首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Imatinib, the anti-Abl tyrosine kinase inhibitor used as first-line therapy in chronic myeloid leukemia (CML), eliminates CML cells mainly by apoptosis and induces autophagy. Analysis of imatinib-treated K562 cells reveals a cell population with cell cycle arrest, p27 increase and senescence-associated beta galactosidase (SA-β-Gal) staining. Preventing apoptosis by caspase inhibition decreases annexin V-positive cells, caspase-3 cleavage and increases the SA-β-Gal-positive cell population. In addition, a concomitant increase of the cell cycle inhibitors p21 and p27 is detected emphasizing the senescent phenotype. Inhibition of apoptosis by targeting Bim expression or overexpression of Bcl2 potentiates senescence. The inhibition of autophagy by silencing the expression of the proteins ATG7 or Beclin-1 prevents the increase of SA-β-Gal staining in response to imatinib plus Z-Vad. In contrast, in apoptotic-deficient cells (Bim expression or overexpression of Bcl2), the inhibition of autophagy did not significantly modify the SA-β-Gal-positive cell population. Surprisingly, targeting autophagy by inhibiting ATG5 is accompanied by a strong SA-β-Gal staining, suggesting a specific inhibitory role on senescence. These results demonstrate that in addition to apoptosis and autophagy, imatinib induced senescence in K562 CML cells. Moreover, apoptosis is limiting the senescent response to imatinib, whereas autophagy seems to have an opposite role.  相似文献   

2.
Chronic Myeloid Leukemia (CML) is sustained by a small population of cells with stem cell characteristics known as Leukemic Stem Cells that are positive to BCR-ABL fusion protein, involved with several abnormalities in cell proliferation, expansion, apoptosis and cell cycle regulation. Current treatment options for CML involve the use of Tirosine Kinase Inhibitor (Imatinib, Nilotinib and Dasatinib), that efficiently reduce proliferation proliferative cells but do not kill non proliferating CML primitive cells that remain and contributes to the persistence of the disease.

In order to understand the role of Cyclin Dependent Kinase Inhibitors in CML LSC permanence after TKI treatment, in this study we analyzed cell cycle status, the levels of several CDKIs and the subcellular localization of such molecules in different CML cell lines, as well as primary CD34+CD38?lin? LSC and HSC.

Our results demonstrate that cellular location of p18INK4c and p57Kip2 seems to be implicated in the antiproliferative activity of Imatinib and Dasatinib in CML cells and also suggest that the permanence of quiescent stem cells after TKI treatment could be associated with a decrease in p18INK4c and p57Kip2 nuclear location. The differences in p18INK4cand p57Kip2activities in CML and normal stem cells suggest a different cell cycle regulation and provide a platform that could be considered in the development of new therapeutic options to eliminate LSC.  相似文献   

3.
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a chromosome translocation that generates the Bcr-Abl oncogene encoding a constitutive kinase activity. Despite remarkable success in controlling CML at chronic phase by Bcr-Abl tyrosine kinase inhibitors (TKIs), a significant proportion of CML patients treated with TKIs develop drug resistance due to the inability of TKIs to kill leukemia stem cells (LSCs) that are responsible for initiation, drug resistance, and relapse of CML. Therefore, there is an urgent need for more potent and safer therapies against leukemia stem cells for curing CML. A number of LSCassociated targets and corresponding signaling pathways, including CaMKII-γ, a critical molecular switch for co-activating multiple LSC-associated signaling pathways, have been identified over the past decades and various small inhibitors targeting LSC are also under development. Increasing evidence shows that leukemia stem cells are the root of CML and targeting LSC may offer a curable treatment option for CML patients. This review summarizes the molecular biology of LSC and itsassociated targets, and the potential clinical application in chronic myeloid leukemia.  相似文献   

4.
5.
Evaluation of: Pizzatti L, Panis C, Lemos G et al. Label-free MS(E) proteomic analysis of chronic myeloid leukemia bone marrow plasma: disclosing new insights from therapy resistance. Proteomics 12(17), 2618–2631 (2012).

