首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In malignant disease, CD4+Foxp3+ regulatory T cells (Tregs) hamper antitumor immune responses and may provide a target for immunotherapy. Although immune checkpoint blockade (ICB) has become an established therapy for several cancer entities including lymphoma, its mechanisms have not been entirely uncovered. Using endogenously arising λ-MYC-transgenic mouse B-cell lymphomas, which can effectively be suppressed by either Treg ablation or ICB, we investigated which mechanisms are used by Tregs to suppress antitumor responses and how ICB affects these pathways. During tumor development, Tregs up-regulated Foxp3, CD25, CTLA-4 and IL-10, which correlated with enhanced immunosuppressive functions. Thus, in contrast to other tumors, Tregs did not become dysfunctional despite chronic stimulation in the tumor microenvironment and progressive up-regulation of PD-1. Immunosuppression was mediated by direct contacts between Tregs and effector T cells and by IL-10. When λ-MYC mice were treated with ICB antibodies, Tregs revealed a less profound up-regulation of Foxp3, CD25 and IL-10 and a decreased suppressive capacity. This may be due to the shift towards a pro-inflammatory milieu fostered by ICB. In summary, an ICB-induced interference with Treg-dependent immunosuppression may contribute to the success of ICB.  相似文献   

2.
Phosphorylation of the p53 tumor suppressor at Ser20 (murine Ser23) has been proposed to be critical for disrupting p53 interaction with its negative regulator, MDM2, and allowing p53 stabilization. To determine the importance of Ser23 for the function of p53 in vivo, we generated a mouse in which the endogenous p53 locus was targeted to replace Ser23 with alanine. We show that, in mouse embryonic fibroblasts generated from Ser23 mutant mice, Ser23 mutation did not dramatically reduce IR-induced p53 protein stabilization or p53-dependent cell cycle arrest. However, in Ser23 mutant thymocytes and in the developing cerebellum, p53 stabilization following IR was decreased and resistance to apoptosis was observed. Homozygous Ser23 mutant animals had a reduced lifespan, but did not develop thymic lymphomas or sarcomas that are characteristic of p53-/- mice. Instead, Ser23 mutant animals died between 1 and 2 years with tumors that were most commonly of B-cell lineage. These data support an important role for Ser20/23 phosphorylation in p53 stabilization, apoptosis and tumor suppression.  相似文献   

3.
Cap-dependent translation is a potential cancer-related target (oncotarget) due to its critical role in cancer initiation and progression. 4EGI-1, an inhibitor of eIF4E/eIF4G interaction, was discovered by screening chemical libraries of small molecules. 4EGI-1 inhibits cap-dependent translation initiation by impairing the assembly of the eIF4E/eIF4G complex, and therefore is a potential anti-cancer agent. Here, we report that 4EGI-1 also inhibits mTORC1 signaling independent of its inhibitory role on cap-dependent translation initiation. The inhibition of mTORC1 signaling by 4EGI-1 activates Akt due to both abrogation of the negative feedback loops from mTORC1 to PI3K and activation of mTORC2. We further validated that mTORC2 activity is required for 4EGI-1-mediated Akt activation. The activated Akt counteracted the anticancer effects of 4EGI-1. In support of this model, inhibition of Akt potentiates the antitumor activity of 4EGI-1 both in vitro and in a xenograft mouse model in vivo. Our results suggest that a combination of 4EGI-1and Akt inhibitor is a rational approach for the treatment of cancer.  相似文献   

4.
Cytochrome P450 2E1 (CYP2E1) can mediate reactive oxygen species (ROS) induced cell death through its catalytic processes. Heat shock protein 90 (Hsp90) is an important molecular chaperone which is essential for cellular integrity. We previously showed that inhibition of Hsp90 with Geldanamycin (GA), an inhibitor of Hsp90 increased CYP2E1 mediated toxicity in CYP2E1 over-expressing HepG2 cells (E47 cells) but not in C34-HepG2 cells devoid of CYP2E1 expression. The aim of the present study was to test the hypothesis that the potentiation of CYP2E1 toxicity in E47 cells with GA may involve changes in mitogen activated protein kinase signal transduction pathways. GA was toxic to E47 cells and SB203580, an inhibitor of p38 MAPK prevented this decrease in viability. The protective effects of SB203580 were effective only when SB203580 was added before GA treatment. GA activated p38 MAPK in E47 cells and this activation was an early and a sustained event. GA elevated ROS levels and lipid peroxidation and lowered GSH levels in E47 cells and these changes were blunted or prevented by treatment with SB203580. Apoptosis was increased by GA and prevented by pre-treatment with SB203580. The loss in mitochondrial membrane potential in E47 cells after GA treatment was also decreased significantly with SB203580 treatment. The activity and expression of CYP2E1 and Hsp90 levels were not altered by SB203580. In conclusion, the inhibition of Hsp90 with GA increases the toxicity of CYP2E1 in HepG2 cells through an early and sustained activation of the p38 MAPK pathway.  相似文献   

