首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reticulate scales develop as radial symmetrical anlagen, in contrast to scuttate scales which appear initially as “epidermal placodes.” Unlike scuttate scales whose outer and inner epidermal surfaces elaborate β-and α-type keratins, respectively, reticulate scales elaborate only one type of epidermal surface which has been reported to give an α-type, X-ray diffraction pattern. We find that, histologically and ultrastructurally, this surface differs from either epidermal surface of scuttate scales. The keratinizing cells become filled with long interweaving bundles of α-filaments which aggregate into rather homogeneous α-fibrils. Keratohyalin granules, which have been shown to be associated with other keratinizing regions in the bird, do not form during the keratinization of reticulate scale epidermis.  相似文献   

2.
3.
4.
5.
6.
Timed-sequence studies have shown that reticulate scales on the ventral footpads of birds do not undergo “epidermal placode” formation during their morphogenesis, but arise as symmetrical evaluations similar to the scales of snakes and lizards. Unlike the scutellate scales on the dorsal surface of the foot, in which the formation of an “epidermal placode” and its subsequent morphogenesis result in distinct outer and inner epidermal surfaces, the reticulate scales elaborate only one type of epidermal surface.  相似文献   

7.
Amidination of the outer and inner surfaces of the human erythrocyte membrane   总被引:12,自引:0,他引:12  
We have synthesized a novel imidoester, isethionyl acetimidate, which is unable to penetrate the membrane of the human erythrocyte. It has the same specificity for amino groups as ethyl acetimidate, which penetrates the membrane. Either reagent can be labeled with 3H or 14C and, thus, be used to convert amines to radioactive amidines. An erythrocyte membrane saturated with either compound functions nearly normally. Therefore, the membrane can be double labeled if the amino groups on the outer surface of a cell are saturated with isethionyl acetimidate (e.g. labeled with 14C) and the remaining active sites are saturated with ethyl acetimidate (labeled with 3H). Alternatively, the membrane can be isolated after saturation with [14C]isethionyl acetimidate and treated with [3H]isethionyl acetimidate. From quantitative experiments of this kind we conclude that there are more than ten times as many reactive amino groups in protein on the inner surface than on the outer surface of the membrane. Nearly all of the reactive amino groups in lipid are on the inner surface. The localization of individual polypeptides confirms and extends assignments made previously by other techniques; as many as four major components may span the membrane. The proteins and lipids react to the same extent with ethyl acetimidate in the intact cell as they do in isolated membranes; this implies that the isolation does not load to major structural rearrangements.  相似文献   

8.
It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy.  相似文献   

9.
Pyridoxal phosphate is a potent probe for exploring the "sidedness" of proteins in the membrane of the intact red blood cell. It reacts with amino groups with a high degree of specificity, forming a Schiff's base that can be fixed as an irreversible bond upon reduction with NaBH4; its binding site can be identified by use of [3-H]pyridoxal phosphate or NaB3-H4; it can be used as a surface probe under conditions of minimal penetration, or it can be used as a probe for proteins on the inside of the membrane under conditions of substantial uptake. Pyridoxal phosphate uptake involves a rapid and a slow component. The former represents the binding to the outer surface of the membrane; it is not substantially affected by pH and temperature, but is reduced considerably by pretreatment of cells by 4,4-diisothiocyano-2,2-stilbenedisulfonic acid, a specific inhibitor of anion transport. The slow component represents penetration into the cell; it is blocked by high pH, low temperature, or pretreatment with the disulfonic stilbene. Pyridoxal phosphate itself is also an effective and specific inhibitor of the permeation of other anions. Under conditions of minimal uptake, the only labeled proteins are three glycoproteins and a protein of apparent molecular weight 95,000. Under conditions of substantial uptake into the cell, the other major protein bands seen by staining on acrylamide gels after electrophoresis are labeled. It is concluded that virtually all of the major membrane proteins interact with pyridoxal phosphate from one side of the membrane or the other. The differences in labeling under conditions of minimal or maximal uptake can, therefore, be attributed to the sidedness in the distribution of the membrane proteins rather than to differences in their reactivity.  相似文献   

10.
Glycoprotein E of West Nile, dengue and other flaviviruses is the principal stimulus for the development of neutralizing antibodies and contains a fusion peptide responsible for inserting the virus into the host cell membrane. This glycoprotein lies flat on the surface of the virion and therefore only epitopes on the outer or lateral surface are important immunogens. Changes in antigen recognition after exposure of the virus to low pH have yielded clues to the fusion process.  相似文献   