In spite of the effective chronic myeloid leukemia (CML) therapy, a small percentage will fail on therapy and develop acute myeloid leukemia-like blast crisis. Understanding the underlying biology of therapy resistance is probably needed to develop better blood cancer therapy, and CML may be an ideal disease model for future therapy that targets resistance mechanisms. Cell-stromal interactions and dissection of the interstitial tissue fluid is a relatively new source for understanding the resistance mechanisms. Abdelhay’s team have compared the proteome of bone marrow plasma in CML imatinib (Gleevec) responders and nonresponders. We discuss their findings of dysregulated redox and Wnt signaling in imatinib resistance, illustrating how powerful proteomics may be in the discovery of new therapeutic mechanisms.  相似文献   

6.
随着靶向治疗时代的到来,慢性粒细胞白血病 (CML)已经从不治之症转变为基本可控的慢性病。患者生存率有了显著提高,当然在疗效、耐受性及耐药性方面仍有提升的空间。长期以来,酪氨酸激酶抑制剂格列卫(Gleevec)一直被认为是合理药物设计的典范,但更有效的二代药物已经开始作为一线药物获得认可。然而,由于缺乏完整的生存期数据,这些二代药物和格列卫相比所具有的优势还有待于进一步去发现。由于患者需要长时间治疗,毒性和成本的可控性更可能成为选择治疗药物的重要推动因素。治疗慢性粒细胞白血病的产品线首先侧重于解决耐药性问题,尤其是在一线药物治疗失败而三线药物又无法满足需求的情况下。如果患者使用酪氨酸激酶抑制剂有效,那么最终的问题是患者是否可以通过这些药物治愈。  相似文献   

7.
Studies on chronic myeloid leukemia (CML) have served as a paradigm for cancer research and therapy. These studies involve the identifi cation of the fi rst cancer-associated chromosomal abnormality and the subsequent development of tyrosine kinase inhibitors (TKIs) that inhibit BCR-ABL kinase activity in CML. It becomes clear that leukemia stem cells (LSCs) in CML which are resistant to TKIs, and eradication of LSCs appears to be extremely diffi cult. Therefore, one of the major issues in current CML biology is to understand the biology of LSCs and to investigate why LSCs are insensitive to TKI monotherapy for developing curative therapeutic strategies. Studies from our group and others have revealed that CML LSCs form a hierarchy similar to that seen in normal hematopoiesis, in which a rare stem cell population with limitless selfrenewal potential gives rise to progenies that lack such potential. LSCs also possess biological features that are different from those of normal hematopoietic stem cells (HSCs) and are critical for their malignant characteristics. In this review, we summarize the latest progress in CML field, and attempt to understand the molecular mechanisms of survival regulation of LSCs.  相似文献   

8.
Imatinib mesylate (imatinib) is a new generation preparation that is now successfully used for treatment of cancer, particularly for chemotherapy of chronic myeloid leukemia (CML). Imatinib inhibits the activity of chimeric kinase BCR-ABL, which is responsible for the development of CML. The goal of this study was to investigate the role of a multidrug resistance protein, P-glycoprotein (Pgp), in the evolution of CML treated with imatinib. We demonstrate here that although imatinib is a substrate for Pgp, cultured CML cells (strain K562/i-S9), overexpressing active Pgp, do not exhibit imatinib resistance. Studies of CML patients in the accelerated phase have shown variations in the number of Pgp-positive cells (Pgp+) among individual patients treated with imatinib. During treatment of patients with imatinib for 6-12 months, the number of Pgp-positive cells significantly increased in most patients. The high number of Pgp+ cells remained in patients at least for 4.5 years and correlated with active Rhodamine 123 (Rh123) efflux. Such correlation was not found in the group of imatinib-resistant patients examined 35-60 months after onset of imatinib therapy: cells from the imatinib-resistant patients exhibited efficient Rh123 efflux irrespectively of Pgp expression. We also compared the mode of Rh123 efflux by cells from CML patients who underwent imatinib treatment for 6-24 months and the responsiveness of patients to this therapy. There were significant differences in survival of patients depending on the absence or the presence of Rh123 efflux. In addition to Pgp, patients' cells expressed other transport proteins of the ABC family. Our data suggest that treatment with imatinib causes selection of leukemic stem cells characterized by expression of Pgp and other ABC transporters.  相似文献   