5.
To clarify the higher eukaryotic initiation factor 4E (eIF4E) binding selectivity of 4E‐binding protein 2 (4E‐BP2) than of 4E‐BP1, as determined by Trp fluorescence analysis, the crystal structure of the eIF4E binding region of 4E‐BP2 in complex with m7GTP‐bound human eIF4E has been determined by X‐ray diffraction analysis and compared with that of 4E‐BP1. The crystal structure revealed that the Pro47‐Ser65 moiety of 4E‐BP2 adopts a L ‐shaped conformation involving extended and α‐helical structures and extends over the N‐terminal loop and two different helix regions of eIF4E through hydrogen bonds, and electrostatic and hydrophobic interactions; these features were similarly observed for 4E‐BP1. Although the pattern of the overall interaction of 4E‐BP2 with eIF4E was similar to that of 4E‐BP1, a notable difference was observed for the 60–63 sequence in relation to the conformation and binding selectivity of the 4E‐BP isoform, i.e. Met‐Glu‐Cys‐Arg for 4E‐BP1 and Leu‐Asp‐Arg‐Arg for 4E‐BP2. In this paper, we report that the structural scaffold of the eIF4E binding preference for 4E‐BP2 over 4E‐BP1 is based on the stacking of the Arg63 planar side chain on the Trp73 indole ring of eIF4E and the construction of a compact hydrophobic space around the Trp73 indole ring by the Leu59‐Leu60 sequence of 4E‐BP2. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
5 Syrian hamster litter mates were each irradiated with X-rays on one flank to 300 rad. Skin biopsies were taken from both the irradiated and unirradiated (control) flanks of each animal at one day and at about 6 months after irradiation. The cells cultured from these biopsies were used to determine the frequencies of chromosomal aberrations. During the 6-month period there were significant reductions in the frequencies of both reciprocal translocations and terminal deletions.

Translocations involving the short arm of the Y-chromosome, however, showed a significant increase during this period.

It is possible that while the latter phenomenon was due to cell selection in vivo the general fall off in translocations and deletions was the result of a long term in vivo repair mechanism or perhaps the results of certain aberrations proving to be lethal with prolonged expression times.  相似文献   


7.
Germline mutation of the tumor suppressor gene CDC73 confers susceptibility to the hyperparathyroidism-jaw tumor syndrome associated with a high risk of parathyroid malignancy. Inactivating CDC73 mutations have also been implicated in sporadic parathyroid cancer, but are rare in sporadic benign parathyroid tumors. The molecular pathways that distinguish malignant from benign parathyroid transformation remain elusive. We previously showed that a hypomorphic allele of hyrax (hyx), the Drosophila homolog of CDC73, rescues the loss-of-ventral-eye phenotype of lobe, encoding the fly homolog of Akt1s1/ PRAS40. We report now an interaction between hyx and Tor, a central regulator of cell growth and autophagy, and show that eukaryotic translation initiation factor 4E-binding protein (EIF4EBP), a translational repressor and effector of mammalian target of rapamycin (mTOR), is a conserved target of hyx/CDC73. Flies heterozygous for Tor and hyx, but not Mnn1, the homolog of the multiple endocrine neoplasia type 1 (MEN1) tumor suppressor associated with benign parathyroid tumors, are starvation resistant with reduced basal levels of Thor/4E-BP. Human peripheral blood cell levels of EIF4EBP3 were reduced in patients with CDC73, but not MEN1, heterozygosity. Chromatin immunoprecipitation demonstrated occupancy of EIF4EBP3 by endogenous parafibromin. These results show that EIF4EBP3 is a peripheral marker of CDC73 function distinct from MEN1-regulated pathways, and suggest a model whereby starvation resistance and/or translational de-repression contributes to parathyroid malignant transformation.  相似文献   

