首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ruminal effective degradability (RED) and intestinal effective digestibility (IED) for dry matter, crude protein (CP) and amino acids (AA) were estimated by a simplified in situ method using pooled samples from rumen-incubated residues, which represented the ruminal outflow of undegraded feed. The effect of microbial contamination in the rumen was corrected using 15N infusion techniques. Studies were carried out for soybean meal (SBM), barley grain (BG) and lucerne hay (LH) in three wethers cannulated in the rumen and the duodenum. Uncorrected values of RED for CP obtained either by mathematical integration or our simplified method were similar in all feeds. Microbial N in the pooled samples of SBM, BG and LH were 2%, 11% and 24% of total N, respectively. However, intestinal incubation eliminated this microbial charge by 100%, 99% and 88%, respectively. With microbial corrections, RED showed an increase, and IED showed a decrease, except for SBM. With this correction, intestinal digested CP was reduced by 2% in SBM, 13% in BG and 34% in LH. Corrected IED of AA was relatively similar in SBM (97–99%). However, large variations were observed in BG (74–93%) and in LH (10–88%). Digestion in the rumen and intestine changed the essential AA pattern. Overall, our results support that AA digestion is affected by the characteristics of their radicals and their contents in plant cell wall proteins. The accurate estimation of feed metabolisable AA or protein requires effective measures that are corrected by ruminal microbial contamination. The proposed in situ method largely simplifies these tasks and allows a more complete and less expensive feed evaluation.  相似文献   

2.
The ruminal degradation and intestinal digestibility (ID) of dry matter (DM) and crude protein (CP) of different feed samples were measured in two trials by using nylon bag and rumen outflow rate techniques in three wethers cannulated in the rumen and in the duodenum. In trial 1, three samples of grains of wheat, barley, and corn treated by cooking (TW, TB, and TC, respectively) were studied together with a sample of untreated corn grains (CG) of different origin. In trial 2, these studies were carried out on a sample of rapeseed (RS) and on a mix of this same sample and rapeseed meal (in proportions 70:30) treated by cooking (TR). In both trials, the animals were fed at the same intake level (40 g DM x kg(-1) LW0.75) with 2:1 (DM basis) forage to concentrate diets. Rumen degradation rates of DM were high in the treated cereals (between 11.0 and 14.2% x h(-1)) and low in the CG (6.35% x h(-1)), whereas for CP these rates were low in all cereals. For DM, in all cereals, ID decreased linearly as the ruminal incubation time increased. The values of intestinal effective digestibility (IED), calculated from these functions and from the rumen outflow, were respectively: 86.4, 62.1, 51.5, and 67.9%. For CP, ID was unaffected by the ruminal incubation time in corn samples, whereas in TW and TB a reduction of these values was only observed for the time of 48 h. The values of IED of CP for CG, TW, TB and TC were: 82.6, 88.9,82.5, and 91.6%, respectively. Rumen degradation rates of the RS and TR samples were 8.35 and 8.23% x h(-1) for DM and 12.0 and 9.59% x h(-1) for CP. In RS, the ID of DM and CP showed a downward trend with an increase of the ruminal incubation time, as modelled according to an exponential function. This same trend was observed for TR after a lag period estimated at 7.53 and 6.51 h for DM and CP, respectively. The values of IED of RS and TR were respectively 56.5 and 50.8% for DM and 71.9 and 80.1% for CP. These same results were also determined by a simplified method using a sample pooled to be representative of the rumen outflow of undegraded feed. The respective values for RS and TR were 54.8 and 51.6 for DM and 65.8 and 78.9% for CP. This method seems to be a promising technique to estimate IED, although more studies are needed to improve its accuracy.  相似文献   

