首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of central angiotensin AT1-receptor blockade on thermoregulation in rats during exercise on a treadmill (18 m/min, 5% inclination) was investigated. Core (Tb) and skin tail temperatures were measured in rats while they were exercising until fatigue after injection of 2 microl of losartan (Los; 20 nmol, n = 4; 30 nmol, n = 4; 60 nmol, n = 7), an angiotensin II AT1-receptor antagonist, or 2 microl of 0.15 mol/l NaCl (Sal; n = 15) into the right lateral cerebral ventricle. Body heat rate (BHR), heat storage rate, threshold Tb for tail vasodilation (TTbV), time to fatigue, and workload were calculated. During exercise, the BHR and heat storage rate of Los-treated animals were, respectively, 40 and 53% higher (P < 0.01) than in Sal-treated animals. Additionally, rats injected with Los showed an increased TTbV (38.59 +/- 0.19 degrees C for Los vs. 38.12 +/- 0.1 degrees C for Sal, P < 0.02), a higher Tb at fatigue point (39.07 +/- 0.14 degrees C Los vs. 38.66 +/- 0.07 degrees C Sal, P < 0.01), and a reduced running performance (27.29 +/- 4.48 min Los vs. 52.47 +/- 6.67 min Sal, P < 0.01), which was closely related to the increased BHR. Our data suggest that AT1-receptor blockade attenuates heat dissipation during exercise due to the higher TTbV, leading to a faster exercise-induced increase in Tb, thus decreasing running performance.  相似文献   

2.
Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (P<0.05). They remained lower at 20 min [e.g. Tc: CON 38.4+/-0.2 (+/-S.E.), LW 37.9+/-0.1, and LC 37.8+/-0.1 degrees C; HR: 177+/-3, 163+/-3 and 167+/-3 b.p.m.), except that FBF was equivalent (P=0.10) between CON (15.5+/-1.6) and LW (13.6+/-1.0 ml.100 ml tissue(-1) x min(-1)). Subsequent power output was higher in LW (2.95+/-0.24) and LC (2.91+/-0.25) than in CON (2.52+/-0.28 W kg(-1), P=0.00, N=8), yet final Tc remained lower. Pre-cooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.  相似文献   

3.
Athletes with spinal cord injury (SCI), and in particular tetraplegia, have an increased risk of heat strain and consequently heat illness relative to able-bodied individuals. Strategies that reduce the heat strain during exercise in a hot environment may reduce the risk of heat illness. To test the hypotheses that precooling or cooling during intermittent sprint exercise in a heated environment would attenuate the rise in core temperature in tetraplegic athletes, eight male subjects with SCI (lesions C(5)-C(7); 2 incomplete lesions) undertook four heat stress trials (32.0 +/- 0.1 degrees C, 50 +/- 0.1% relative humidity). After assessment of baseline thermoregulatory responses at rest for 80 min, subjects performed three intermittent sprint protocols for 28 min. All trials were undertaken on an arm crank ergometer and involved a no-cooling control (Con), 20 min of precooling (Pre), or cooling during exercise (Dur). Trials were administered in a randomized order. After the intermittent sprint protocols, mean core temperature was higher during Con (37.3 +/- 0.3 degrees C) compared with Pre and Dur (36.5 +/- 0.6 degrees C and 37.0 +/- 0.5 degrees C, respectively; P < 0.01). Moreover, perceived exertion was lower during Pre (13 +/- 2; P < 0.01) and Dur (12 +/- 1; P < 0.01) compared with Con (14 +/- 2). These results suggest that both precooling and cooling during intermittent sprint exercise in the heat reduces thermal strain in tetraplegic athletes. The cooling strategies also appear to show reduced perceived exertion at equivalent time points, which may translate into improved functional capacity.  相似文献   

4.
We exposed Dorper-cross ewes at approximately 120-135 days of gestation to a hot (40 degrees C, 60% relative humidity) and a cold (4 degrees C, 90% relative humidity) environment and to treadmill exercise (2.1 km/h, 5 degrees gradient) and measured fetal lamb and ewe body temperatures using previously implanted abdominal radiotelemeters. When ewes were exposed to 2 h of heat or 30 min of exercise, body temperature rose less in the fetus than in the mother, such that the difference between fetal and maternal body temperature, on average 0.6 degrees C before the thermal stress, fell significantly by 0.54 +/- 0.06 degrees C (SE, n = 8) during heat exposure and by 0.21 +/- 0.08 degrees C (n = 7) during exercise. During 6 h of maternal exposure to cold, temperature fell significantly less in the fetus than in the ewe, and the difference between fetal and maternal body temperature rose to 1.16 +/- 0.26 degrees C (n = 9). Thermoregulatory strategies used by the pregnant ewe for thermoregulation during heat or cold exposure appear to protect the fetus from changes in its thermal environment.  相似文献   