8.
Everolimus is an orally administered mTOR inhibitor. The effect, and mechanism of action, of everolimus on lung cancers with an epidermal growth factor receptor (EGFR) mutation remain unclear. Four gefitinib-sensitive and -resistant cell lines were used in the present work. Growth inhibition was determined using the MTT assay. Transgenic mice carrying the EGFR L858R mutation were treated with everolimus (10 mg/kg/day), or vehicle alone, from 5 to 20 weeks of age, and were then sacrificed. To evaluate the efficacy of everolimus in prolonging survival, everolimus (10 mg/kg/day) or vehicle was administered from 5 weeks of age. The four cell lines were similarly sensitive to everolimus. Expression of phosphorylated (p) mTOR and pS6 were suppressed upon treatment with everolimus in vitro, whereas the pAKT level increased. The numbers of lung tumors with a long axis exceeding 1 mm in the everolimus-treated and control groups were 1.9±0.9 and 9.4±3.2 (t-test, p<0.001), respectively. pS6 was suppressed during everolimus treatment. Although apoptosis and autophagy were not induced in everolimus-treated EGFR transgenic mice, angiogenesis was suppressed. The median survival time in the everolimus-treated group (58.0 weeks) was significantly longer than that in the control group (31.2 weeks) (logrank test, p<0.001). These findings suggest that everolimus had an indirect effect on tumor formation by inhibiting angiogenesis and might be effective to treat lung tumors induced by an activating EGFR gene mutation.  相似文献   

9.
The methylation of B-cell CLL/lymphoma 6 member B (BCL6B) DNA promoter was detected in several malignancies. Here, we quantitatively detect the methylated status of CpG sites of BCL6B DNA promoter of 459 patients with gastric cancer (GC) by using bisulfite gene sequencing. We show that patients with three or more methylated CpG sites in the BCL6B promoter were significantly associated with poor survival. Furthermore, by using the Akaike information criterion value calculation, we show that the methylated count of BCL6B promoter was identified to be the optimal prognostic predictor of GC patients.  相似文献   

10.
BackgroundRecent studies have reported that diffuse large B-cell lymphoma (DLBCL) involving different primary extranodal sites have distinct clinicopathological characteristics and prognosis. However, the risk of secondary malignant neoplasms (SMNs) in DLBCL survivors with different primary extranodal sites are unknown.MethodsA total of 40,714 patients diagnosed with stage I/II DLBCL were included from the Surveillance, Epidemiology, and End Results (SEER) database from 1983 to 2015.The standardized incidence ratio (SIR) and absolute excess risk (AER) were used to assess the risk of SMNs.ResultsThe results show that the risk of SMN was significantly higher in extranodal DLBCL than in the US general population (SIR, 1.18; 95% CI, 1.11–1.26), and the risk of developing SMN remains significantly elevated with increased latency. Moreover, there were multiple site-specific risk patterns. There was a 22%, 44%, 66%, 123% and 151% increased risk of SMN 10 years after primary gastrointestinal tract, head/neck, skeletal, lung and liver/pancreas DLBCL diagnosis, respectively. There was a significant decrease risk of SMN with increasing age at diagnosis for primary gastrointestinal tract and skeletal DLBCL. In addition, DLBCL patients with primary sites in the gastrointestinal tract, thyroid and liver/pancreas had the highest incidences of secondary stomach cancer, second thyroid cancer, and second hepatobiliary cancer, respectively, which indicated that the initial site of DLBCL may predict the type of SMN.ConclusionsThe strategies for cancer surveillance after extranodal DLBCL diagnosis may need to be individualized according to the subsite of extranodal DLBCL.  相似文献   

11.
In order to investigate the mechanism of radio-sensitization by an Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), we studied repair of DNA double strand breaks (DSBs) in irradiated human cells pre-treated with 17-AAG. DSBs are thought to be the critical target for radiation-induced cell death. Two human tumor cell lines DU145 and SQ-5 which showed clear radio-sensitization by 17-AAG revealed a significant inhibition of DSB repair, while normal human cells which did not show radio-sensitization by the drug indicated no change in the DSB repair kinetics with 17-AAG. We further demonstrated that BRCA2 was a novel client protein for Hsp90, and 17-AAG caused the degradation of BRCA2 and in turn altered the behavior of Rad51, a critical protein for homologous recombination (HR) pathway of DSB repair. Our data demonstrate for the first time that 17-AAG inhibits the HR repair process and could provide a new therapeutic strategy to selectively result in higher tumor cell killing.  相似文献   

12.