3.
The ruminal degradation of dry matter (DM) and crude protein (CP) and the intestinal availability of CP of four fresh lucerne (Medicago sativa L.) samples, corresponding to a 3rd growing cycle and harvested at 2-week intervals, were determined. Rumen degradability, measured by the nylon bag technique, and rumen outflow rates were determined on three rumen-cannulated wethers. Intestinal digestibility was determined by the mobile bag technique on three duodenal fistulated wethers. Both groups of animals were fed a 2:1 lucerne hay to concentrate diet at an intake level of 40 g DM x kg(-1) BW0.75. The effective degradability (ED) of DM decreased with maturity in linear and quadratic form, as a consequence of a decrease in the soluble fraction and a similar increase in the undegradable materials. The resultant values were 0.795, 0.661, 0.600, and 0.576 for harvests at 2, 4, 6, and 8 weeks. The ED of CP showed the same trend. However, the variations (values of 0.896, 0.832, 0.791, and 0.817, respectively), were moderate and mainly due to the reduction of the proportion of soluble CP. The intestinal digestibility of CP of all samples showed a downward trend with the increase in the ruminal incubation time, as modelled according to a logistic function. The undegraded CP digested in the gut (Di) and therefore the effective intestinal digestibility (EID) were derived from this function according to the rumen outflow of undegraded CP. The effects of maturity on the mean values of Di, expressed as a proportion of the original CP content, were the opposite of those recorded for the ED of CP. These values were 0.067, 0.102, 0.115, and 0.089 for samples harvested at 2, 4, 6, and 8 weeks, respectively. Nevertheless, when Di was expressed as g CP x kg(-1) DM, these values (18.0, 17.4, 17.1, and 14.3, respectively) decreased in linear form. The same trend was observed for EID values, which represent 0.641, 0.609, 0.549, and 0.488, respectively. The change of the digestion site produced by the reduction of ED of CP was also associated with an increase in the undigested CP (values of 0.037, 0.066, 0.094, and 0.094, at the four harvesting times).  相似文献   

4.
Three Hereford × Friesian/Holstein heifers were each fitted with rumen and simple T-piece duodenal cannulae. They were used in an experiment of latin square design to study the rumen degradability and intestinal apparent digestibility (using the mobile dacron bag technique) of protein in soya-bean meal (SBM) and in low and high glucosinolate rapeseed meals (LgsRSM and HgsRSM, respectively) each in untreated (UT), heat treated (HT) and formaldehyde treated (FT) forms. For rumen incubation times of 24 h there were no significant protein source × processing treatment interactions for either degrability of protein in the rumen (dgN) or for the proportion of food protein undegradable in the rumen and digestible in the small intestine (DUDN). At this time dgN values for FT, HT and UT were 0.263, 0.374 and 0.418 (SEM 0.0078; P < 0.001) respectively and DUDN values for SBM, LgsRSM and HgsRSM were 0.320, 0.348 and 0.386 (SEM 0.0078; P < 0.001) respectively. Compared with UT, and to a lesser extent HT, FT at all times after 0 h incubation significantly decreased dgN values and increased DUDN values for all three protein sources. Compared with UT, HT significantly decreased dgN. Apparent digestibility of the protein of SBM in the intestines was greater than that of LgsRSM and HgsRSM, and overall the values of available undegraded protein for FTLgs and HgsRSM, but not of FTSBM, were similar to or greater than for the UT sources. FT tended to decrease the total tract apparent digestibility of the protein sources.  相似文献   

5.
In situ estimates of ruminal undegraded fraction (RU) and effective intestinal digestibility (EID, corrected for microbial colonisation) of dry matter (DM), crude protein (CP) and total analysed amino acids (TAA) of rye, wheat and corn grains, wheat bran, wheat and barley distillers’ dried grains with solubles (DDGS) and corn gluten feed were measured on three rumen and duodenum cannulated wethers using 15N labelling techniques and considering ruminal rates of particle comminution (kc) and outflow. Results indicate that not considering kc and microbial colonisation led to considerable overestimations of RU which increased with feed ruminal degradation. Microbial colonisation may be also associated with overestimations of EID, whose estimates for DM, CP and TAA were predicted from parameters related with the ruminal escape of intestinally indigestible materials. The RU estimates were higher for TAA than for CP in grains, but the opposite was observed in by-products, whereas EID estimates were higher for TAA in all feeds. To obtain accurate protein values in these feedstuffs, it is required to consider both kc and ruminal microbial colonisation. The CP-based results underestimate the intestinally digested protein in grains and the opposite is evidenced in cereal by-products. Microbial protein synthesised in the rumen is largely the major fraction of the feedstuff protein value with the exception of DDGS.  相似文献   