5.
The vasomotor response to cold may compromise the capacity for microclimate cooling (MCC) to reduce thermoregulatory strain. This study examined the hypothesis that intermittent, regional MCC (IRC) would abate this response and improve heat loss when compared with constant MCC (CC) during exercise heat stress. In addition, the relative effectiveness of four different IRC regimens was compared. Five heat-acclimated men attempted six experimental trials of treadmill walking ( approximately 225 W/m(2)) in a warm climate (dry bulb temperature = 30 degrees C, dewpoint temperature = 11 degrees C) while wearing chemical protective clothing (insulation = 2.1; moisture permeability = 0.32) with a water-perfused (21 degrees C) cooling undergarment. The six trials conducted were CC (continuous perfusion) of 72% body surface area (BSA), two IRC regimens cooling 36% BSA by using 2:2 (IRC(1)) or 4:4 (IRC(2)) min on-off perfusion ratios, two IRC regimens cooling 18% BSA by using 1:3 (IRC(3)) or 2:6 (IRC(4)) min on-off perfusion ratios, and a no cooling (NC) control. Compared with NC, CC significantly reduced changes in rectal temperature ( approximately 1.2 degrees C) and heart rate ( approximately 60 beats/min) (P < 0.05). The four IRC regimens all provided a similar reduction in exercise heat strain and were 164-215% more efficient than CC because of greater heat flux over a smaller BSA. These findings indicate that the IRC approach to MCC is a more efficient means of cooling when compared with CC paradigms and can improve MCC capacity by reducing power requirements.  相似文献   

6.
The purpose was to assess whether body cooling between 2 bouts of exercise in the heat enhances performance during the second exercise session. Using a random, crossover design, 15 subjects (3 women, 12 men; 28 +/- 2 years, 180 +/- 2 cm, 69 +/- 2.3 kg) participated in all 3 trials. Subjects ran 90 minutes on hilly trails in a hot environment (approximately 27 degrees C) before 12 minutes of either cold water immersion (CWI; 13.98 degrees C), ice water immersion (IWI; 5.23 degrees C), or a mock treatment (MT) of sitting in a tub with no water (29.50 degrees C). After immersion, subjects ran a 2-mile race. CWI had faster (p < 0.05) performance time (725 seconds) than MT (769 seconds). CWI and IWI had significantly (p < 0.05) lower rectal temperatures postimmersion than MT as well as postrace (p < 0.05). Heart rate also remained significantly lower (p < 0.05) during the CWI and IWI trials for the first half of the race. In conclusion, CWI enhances performance (6% improvement in race time) in the second bout of exercise, supporting its potential role as an ergogenic aid in athletic performance.  相似文献   

7.
Trunk (HT), limb (HL), and whole-body (HDIR = HT + HL + Hforehead) skin-to-water heat flows were measured by heat flow transducers on nine men immersed head out in water at critical temperature (TCW = 30 +/- 2 degrees C) and below [overall water temperature (TW) range = 22-32 degrees C] after up to 3 h at rest and exercise. Body heat flow was also determined indirectly (HM) from metabolic rate corrected for changes in heat stores. At rest at TCW [O2 uptake (VO2) = 0.33 +/- 0.07 l/min, n = 7], HT = 52.3 +/- 14.2 (SD) W, HL = 56.4 +/- 14.6 W, HDIR = 120 +/- 27 W, and HM = 111 +/- 29 W (significantly different from HDIR). TW markedly affected HDIR but only slightly affected HM (n = 22 experiments at TW different from TCW plus 7 experiments at TCW). During light exercise (3 MET) at TCW (VO2 = 1.06 +/- 0.26 l/min, n = 9), HT = 122 +/- 43 W, HL = 130 +/- 27 W, HDIR = 285 +/- 69 W, and HM = 260 +/- 60 W. During severe exercise (7 MET) at TCW (VO2 = 2.27 +/- 0.50 l/min, n = 4), HT = 226 +/- 100 W, HL = 262 +/- 61 W, HDIR = 517 +/- 148 W, and HM = 496 +/- 98 W. Lowering TW at 7-MET exercise (n = 9, plus 4 at TCW) had no effect on HDIR and HM. In conclusion, resting HL and HT are equal. At TW less than TCW at rest, HDIR greater than HM, showing that unexpectedly the shell was still cooling. During exercise, HL increases more than HT but less than expected from the heat production of the working limbs. Therefore some heat produced by the limbs is probably transported by blood to the trunk. During heavy exercise, HDIR is constant at all considered TW; apparently it is regulated by some thermally dependent mechanism, such as a progressive cutaneous vasodilation occurring as TW increases.  相似文献   