11.
Epithelial-mesenchymal interactions play important roles in morphogenesis, histogenesis, and keratinization of the vertebrate integument. In the anterior metatarsal region of the chicken, morphogenesis results in the formation of distinct overlapping scutate scales. Recent studies have shown that the dermis of scutate scales is involved in the expression of the beta keratin gene products, which characterize terminal differentiation of the epidermis on the outer scale surface (Sawyer et al.: Dev. Biol. 101:8-18, '84; Shames and Sawyer: Dev. Biol. 116:15-22, '86; Shames and Sawyer: In A.A. Moscona and A. Monroy (eds), R.H. Sawyer (Vol. ed): Current Topics in Developmental Biology. Vol. 22: The Molecular and Developmental Biology of Keratins. New York: Academic Press, pp. 235-253, '87). Since alpha and beta keratins are both found in the scutate scale and are members of two different multigene families, it is important to know the precise location of these distinct keratins within the epidermis. In the present study, we have used protein A-gold immunoelectron microscopy with antisera made against avian alpha and beta keratins to specifically localize these keratins during development of the scutate scale to better understand the relationship between dermal cues and terminal differentiation. We find that the bundles of 3-nm filaments, characteristic of tissues known to produce beta keratins, react specifically with antiserum which recognizes beta keratin polypeptides and are found in the embryonic subperiderm that covers the entire scutate scale and in the stratum intermedium and stratum corneum making up the platelike beta stratum of the outer scale surface. Secondly, we find that 8-10-nm tonofilaments react specifically with antiserum that recognizes alpha keratin polypeptides and are located in the germinative basal cells and the lowermost cells of the stratum intermedium of the outer scale surface, as well as in the embryonic alpha stratum, which is lost from the outer surface of the scale at hatching. The alpha keratins are found throughout the epidermis of the inner surface of the scale and the hinge region. Thus, the present study further supports the hypothesis that the tissue interactions responsible for the formation of the beta stratum of scutate scales do not directly activate the synthesis of beta keratins in the germinative cells but influence these cells so that they or their progeny will activate specific beta keratin genes at the appropriate time and place.  相似文献   

12.
During erythropoiesis, the decrease of complexity of a RNA population is an important process as is globin mRNA accumulation. To determine the sequential control process of gene expression, many genomic clones which express in mouse reticulocytes were obtained and used for the titration of each mRNA level in the different stages of erythroid cells. The level of mRNAs of rt-clones decreases depending on the maturation of erythroid cells, and the coordinated and sequential control of this level is likely to be one of the factors affecting this process.  相似文献   

13.
14.
The ability of the germinative cell population of scutate scale epidermis to continue to generate cells that undergo their appendage-specific differentiation (beta stratum formation), when associated with foreign dermis, was examined. Tissue recombination experiments were carried out which placed anterior metatarsal epidermis (scutate scale forming region) from normal 15-day chick embryos with either the anterior metatarsal dermis from 15-day scaleless (sc/sc) embryos or the dermis from the metatarsal footpad (reticulate scale forming region) of 15-day normal embryos. Neither of these dermal tissues are able to induce beta stratum formation in the simple ectodermal epithelium of the chorion, however, the footpad dermis develops an appendage-specific pattern during morphogenesis of the reticulate scales, while the sc/sc dermis does not. Morphological and immunohistological criteria were used to assess appendage-specific epidermal differentiation in these recombinants. The results show that the germinative cell population of the 15-day scutate scale epidermis is committed to generating suprabasal cells that follow their appendage-specific pathways of histogenesis and terminal differentiation. Of significance is the observation that the expression of this determined state occurred only when the epidermis differentiated in association with the footpad dermis, not when it was associated with the sc/sc dermis. The consistent positioning of the newly generated beta strata to the apical regions of individual reticulate-like appendages demonstrates that the dermal cues necessary for terminal epidermal differentiation are present in a reticulate scale pattern. The observation that beta stratum formation is completely missing in the determined scutate scale epidermis when associated with the sc/sc dermis adds to our understanding of the sc/sc defect. The present data support the conclusion of earlier studies that the anterior metatarsal dermis from 15-day sc/sc embryos lacks the ability to induce beta stratum formation in a foreign epithelium. In addition, these observations evoke the hypothesis that the sc/sc dermis either lacks the cues (generated during scutate and reticulate scale morphogenesis) necessary for terminal differentiation of the determined scutate scale epidermis or inhibits the generation of a beta stratum.  相似文献   