6.
Condensed tannins in forage legumes improve the nutrition of sheep by reducing ruminal degradation of plant protein and increasing crude protein flow to the intestine. However, the effects of condensed tannins in forage legumes on rumen bacterial populations in vivo are poorly understood. The aim of this study was to investigate the specific effects of condensed tannins from Lotus corniculatus on four proteolytic rumen bacteria in sheep during and after transition from a ryegrass (Lolium perenne)-white clover (Trifolium repens) diet (i.e., low condensed tannins) to a Lotus corniculatus diet (i.e., higher condensed tannins). The bacterial populations were quantified using a competitive polymerase chain reaction. Lotus corniculatus was fed with or without ruminal infusions of polyethylene glycol (PEG), which binds to and inactivates condensed tannins, enabling the effect of condensed tannins on bacterial populations to be examined. When sheep fed on ryegrass-white clover, populations of Clostridium proteoclasticum B316T, Butyrivibrio fibrisolvens C211a, Eubacterium sp. C12b, and Streptococcus bovis B315 were 1.5 x 10(8), 1.1 x 10(6), 4.6 x 10(8), and 7.1 x 10(6) mL(-1), respectively. When the diet was changed to Lotus corniculatus, the average populations (after 8-120 h) of C. proteoclasticum, B. fibrisolvens, Eubacterium sp., and S. bovis decreased (P < 0.001) to 2.4 x 10(7), 1.1 x 10(5), 1.1 x 10(8), and 2.5 x 10(5) mL(-1), respectively. When PEG was infused into the rumen of sheep fed Lotus corniculatus, the populations of C. proteoclasticum, B. fibrisolvens, Eubacterium sp., and S. bovis were higher (P < 0.01-0.001) than in sheep fed Lotus corniculatus without the PEG infusion, with average populations (after 8-120 h) of 4.9 x 10(7), 3.8 x 10(5), 1.9 x 10(8), and 1.0 x 10(6), respectively. Sheep fed the Lotus corniculatus diet had lower rumen proteinase activity, ammonia, and soluble nitrogen (P < 0.05-0.001) than sheep that were fed Lotus corniculatus plus PEG. The Lotus corniculatus diet reduced rumen nitrogen digestibility (P < 0.05) and ammonia pool size and increased the flow of undegraded feed nitrogen to the abomasum. The nitrogen intake, rumen non-ammonia nitrogen pool size, rumen microbial non-ammonia nitrogen pool size, and abomasal microbial non-ammonia nitrogen fluxes were similar both in sheep fed only Lotus corniculatus and in sheep fed Lotus corniculatus plus PEG, but nonmicrobial non-ammonia nitrogen flux to the abomasum was higher (P < 0.01) for the sheep fed only Lotus corniculatus. Although condensed tannins in Lotus corniculatus reduced the populations of some proteolytic bacteria, total ruminal microbial protein and microbial protein outflow to the abomasum were unchanged, suggesting a species-specific effect of condensed tannins on bacteria in the rumen.  相似文献   

7.
Biotin is present in nature either free or as biocytin, which is only degraded under the action of a specific enzyme: biotinidase. This enzyme is not included in analytical assays generally used. A method for sample preparation using biotinidase was developed in our laboratory before analysis by ELISA. Three cows equipped with duodenal and ileal cannulae were used to compare the effects of methods of sample preparation on calculations of apparent ruminal synthesis and intestinal absorption of biotin. There was no apparent ruminal synthesis of biotin, no matter whether free or total biotin was measured (p = 0.84). Results also suggested that rumen microbes cannot utilize nor degrade biocytin present in the feed. Estimates of apparent intestinal absorption were influenced by the sample preparation method (p = 0.002). Analysis of free biotin caused an artefact, suggesting intestinal synthesis of this vitamin; whereas determination of total biotin concentrations showed that absorption was taking place in the small intestine.  相似文献   

8.
We assessed the effects of vitreousness and particle size of maize grain on ruminal and intestinal in sacco degradation of dry matter, starch and nitrogen. Six maize grain (Zea mays) genotypes characterized by differing vitreousness (proportion of vitreous in total endosperm) were ground (3-mm screen; Gr, ground particles, mean particle size (MPS): 526 μm) and cracked with a roller mill using two gap width settings (CS, cracked small particles, MPS: 1360 μm; CL, cracked large particles, MPS: 2380 μm). The ruminal and intestinal in sacco degradation of dry matter, starch and nitrogen was measured on three dry Holstein cows, fitted with rumen, proximal duodenum and terminal ileum cannulas, fed maize silage ad libitum twice daily. The ruminal starch degradability and intestinal digestibility differed among genotypes (P<0.001) and decreased as particle size increased (P<0.001). For the same particle size, starch ruminal degradability decreased (P<0.05) and intestinal digestibility decreased (P<0.002) with vitreousness. Particle size and vitreousness of maize grain are efficient factors for manipulating the amount of starch escaping rumen degradation, but may be limiting for the amount of starch digested in the small intestine.  相似文献   