8.
The purpose of this study was to examine the running performances and associated thermoregulatory responses of African and Caucasian runners in cool and warm conditions. On two separate occasions, 12 (n = 6 African, n = 6 Caucasian) well-trained men ran on a motorized treadmill at 70% of peak treadmill running velocity for 30 min followed by an 8-km self-paced performance run (PR) in cool (15 degrees C) or warm (35 degrees C) humid (60% relative humidity) conditions. Time to complete the PR in the cool condition was not different between groups ( approximately 27 min) but was significantly longer in warm conditions for Caucasian (33.0 +/- 1.6 min) vs. African (29.7 +/- 2.3 min, P < 0.01) runners. Rectal temperatures were not different between groups but were higher during warm compared with cool conditions. During the 8-km PR, sweat rates for Africans (25.3 +/- 2.3 ml/min) were lower compared with Caucasians (32.2 +/- 4.1 ml/min; P < 0.01). Relative rates of heat production were less for Africans than Caucasians in the heat. The finding that African runners ran faster only in the heat despite similar thermoregulatory responses as Caucasian runners suggests that the larger Caucasians reduce their running speed to ensure an optimal rate of heat storage without developing dangerous hyperthermia. According to this model, the superior running performance in the heat of these African runners can be partly attributed to their smaller size and hence their capacity to run faster in the heat while storing heat at the same rate as heavier Caucasian runners.  相似文献   

9.
We have previously demonstrated a functional role of the preoptic area and anterior hypothalamus (PO/AH) in thermoregulation in freely moving rats at various temperature conditions by using microdialysis and biotelemetry methods. In the present study, we perfused tetrodotoxin (TTX) solution into the PO/AH to investigate whether this manipulation can modify thermoregulation in exercising rats. Male Wistar rats were trained for 3 wk by treadmill running. Body core temperature (Tb), heart rate (HR), and tail skin temperature (Ttail) were measured. Rats ran for 120 min at speed of 10 m/min, with TTX (5 microM) perfused into the left PO/AH during the last 60 min of exercise through a microdialysis probe (control, n=12; TTX, n=12). Tb, HR, and Ttail increased during the first 20 min of exercise. Thereafter, Tb, HR, and Ttail were stable in both groups. Perfusion of TTX into the PO/AH evoked an additional rise in Tb (control: 38.2 +/- 0.1 degrees C, TTX: 39.3 +/- 0.2 degrees C; P <0.001) with a significant decrease in Ttail (control: 31.2 +/- 0.5 degrees C, TTX: 28.3 +/- 0.7 degrees C; P <0.01) and a significant increase in HR (control: 425.2 +/- 12 beats/min, TTX: 502.1 +/- 13 beats/min; P <0.01). These results suggest that the TTX-induced hyperthermia was the result of both an impairment of heat loss and an elevation of heat production during exercise. We therefore propose the PO/AH as an important thermoregulatory site in the brain during exercise.  相似文献   