Background and aims

The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation.

Methods

Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting.

Results

mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16.

Conclusions

This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.  相似文献   

13.
A new family of protein domains consisting of 50-80 amino acid residues is described. It is composed of nearly 40 members, including domains encoded by plastid and phage group I introns; mitochondrial, plastid, and bacterial group II introns; eubacterial genomes and plasmids; and phages. The name "EX1HH-HX3H" was coined for both domain and family. It is based on 2 most prominent amino acid sequence motifs, each encompassing a pair of highly conserved histidine residues in a specific arrangement: EX1HH and HX3H. The "His" motifs often alternate with amino- and carboxy-terminal motifs of a new type of Zn-finger-like structure CX2,4CX29-54[CH]X2,3[CH]. The EX1HH-HX3H domain in eubacterial E2-type bacteriocins and in phage RB3 (wild variant of phage T4) product of the nrdB group I intron was reported to be essential for DNA endonuclease activity of these proteins. In other proteins, the EX1HH-HX3H domain is hypothesized to possess DNase activity as well. Presumably, this activity promotes movement (rearrangement) of group I and group II introns encoding the EX1HH-HX3H domain and other gene targets. In the case of Escherichia coli restrictase McrA and possibly several related proteins, it appears to mediate the restriction of alien DNA molecules.  相似文献   

14.
15.
Endogenous nitrosation due to chronic inflammation is enhanced in opisthorchiasis and plays a crucial role in the development of cholangiocarcinoma (CCA). Hepatic cytochrome P450 (CYP) family enzymes, especially CYP2A6 and CYP2E1, are involved in the metabolism of procarcinogens; these two enzymes metabolize endogenous nitrosamines to carcinogenic N-dimethylnitrosamine (NDMA). CYP2A6 activity is increased in patients infected with Opisthorchis viverrini. Our aim was to determine whether the expression and function of CYP2A6 and 2E1 in the livers of patients with O. viverrini-associated cholangiocarcinoma (CCA) was altered compared to livers without CCA. Livers of CCA patients (n = 13 cases) showed increased enzyme activities, protein and mRNA levels of CYP2A6 whereas the enzyme activity and protein levels of CYP2E1 were markedly decreased (P < 0.05). CYP2E1 mRNA levels were not altered. Large numbers of inflammatory cells and increased iNOS expression was found in areas adjacent to the tumor. The data provide evidence to support the concept that enhanced CYP2A6 activity and diminished CYP2E1 activity probably involve to the progression of CCA.  相似文献   

16.
The identification of proteins aberrantly expressed in malignant B-cells can potentially be used to develop new diagnostic, prognostic or therapeutic targets. Proteomic studies of B-cell malignancies have made significant progress, but further studies are needed to increase our coverage of the B-cell malignant proteome. To achieve this goal we stress the advantages of using sub-cellular fractionation, protein separation, quantitation and affinity purification techniques to identify hitherto unidentified signalling and regulatory proteins. For example, proteomic analysis of B-cell plasma membranes isolated from patients with mantle cell lymphoma (MCL) identified the voltage-gated proton channel (HVCN1,[1]). This protein has now been characterised as a key modulator of B-cell receptor (BCR) signalling and abrogation of HVCN1 function could have a role in the treatment of B-cell malignancies dependent on maintained BCR signalling [2]. Similarly, proteomic studies on cell lysates from prognostic subtypes of CLL, distinguished by the absence (UM-CLL) or presence (M-CLL) of somatic hypermutation of the immunoglobulin heavy chain locus identified nucleophosmin 1 (NMP1) as a potential prognostic marker [3,4]. Thus, targeted proteomic analysis on selected organelles or sub-cellular compartments can identify novel proteins with unexpected localisation or function in malignant B-cells that could be developed for clinical purposes.  相似文献   