9.
The influence of physical treatment‐expansion and flaking‐on crude proteins degradability in the rumen was studied in maize, maize‐gluten feed, rape extracted meal and in the expanded one at 120°C and 150°C, rape cake, wheat and flaked wheat by in sacco method. The enzymatic digestibility of crude protein in the rumen undegraded residues of the above mentioned feeds was determined by an enzymatically in vitro method.

The treatment of feed decreased significantly the original solubility and theoretical degradability of crude proteins, and the amount of undegraded crude proteins was increased. Positive influence on the amount of enzymatically digested crude protein was determined in rape expanded at 120 °C and 150 °C (60, 61 and/or 68%). Flaking of wheat had a similar effect. Enzymatic digestibility at undegraded rests where increased by 8–10% after the heat treatment and it remained almost unchanged in expanded maize‐gluten feed.  相似文献   

10.
The aim of the present study was to examine the effects of ergot contaminated feed concentrate at differing levels of feed intake on ruminal fermentation, and on various physiological parameters of dairy cows. Twelve double fistulated (in the rumen and the proximal duodenum) Holstein Friesian cows were fed either a control diet (on a dry matter (DM) base: 60% maize silage, 40% concentrate) or a diet containing ergot alkaloids (concentrate contained 2.25% ergot resulting in an ergot alkaloid concentration of the daily ration between 505 and 620 (μg/kg DM) over a period of four weeks. Daily feed amounts were adjusted to the current performance which resulted in a dry matter intake (DMI) variation between 6.0 and 18.5 kg/day. The resulting ergot alkaloid intake varied between 4.1 and 16.3 (μg/kg body weight when the ergot contaminated concentrate was fed. Concentrations of isovalerate, propionate and ammonia nitrogen in the rumen fluid were significantly influenced by ergot feeding, and the amount of ruminally undegraded protein, as well as the fermentation of neutral detergent fibre, tended to increase with the ergot supplementation at higher levels of feed intake, which might indicate a shift in the microbial population. Other parameters of ruminal fermentation such as ruminai pH, fermented organic matter as a percentage of intake, or the amount of non-ammonia nitrogen measured at the duodenum were not significantly influenced by ergot feeding. The activities of liver enzymes (aspartate aminotransferase, γ-glutamyltransferase, glutamate dehydrogenase, creatine kinase) in the serum were not affected by ergot feeding. The rectal measured body temperature of the cows significantly increased after ergot administration (p=0.019). Thus, body temperature can be regarded as a sensitive parameter to indicate ergot exposure of dairy cows.  相似文献   

11.
Abstract

Biotin is present in nature either free or as biocytin, which is only degraded under the action of a specific enzyme: biotinidase. This enzyme is not included in analytical assays generally used. A method for sample preparation using biotinidase was developed in our laboratory before analysis by ELISA. Three cows equipped with duodenal and ileal cannulae were used to compare the effects of methods of sample preparation on calculations of apparent ruminal synthesis and intestinal absorption of biotin. There was no apparent ruminal synthesis of biotin, no matter whether free or total biotin was measured (p = 0.84). Results also suggested that rumen microbes cannot utilize nor degrade biocytin present in the feed. Estimates of apparent intestinal absorption were influenced by the sample preparation method (p = 0.002). Analysis of free biotin caused an artefact, suggesting intestinal synthesis of this vitamin; whereas determination of total biotin concentrations showed that absorption was taking place in the small intestine.  相似文献   