10.
The aim of this study was to investigate the effect of previous warming on high-intensity intermittent running using nonmotorized treadmill ergometry. Ten male soccer players completed a repeated sprint test (10 x 6-second sprints with 34-second recovery) on a nonmotorized treadmill preceded by an active warm-up (10 minutes of running: 70% VO2max; mean core temperature (Tc) 37.8 +/- 0.2 degrees C), a passive warm-up (hot water submersion: 40.1 +/- 0.2 degrees C until Tc reached that of the active warm-up; 10 minutes +/- 23 seconds), or no warm-up (control). All warm-up conditions were followed by a 10-minute static recovery period with no stretching permitted. After the 10-minute rest period, Tc was higher before exercise in the passive trial (38.0 +/- 0.2 degrees C) compared to the active (37.7 +/- 0.4 degrees C) and control trials (37.2 +/- 0.2 degrees C; p < 0.05). There were no differences in pre-exercise oxygen consumption and blood lactate concentration; however, heart rate was greater in the active trial (p < 0.05). The peak mean 1-second maximum speed (MxSP) and group mean MxSP were not different in the active and passive trials (7.28 +/- 0.12 and 7.16 +/- 0.10 m x s(-1), respectively, and 7.07 +/- 0.33 and 7.02 +/- 0.24 m x s(-1), respectively; p > 0.05), although both were greater than the control. The percentage of decrement in performance fatigue was similar between all conditions (active, 3.4 +/- 1.3%; passive, 4.0 +/- 2.0%; and control, 3.7 +/- 2.4%). We conclude that there is no difference in high-intensity intermittent running performance when preceded by an active or passive warm-up when matched for post-warm-up Tc. However, repeated sprinting ability is significantly improved after both active and passive warm-ups compared to no warm-up.  相似文献   

11.
The purpose of this study was to test the hypothesis that the rise in colonic temperature (Tc) during nonexertional heat stress is exaggerated in senescent (SEN, 24 mo, n = 12) vs. mature (MAT, 12 mo, n = 15) conscious unrestrained Fischer 344 rats. On 2 separate days (48 h apart) each SEN and MAT animal was exposed to an ambient temperature (Ta) of 42 degrees C (relative humidity 20%) until a Tc of 41 degrees C was attained and then cooled at a Ta of 26 degrees C until Tc returned to the initial control level. Control Tc was similar in the two groups for both trials. The rate of Tc change during heating was 63% greater (0.070 +/- 0.005 vs. 0.043 +/- 0.004 degrees C/min, P less than 0.05) and the time to 41 degrees C reduced by 36% (54 +/- 6 vs. 85 +/- 10 min, P less than 0.05) in MAT vs. SEN animals during the first exposure, although the cooling rate was slower in the MAT (0.048 +/- 0.004 degrees C/min) vs. SEN (0.062 +/- 0.006 degrees C/min) animals (P less than 0.05). The heating rate was unchanged in MAT animals between trials 1 and 2. However, SEN animals had a 95% increase in heating rate in trial 2 compared with trial 1 (P less than 0.05), and the corresponding time to 41 degrees C was decreased by 44% (P less than 0.05). As a result, rate of heating and time to 41 degrees C were similar in the two groups during trial 2. The cooling rate was similar between trials within each group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
An attempt was made to demonstrate the importance of increased perfusion of cold tissue in core temperature afterdrop. Five male subjects were cooled twice in water (8 degrees C) for 53-80 min. They were then rewarmed by one of two methods (shivering thermogenesis or treadmill exercise) for another 40-65 min, after which they entered a warm bath (40 degrees C). Esophageal temperature (Tes) as well as thigh and calf muscle temperatures at three depths (1.5, 3.0, and 4.5 cm) were measured. Cold water immersion was terminated at Tes varying between 33.0 and 34.5 degrees C. For each subject this temperature was similar in both trials. The initial core temperature afterdrop was 58% greater during exercise (mean +/- SE, 0.65 +/- 0.10 degrees C) than shivering (0.41 +/- 0.06 degrees C) (P < 0.005). Within the first 5 min after subjects entered the warm bath the initial rate of rewarming (previously established during shivering or exercise, approximately 0.07 degrees C/min) decreased. The attenuation was 0.088 +/- 0.03 degrees C/min (P < 0.025) after shivering and 0.062 +/- 0.022 degrees C/min (P < 0.025) after exercise. In 4 of 10 trials (2 after shivering and 2 after exercise) a second afterdrop occurred during this period. We suggest that increased perfusion of cold tissue is one probable mechanism responsible for attenuation or reversal of the initial rewarming rate. These results have important implications for treatment of hypothermia victims, even when treatment commences long after removal from cold water.  相似文献   