17.
In Caenorhabditiselegans, motorneuron apoptosis is regulated via a ces-2–ces-1–egl-1 pathway. We tested whether human CEM lymphoblastic leukemia cells undergo apoptosis via an analogous pathway. We have previously shown that E4BP4, a ces-2 ortholog, mediates glucocorticoid (GC)-dependent upregulation of BIM, an egl-1 ortholog, in GC-sensitive CEM C7-14 cells and in CEM C1-15mE#3 cells, which are sensitized to GCs by ectopic expression of E4BP4. In the present study, we demonstrate that the human ces-1 orthologs, SLUG and SNAIL, are not significantly repressed in correlation with E4BP4 expression. Expression of E4BP4 homologs, the PAR family genes, especially HLF, encoding a known anti-apoptotic factor, was inverse to that of E4BP4 and BIM. Expression of pro- and anti-apoptotic genes in CEM cells was analyzed via an apoptosis PCR Array. We identified BIRC3 and BIM as genes whose expression paralleled that of E4BP4, while FASLG, TRAF4, BCL2A1, BCL2L1, BCL2L2 and CD40LG as genes whose expression was opposite to that of E4BP4.  相似文献   

18.
How the nucleotide excision repair (NER) machinery gains access to damaged chromatinized DNA templates and how the chromatin structure is modified to promote efficient repair of the non-transcribed genome remain poorly understood. The UV-damaged DNA-binding protein complex (UV-DDB, consisting of DDB1 and DDB2, the latter of which is mutated in xeroderma pigmentosum group E patients, is a substrate-recruiting module of the cullin 4B-based E3 ligase complex, DDB1-CUL4B(DDB2). We previously reported that the deficiency of UV-DDB E3 ligases in ubiquitinating histone H2A at UV-damaged DNA sites in the xeroderma pigmentosum group E cells contributes to the faulty NER in these skin cancer-prone patients. Here, we reveal the mechanism by which monoubiquitination of specific H2A lysine residues alters nucleosomal dynamics and subsequently initiates NER. We show that DDB1-CUL4B(DDB2) E3 ligase specifically binds to mononucleosomes assembled with human recombinant histone octamers and nucleosome-positioning DNA containing cyclobutane pyrimidine dimers or 6-4 photoproducts photolesions. We demonstrate functionally that ubiquitination of H2A Lys-119/Lys-120 is necessary for destabilization of nucleosomes and concomitant release of DDB1-CUL4B(DDB2) from photolesion-containing DNA. Nucleosomes in which these lysines are replaced with arginines are resistant to such structural changes, and arginine mutants prevent the eviction of H2A and dissociation of polyubiquitinated DDB2 from UV-damaged nucleosomes. The partial eviction of H3 from the nucleosomes is dependent on ubiquitinated H2A Lys-119/Lys-120. Our results provide mechanistic insight into how post-translational modification of H2A at the site of a photolesion initiates the repair process and directly affects the stability of the human genome.  相似文献   

19.
20.
Efrapeptins (EF), a family of fungal peptides, inhibit proteasomal enzymatic activities and the in vitro and in vivo growth of HT-29 cells. They are also known inhibitors of F1F0-ATPase, a mitochondrial enzyme that functions as an Hsp90 co-chaperone. We have previously shown that treatment of cancer cells with EF results in disruption of the Hsp90:F1F0-ATPase complex and inhibition of Hsp90 chaperone activity. The present study examines the effect of EF on breast cancer growth in vitro and in vivo. As a monotherapy, EF inhibited cell proliferation in vitro with an IC50 value ranging from 6 nM to 3.4 μM. Inhibition of Hsp90 chaperone function appeared to be the dominant mechanism of action and the factor determining cellular sensitivity to EF. In vitro inhibition of proteasome became prominent in the absence of adequate levels of Hsp90 and F1F0-ATPase as in the case of the relatively EF-resistant MDA-MB-231 cell line. In vivo, EF inhibited MCF-7 and MDA-MB-231 xenograft growth with a maximal inhibition of 60% after administration of 0.15 and 0.3 mg/kg EF, respectively. 2-Deoxyglucose (2DG), a known inhibitor of glycolysis, acted synergistically with EF in vitro and antagonistically in vivo. In vitro, the synergistic effect was attributed to a prolonged endoplasmic reticulum (ER) stress. In vivo, the antagonistic effect was ascribed to the downregulation of tumoral and/or stromal F1F0-ATPase by 2DG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号