12.
The release rate (RR) of sulphur hexafluoride (SF(6)) gas from permeation tube in the rumen appears to be positively related with methane (CH(4)) emissions calculated using the SF(6) tracer technique. Gas samples of breath and ruminal headspace were collected simultaneously in order to evaluate the hypothesis that transactions of SF(6) in the rumen are the source for this relationship. Six non-lactating dairy cows fitted with rumen cannulae were subdivided into two groups and randomly assigned to a two-period crossover design to permeation tubes with low RR (LRR = 1.577 mg/day) or two-times higher RR (HRR = 3.147 mg/day) RR. The cows were fed limited amounts of maize silage (80% ad libitum) split into two meals (40% at 0800 h and 60% at 1600 h). Each period consisted of 3-day gas sampling. Immediately before the morning feed and then each hour over 8 h, ruminal gas samples (50 ml) were withdrawn through the cannula fitted with stoppers to prevent opening. Simultaneously, 8-h integrated breath gas samples were collected over the same period. Ratios of concentration of CH(4)/SF(6), CO(2)/SF(6) and CO(2)/CH(4) and emission estimates of CH(4) and CO(2) were calculated for each sample source using the SF(6) tracer technique principles. The LRR treatment yielded higher (P < 0.001) ruminal CH(4)/SF(6) (by 1.79 times) and CO(2)/SF(6) (by 1.90 times) ratios than the HRR treatment; however, these differences were lower than the 2.0 times difference expected from the RR between the LRR and HRR. Consequently, the LRR treatment was associated with lower (P < 0.01) ruminal emissions of CH(4) over the 8-h collection period than with the HRR treatment (+11%), a difference also confirmed by the breath samples (+11%). RR treatments did not differ (P = 0.53) in ruminal or breath CO(2) emissions; however, our results confirm that the SF(6) tracer seems inappropriate for CO(2) emissions estimation in ruminants. Irrespective of the RR treatment, breath samples yielded 8% to 9% higher CH(4) emission estimates than the ruminal samples (P = 0.01). The relationship between rumen and breath sources for CH(4) emissions was better for LRR than for HRR treatment, suggesting that tracer performance decreases with the highest RR of SF(6) tested in our study (3.1 mg/day). A hypothesis is discussed with regard to the mechanism responsible for the relationship between RR and CH(4) emission estimates. The use of permeation tubes with small range in RR is recommended in animal experiments to decrease variability in CH(4) emission estimates using the SF(6) tracer technique.  相似文献   

13.
Developing the rumen’s capacity to utilise recalcitrant and low-value feed resources is important for ruminant production systems. Early-life nutrition and management practices have been shown to influence development of the rumen in young animals with long-term consequences on their performance. Therefore, there has been increasing interest to understand ruminal development and function in young ruminants to improve feed efficiency, health, welfare, and performance of both young and adult ruminants. However, due to the small size, rapid morphological changes and low initial microbial populations of the rumen, it is difficult to study ruminal function in young ruminants without major invasive approaches or slaughter studies. In this review, we discuss the usefulness of a range of proxies and markers to monitor ruminal function and nitrogen use efficiency (a major part of feed efficiency) in young ruminants. Breath sulphide and methane emissions showed the greatest potential as simple markers of a developing microbiota in young ruminants. However, there is only limited evidence for robust indicators of feed efficiency at this stage. The use of nitrogen isotopic discrimination based on plasma samples appeared to be the most promising proxy for feed efficiency in young ruminants. More research is needed to explore and refine potential proxies and markers to indicate ruminal function and feed efficiency in young ruminants, particularly for neonatal ruminants.  相似文献   