9.
To confirm the anti-tumor effect of engineered neural stem cells (NSCs) expressing cytosine deaminase (CD) and interferon-β (IFN-β) with prodrug 5-fluorocytosine (FC), K562 chronic myeloid leukemia (CML) cells were co-cultured with the neural stem cell lines HB1.F3.CD and HB1.F3.CD.IFN-β in 5-FC containing media. A significant decrease in the viability of K562 cells was observed by the treatment of the NSC lines, HB1.F3.CD and HB1.F3.CD.IFN-β, compared with the control. A modified trans-well assay showed that engineered human NSCs significantly migrated toward K562 CML cells more than human normal lung cells. In addition, the important chemoattractant factors involved in the specific migration ability of stem cells were found to be expressed in K562 CML cells. In a xenograft mouse model, NSC treatments via subcutaneous and intravenous injections resulted in significant inhibitions of tumor mass growth and extended survival dates of the mice. Taken together, these results suggest that gene therapy using genetically engineered stem cells expressing CD and IFN-β may be effective for treating CML in these mouse models.  相似文献   

10.
11.
Preclinical investigations and early clinical trials suggest that FLT3 inhibitors are a viable therapy for acute myeloid leukemia. However, early clinical data have been underwhelming due to incomplete inhibition of FLT3. We have developed 3-phenyl-1H-5-pyrazolylamine as an efficient template for kinase inhibitors. Structure–activity relationships led to the discovery of sulfonamide, carbamate and urea series of FLT3 inhibitors. Previous studies showed that the sulfonamide 4 and carbamate 5 series were potent and selective FLT3 inhibitors with good in vivo efficacy. Herein, we describe the urea series, which we found to be potent inhibitors of FLT3 and VEGFR2. Some inhibited growth of FLT3-mutated MOLM-13 cells more strongly than the FLT3 inhibitors sorafenib (2) and ABT-869 (3). In preliminary in vivo toxicity studies of the four most active compounds, 10f was found to be the least toxic. A further in vivo efficacy study demonstrated that 10f achieved complete tumor regression in a higher proportion of MOLM-13 xenograft mice than 4 and 5 (70% vs 10% and 40%). These results show that compound 10f possesses improved pharmacologic and selectivity profiles and could be more effective than previously disclosed FLT3 inhibitors in the treatment of acute myeloid leukemia.  相似文献   

12.
  1. Download : Download high-res image (172KB)
  2. Download : Download full-size image
Highlights
  • •pY phosphoproteomes and dedicated ranking analyses for 16 AML cell lines.
  • •RTK drivers, 6 mutant cell lines confirmed, identification for 4 more cell lines.
  • •MAPK1/3 phosphorylation for cell lines without TK driver, indicating RAS mutation.
  • •Drug target space phosphorylation correlates with drug IC50s in specific cell lines.
  相似文献   

13.
Recently some fms-like tyrosine kinase 3 (FLT3) inhibitors have shown good efficacy in acute myeloid leukemia (AML) patients. In an effort to develop anti-leukemic drugs, we investigated quinolinone derivatives as novel FLT3 inhibitors. Two substituted quinolinones, KR65367 and KR65370 were subjected to FLT3 kinase activity assay and showed potent inhibition against FLT3 kinase activity in vitro, with IC50 of 2.7 and 0.57 nM, respectively. As a measure of selectivity, effects on the activity of other kinases were also tested. Both compounds have negligible activity against Met, Ron, epidermal growth factor receptor, Aurora A, Janus kinase 2, and insulin receptor; with IC50 greater than 10 μM. KR compounds showed strong growth inhibition in MV4;11 AML cells and increased the apoptotic cell death in flow cytometric analyses. A decrease in STAT5 phosphorylation by KR compounds was observed in MV4;11 cells. Furthermore, in vitro evaluation of compounds structurally related to KR65367 and KR65370 showed a good structure-activity relationship.  相似文献   

14.
The classification of a gene as an oncogene or a tumor suppressor has been a staple of cancer biology for decades. However, as we delve deeper into the biology of these genes, this simple classification has become increasingly difficult for some. In the case of heterogeneous nuclear ribonuclear protein K (hnRNP K), its role as a tumor suppressor has recently been described in acute myeloid leukemia and demonstrated in a haploinsufficient mouse model. In contrast, data from other clinical correlation studies suggest that hnRNP K may be more fittingly described as an oncogene, due to its increased levels in a variety of malignancies. hnRNP K is a multifunctional protein that can regulate both oncogenic and tumor suppressive pathways through a bevy of chromatin-, DNA-, RNA-, and protein-mediated activates, suggesting its aberrant expression may have broad-reaching cellular impacts. In this review, we highlight our current understanding of hnRNP K, with particular emphasis on its apparently dichotomous roles in tumorigenesis.  相似文献   

