). Altogether, these findings suggest that Val 16Ala polymorphism in SOD2 gene contributes to individual variability in oxidative stress status and lipid profile of the blood in young wrestlers, and may modulate biochemical response to training.  相似文献   

20.
The influence on the lipid profile and lipid peroxidation in rabbit-liver mitochondria exerted by different edible oils high in oleic acid but different non-glyceride phenolic fractions was studied. High-phenolic virgin olive oil from the variety "Picual", the same oil submitted to an exhaustive process of washing to eliminate the phenolic fraction without altering the lipid profile and high-oleic sunflower oil (poor in phenolic compounds) were added to rabbit diets. The results reveal the importance of the different oleic: linoleic ratio of the lipid sources on the lipid profile of mitochondrial membranes. This is highlighted by the greater proportion of saturated fatty acids and the lower content in oleic acid (p < 0.05) shown by the rabbits fed on high-oleic sunflower oil. The group fed on the fat rich in phenolics exhibited the highest level of antioxidants (alpha-tocopherol, ubiquinone 10) and the highest activity of glutathione peroxidase as well as the lowest content in hydroperoxides and TBARS. The study provides evidences in vivo about the considerable antioxidant capacity of the phenolic fraction of virgin olive oil in rabbit-liver mitochondria and the important role that this non-glyceride fraction can play in the overall antioxidant benefits attributed to this oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号