14.
A simulation rumen model has been developed to function under non-steady state conditions in order to allow prediction of nutrient availability in dairy cows managed under discontinuous feeding systems. The model simulates availability of glycogenic, aminogenic and lipogenic nutrients to lactating dairy cows fed discontinuously. The model structure considers input of up to three different feeds fed independently at any time during the day. Feeds are described by their nitrogen (N), carbohydrate and fatty acid fractions. The N containing feed fractions include ruminally undegraded crude protein (CP), ruminally insoluble but potentially degradable CP, ruminally soluble CP and ammonia N. The feed carbohydrate fractions include ruminally undegradable neutral detergent fibre (NDF), ruminally degradable NDF, ruminally insoluble starch, ruminally soluble starch and sugars. The fatty acids in the feeds are divided between long chain fatty acids and volatile fatty acids (VFA). Additionally four pools were defined representing absorption of amino acids, glucose, long chain fatty acids and volatile fatty acids. The rumen microbial population is represented as a single pool. Besides a flexible structure, new features to the extant model include adoption of the concept of chewing efficiency (or chewing effectiveness) during eating, variable fractional ruminal absorption rates of VFA and variable fractional ruminal degradation rates of NDF as a function of rumen liquid pH, as well as a variable rumen volume which directly affects rumen concentrations of metabolites. The model continuously (i.e., by minute) predicts release of soluble components from the feeds in the rumen, concentration and absorption of fermentation end products in the rumen, rumen pools of nutrients and microbial biomass dynamics, as well as passage of microbial biomass and non-fermented nutrients from the rumen, in response to various feeding strategies. Model evaluation covered a wide range of feeding strategies that included pasture and housed feeding systems. Overall, the mean square prediction error (MSPE) as a percentage of the observed mean was relatively low (<10%) with a high amount of the total variation explained by random variation (>65%). Deviation from unity varied between 23% (rumen dry matter content) and 25% (NDF), indicating some consistent over and/or under prediction. A more detailed evaluation was done based on studies available that reported diurnal behaviour of key model outputs such as rumen pools, rumen pH, and rumen VFA. The predictions broadly simulated the observed values quantitatively, relative to general diurnal patterns, and relative to differences between treatments in the predicted diurnal patterns. Results show that the model provides a tool to assess potential outcomes of changing feeding strategies which may be particularly valuable in assessing selection of feeds, amounts and times of the day to offer the feeds. The continuous nature of the simulated output also allows determination of the time(s) of the day that ruminal (and/or post-ruminal) delivery of nutrients may limit ruminal output of nutrients (and/or availability of nutrients) to support milk nutrient synthesis.  相似文献   

15.
The influence of dietary nitrogen (N) available in the rumen on the efficiency of microbial protein production was examined for 43 predominantly low-roughage diets given to cattle or sheep with rumen and duodenal (re-entrant) cannulae. The minimum amount of available N required for efficient microbial protein production was 2.0 g/100 g of organic matter actually digested in the rumen. When the diet supplied 2.7 g of available N/100 g of organic matter actually digested in the rumen, there was no net utilisation of recycled N.From this information, concentrations of N in organic matter required in low-roughage diets differing in organic matter digestibility and availability of dietary N have been calculated. Also a method of calculating the quantities of amino acid N and of particular amino acids absorbed from the small intestine from a knowledge of the diet composition is presented.  相似文献   

16.
Four lactating cows fitted with permanent ruminal, duodenal and ileal cannulae were used to study the effect of extrusion of whole lupin seeds at 195 degrees C (Lupinus albus cv Lublanc) on organic matter (OM) and nitrogen (N) degradation in the rumen and their flow to and absorption from the small intestine. Raw whole lupin seeds (RWLS) and extruded whole lupin seeds (EWLS) were fed in diets containing 15.5% crude protein and composed of 22.6% whole lupin seeds, 56.5% corn silage, 10.2% corn grain and 10.7% Italian ray-grass on a DM basis, supplemented with vitamins and minerals. Chromium ethylenediaminotetraacetic (Cr-EDTA) and ytterbium chloride (YbCl3) were used as liquid and particulate markers respectively, while purines and 15N ammonium sulfate were utilized as bacterial markers. Cows fed EWLS had a similar ruminal ammonia N and volatile fatty acid concentrations and efficiency of bacterial protein synthesis compared to those fed the RWLS diet. Total tract OM and N digestion were not affected by inclusion of EWLS instead of RWLS; the corresponding mean values were 70 and 71%. Apparent degradation of OM and N in the rumen were 44 and 64% for diets containing RWLS, and 40 and 39% for EWLS diets. Feeding diets including EWLS both increased non ammonia N and dietary N flow to the duodenum compared with diets containing RWLS (472 vs 357 g/d) and (263 vs 153 g/d) respectively. Absorption from the small intestine (g/d and % entering) of dietary N was higher for EWLS diets (146 vs 62 g/d; 34 vs 15%). The PDIA, PDIE and PDIN contents (g/kg of DM) of RWLS were 18, 94 and 245 respectively; the corresponding values after extrusion were 145, 220 and 220.  相似文献   