15.
Receptor tyrosine kinases couple a wide variety of extracellular cues to cellular responses. The class III subfamily comprises the platelet-derived growth factor receptor, c-Kit, Flt3 and c-Fms, all of which relay cell proliferation signals upon ligand binding. Accordingly, mutations in these proteins that confer ligand-independent activation are found in a subset of cancers. These mutations cluster in the juxtamembrane (JM) and catalytic tyrosine kinase domain (TKD) regions. In the case of acute myeloid leukemia (AML), the juxtamembrane (named ITD for internal tandem duplication) and TKD Flt3 mutants differ in their spectra of clinical outcomes. Although the mechanism of aberrant activation has been largely elucidated by biochemical and structural analyses of mutant kinases, the differences in disease presentation cannot be attributed to a change in substrate specificity or signaling strength of the catalytic domain. This review discusses the latest literature and presents a working model of differential Flt3 signaling based on mis-localized juxtamembrane autophosphorylation, to account for the disease variation. This will have bearing on therapeutic approaches in a complex disease such as AML, for which no efficacious drug yet exists.  相似文献   

16.
This Perspective addresses the interactions of cancer stem cells (CSC) with environment which result in the modulation of CSC metabolism, and thereby of CSC phenotype and resistance to therapy. We considered first as a model disease chronic myeloid leukemia (CML), which is triggered by a well-identified oncogenetic protein (BCR/Abl) and brilliantly treated with tyrosine kinase inhibitors (TKi). However, TKi are extremely effective in inducing remission of disease, but unable, in most cases, to prevent relapse. We demonstrated that the interference with cell metabolism (oxygen/glucose shortage) enriches cells exhibiting the leukemia stem cell (LSC) phenotype and, at the same time, suppresses BCR/Abl protein expression. These LSC are therefore refractory to the TKi Imatinib-mesylate, pointing to cell metabolism as an important factor controlling the onset of TKi-resistant minimal residual disease (MRD) of CML and the related relapse. Studies of solid neoplasias brought another player into the control of MRD, low tissue pH, which often parallels cancer growth and progression. Thus, a 3-party scenario emerged for the regulation of CSC/LSC maintenance, MRD induction and disease relapse: the “hypoxic” versus the “ischemic” vs. the “acidic” environment. As these environments are unlikely constrained within rigid borders, we named this model the “metabolically-modulated stem cell niche.”  相似文献   

17.
18.
《Cell reports》2020,30(2):481-496.e6
  1. Download : Download high-res image (103KB)
  2. Download : Download full-size image
  相似文献   

19.
Much cell‐to‐cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To resolve the lack of systematic knowledge, we apply three complementary methods to map the molecular context and substrate profiles of RTKs. We use affinity purification coupled to mass spectrometry (AP‐MS) to characterize stable binding partners and RTK–protein complexes, proximity‐dependent biotin identification (BioID) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK substrates. To identify how kinase interactions depend on kinase activity, we also use kinase‐deficient mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This resource adds information regarding well‐studied RTKs, offers insights into the functions of less well‐studied RTKs, and highlights RTK‐RTK interactions and shared signaling pathways.  相似文献   

20.
We previously showed that incubation of chronic myeloid leukemia (CML) cells in very low oxygen selects a cell subset where the oncogenetic BCR/Abl protein is suppressed and which is thereby refractory to tyrosine kinase inhibitors used for CML therapy. In this study, salarin C, an anticancer macrolide extracted from the Fascaplysinopsis sponge, was tested as for its activity on CML cells, especially after their incubation in atmosphere at 0.1% oxygen. Salarin C induced mitotic cycle arrest, apoptosis and DNA damage. Salarin C also concentration-dependently inhibited the maintenance of stem cell potential in cultures in low oxygen of either CML cell lines or primary cells. Surprisingly, the drug also concentration-dependently enforced the maintenance of BCR/Abl signaling in low oxygen, an effect which was paralleled by the rescue of sensitivity of stem cell potential to IM. These results suggest a potential use of salarin C for the suppression of CML cells refractory to tyrosine kinase inhibitors  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号