15.
Epidermal-dermal tissue interactions regulate morphogenesis and tissue-specific keratinization of avian skin appendages. The morphogenesis of scutate scales differs from that of reticulate scales, and the keratin polypeptides of their epidermal surfaces are also different. Do the inductive cues which initiate morphogenesis of these scales also establish the tissue-specific keratin patterns of the epidermis, or does the control of tissue-specific keratinization occur at later stages of development? Unlike feathers, scutate and reticulate scales can be easily separated into their epidermal and dermal components late in development when the major events of morphogenesis have been completed and keratinization will begin. Using a common responding tissue (chorionic epithelium) in combination with scutate and reticulate scale dermises, we find that these embryonic dermises, which have completed morphogenesis, can direct tissue-specific statification and keratinization. In other words, once a scale dermis has acquired its form, through normal morphogenesis, it is no longer able to initiate morphogenesis of that scale, but it can direct tissue-specific stratification and keratinization of a foreign ectodermal epithelium, which itself has not undergone scale morphogenesis.  相似文献   

16.
17.
The separation of inner and outer membrane of Rhodopseudomonas spheroides has been achieved by means of sucrose density gradient (20%, 40%, 60%, w/w) centrifugation. The upper fraction of the gradient, with a specific density 1.181 (g/cm3), is high in cytochrome and succinate dehydrogenase activities, low in lipopolysaccharides and it is designated the inner membrane fraction. The bottom fraction of the gradient, with a specific density 1.240, is high in lipopolysaccharide and contains neither cytochrome nor succinate dehydrogenase activities. This fraction is the cell wall or outer membrane fraction. The intermediate band on the gradient is an unseparated fraction of inner and outer membrane fragments. This fraction has a specific denisty of 1.211 and represents less than 3% of total crude envelope. Thin sections of the vesicles of the inner membrane fraction and those of outer membrane provide morphological evidence for the identity of the individual membrane fractions. At least 22 protein bands are resolved by employing sodium dodecyl sulfate slab gel electrophoresis. Six bands are present only in the inner membrane and two bands are found exclusively in the outer membrane. Most of the remaining polypeptides are present in greater amounts in the inner membrane relative to the outer membrane fractions.  相似文献   

18.
Summary Amoebo-flagellate cells develop upon spore germination in the protostelidProtosporangium articulatum. The germling may emerge flagellate or as an amoeba. In either case the cell undergoes mitosis within an hour of germination. The spindle is open and centric, and typically has several pairs of kinetosomes at the poles. During telophase, the kinetosomes are found at the surface of the cell and flagella and flagellar rootlets begin to develop. Some flagella remain in close association with the nucleus, the nucleus-associated flagella; others are located away from the nucleus, the supernumerary flagella. The flagellar apparatus is identical for both nucleus-associated flagella and supernumerary flagella. However, only the nucleus-associated flagella are able to generate the jerking, helical swim typical of amoebo-flagellates with a swarm cell-like morphology.  相似文献   

19.
Ultrastructure and development of oil cells in Laurus nobilis L. leaves   总被引:2,自引:0,他引:2  
The oil cell development in Laurus nobilis leaves has been studied. At the early developmental stage, when the cell wall consists of the outer cellulose wall only, the oil cells differ from the neighbouring mesophyll cells in their larger size, lower starch content and in their plastid organization. After the deposition of the lamellated suberin layer and the inner cellulose layer, a wall protuberance (cupule) is formed on the periclinal wall facing the epidermis. From its reaction with periodic acid-hexamine-silver nitrate, it is suggested that the cupule is cellulosic. The portion of the inner cellulose wall layer bearing the cupule seems to contain patches of suberin. Plasmodesmata occur in special wall protuberances and appear to become occluded with age. The oil produced inside the protoplast is secreted to the outside of the plasmalemma, and accumulates as a drop at the place predetermined by the cupule. Except at the cupule, the oil drop is surrounded by the plasmalemma.  相似文献   

20.
Distler AM  Kerner J  Hoppel CL 《Proteomics》2008,8(19):4066-4082
For the proteomic study of mitochondrial membranes, documented high quality mitochondrial preparations are a necessity to ensure proper localization. Despite the state-of-the-art technologies currently in use, there is no single technique that can be used for all studies of mitochondrial membrane proteins. Herein, we use examples to highlight solubilization techniques, different chromatographic methods, and developments in gel electrophoresis for proteomic analysis of mitochondrial membrane proteins. Blue-native gel electrophoresis has been successful not only for dissection of the inner membrane oxidative phosphorylation system, but also for the components of the outer membrane such as those involved in protein import. Identification of PTMs such as phosphorylation, acetylation, and nitration of mitochondrial membrane proteins has been greatly improved by the use of affinity techniques. However, understanding of the biological effect of these modifications is an area for further exploration. The rapid development of proteomic methods for both identification and quantitation, especially for modifications, will greatly impact the understanding of the mitochondrial membrane proteome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号