17.
This study was conducted to evaluate the effects of the dietary ratio of ruminal degraded protein (RDP) to ruminal undegraded protein (RUP) and the dry matter intake (DMI) on the intestinal flows of endogenous nitrogen (N) and amino acids (AA) in goats. The experiment was designed as a 4 × 4 Latin square using four ruminally, duodenally and ileally cannulated goats. The treatments were arranged in a 2 × 2 factorial design; two ratios of RDP to RUP (65:35 and 45:55, RDP1 and RDP2, respectively) and two levels at 95% and 75% of voluntary feed intake (DMI1 and DMI2, respectively) were fed to the goats. There were no significant differences in the N intake, duodenal flow of total N, undegraded feed N, microbial N, endogenous N or ileal flow of endogenous N, but the duodenal and ileal flow of endogenous N numerically decreased by approximately 22% and 9%, respectively, when the feed intake changed from DMI1 (0.63 kg/d) to DMI2 (0.50 kg/d). The dietary ratio of RDP to RUP had significant effects (p < 0.05) on the ileal flows of endogenous leucine, phenylalanine and cysteine. The present results implied that the duodenal flows of endogenous N and AA decreased when the dietary RDP to RUP ratio and DMI decreased, and the flow of endogenous AA at the ileum also decreased when the DMI decreased but increased with decreasing RDP to RUP ratios.  相似文献   

18.
Feed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations of Entodinium spp., protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, Prevotella brevis, the genus Prevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed that Prevotella abundance was higher (P < 0.0001) in inefficient animals. A higher (P < 0.0001) abundance of Entodinium and Prevotella spp. and a lower (P < 0.0001) abundance of Fibrobacter succinogenes were observed when animals were offered the low-forage diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered.  相似文献   

19.
The aim of the study was to examine the effects of dry matter intake level and the feeding ofFusarium-contaminated wheat on the toxin-turnover and ruminal fermentation of dairy cows. Fourteen dairy cows equipped with ruminal and duodenal cannulae were used. All animals were fed the same diet, only the daily feed amounts were adjusted to the current performance stage of the cow. On a dry matter basis, the diet consisted of 60% concentrate including 55% wheat (Fusarium-contaminated wheat [Mycotoxin period] or control wheat [Control period]). Each cow was fed with both the contaminated and the control wheat. TheFusarium-contamination of the wheat significantly decreased the flow of undegraded protein at the duodenum with increased intakes of organic matter. The duodenal flow of microbial protein and the activities of aspartate aminotransferase (ASAT), glutamate dehydrogenase (GLDH) and gamma glutamyl transferase (γ-GT) in the serum were not affected by dietary treatment, but increased with feed intake. The duodenal flow of deoxynivalenol (DON) and de-epoxy DON related to DON intake ranged between 12 and 77% when theFusarium-contaminated wheat was fed. DON was almost completely metabolized to de-epoxy DON independent of the feed intake level. The zearalenone (ZON) flow at the duodenum increased moderately with increasing ZON/feed intake.  相似文献   

20.
Phosphate uptake into intracellular inorganic phosphorus and cellular phospholipids and the relationship between cell growth and phospholipid synthesis were studied with suspensions of washed ruminal bacteria in vitro with (33)P-phosphorus. It was shown that ruminal bacteria accumulated inorganic phosphate at a low rate when incubated without substrate. Upon the addition of substrate, the rate of inorganic phosphorus uptake into the cells increased markedly, and phospholipid synthesis and cell growth commenced. There was a highly significant relationship (r = 0.98; P < 0.01) between phospholipid synthesis and cell growth. The specific activity of the intracellular inorganic phosphorus did not equilibrate with phosphorus medium. When ruminal contents from sheep fed a high or low protein diet were incubated in vitro, the rate of (33)P incorporation into microbial phospholipids was higher for the high protein diet. Since there was a high relationship between phospholipid synthesis and growth, rumen contents were collected before and various times after feeding and incubated with (33)P-phosphorus in vitro. The short-term, zero time approach was used to measure the rate of microbial phospholipid synthesis in whole rumen contents. In these studies the average specific activity of the intracellular inorganic phosphorus was used to represent the precursor pool specific activity. Microbial phospholipid synthesis was then related to protein (N x 6.25) synthesis with appropriate nitrogen-to-phospholipid phosphorus ratios. Daily true protein synthesis in a 4-liter rumen was 185 g. This represents a rate of 22 g of protein synthesized per 100 g of organic matter digested. These data were also corrected for ruminal turnover. On this basis the rate of true protein synthesis in a 4-liter rumen was 16.1 g of protein per 100 g of organic matter digested. This value represents a 30-g digestible protein-to-Mcal digestible energy ratio which is adequate for growing calves and lambs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号