13.
Little research has been reported examining the effects of pre-cooling on high-intensity exercise performance, particularly when combined with strategies to keep the working muscle warm. This study used nine active males to determine the effects of pre-cooling the torso and thighs (LC), pre-cooling the torso (ice-vest in 3 degrees C air) while keeping the thighs warm (LW), or no cooling (CON: 31 degrees C air), on physiological strain and high-intensity (45-s) exercise performance (33 degrees C, 60% rh). Furthermore, we sought to determine whether performance after pre-cooling was influenced by a short exercise warm-up. The 45-s test was performed at different (P<0.05) mean core temperature [(rectal+oesophageal)/2] [CON: 37.3+/-0.3 (S.D.), LW: 37.1+/-0.3, LC: 36.8+/-0.4 degrees C] and mean skin temperature (CON: 34.6+/-0.6, LW: 29.0+/-1.0, LC: 27.2+/-1.2 degrees C) between all conditions. Forearm blood flow prior to exercise was also lower in LC (3.1+/-2.0 ml 100 ml tissue(-1) x min(-1)) than CON (8.2+/-2.5, P=0.01) but not LW (4.3+/-2.6, P=0.46). After an exercise warm-up, muscle temperature (Tm) was not significantly different between conditions (CON: 37.3+/-1.5, LW: 37.3+/-1.2, LC: 36.6+/-0.7 degrees C, P=0.16) but when warm-up was excluded, T(m) was lower in LC (34.5+/-1.9 degrees C, P=0.02) than in CON (37.3+/-1.0) and LW (37.1+/-0.9). Even when a warm-up was performed, torso+thigh pre-cooling decreased both peak (-3.4+/-3.8%, P=0.04) and mean power output (-4.1+/-3.8%, P=0.01) relative to the control, but this effect was markedly larger when warm-up was excluded (peak power -7.7+/-2.5%, P=0.01; mean power -7.6+/-1.2%, P=0.01). Torso-only pre-cooling did not reduce peak or mean power, either with or without warm-up. These data indicate that pre-cooling does not improve 45-s high-intensity exercise performance, and can impair performance if the working muscles are cooled. A short exercise warm-up largely removes any detrimental effects of a cold muscle on performance by increasing Tm.  相似文献   

14.
We examined whether fatigue during exertional heat stress occurred at a critical internal temperature independent of the initial temperature at the start of exercise. Microwaves (2.1 GHz; 100 mW/cm(2)) were used to rapidly (3-8 min) heat rats before treadmill exercise to exhaustion. In a repeated-measures design, food-restricted male Sprague-Dawley rats (n = 11) were preheated to three levels (low, medium, and high). In addition, two sham exposures, Sham 1 and Sham 2, were administered at the beginning and end of the study, respectively. At the initiation of exercise, hypothalamic (T(hyp)) and rectal (T(rec)) temperatures ranged from 39.0 degrees C to 42.8 degrees C (T(hyp)) and 42.1 degrees C (T(rec)). The treadmill speed was 17 m/min (8 degrees grade), and the ambient temperature during exercise was 35 degrees C. Each treatment was separated by 3 wk. Run time to exhaustion was significantly reduced after preheating. There was a significant negative correlation between run time and initial T(hyp) and T(rec) (r = 0.73 and 0.74, respectively). The temperatures at exhaustion were not significantly different across treatments, with a range of 41.9-42.2 degrees C (T(hyp)) and 42.2-42.5 degrees C (T(rec)). There were no significant differences in run time in the sham runs administered at the start and end of the investigation. No rats died as a result of exposure to any of the treatments, and body weight the day after each treatment was unaffected. These results support the concept that a critical temperature exists that limits exercise in the heat.  相似文献   

15.
In this study, the effect of exercise (treadmill, riding) on scrotal surface temperature (SST) in the stallion with and without suspensory was evaluated. Experiments were carried out between September and November 2004 using 12 Franches-Montagnes stallions from the National Stud in Avenches (Switzerland). Each stallion performed a standardized incremental treadmill and a ridden test with and without suspensory. The intensity of exercise was monitored by heart rate and blood lactate concentration. For SST measurements, special thermistors were developed and affixed to the most ventral part of the scrotum over each testis. SST was recorded telemetrically at 1min intervals. Our results show that type of exercise (treadmill/ridden) and suspensory (with/without) significantly influenced SST. The mean SST level was higher during treadmill (32.2+/-0.02 degrees C) than during ridden exercise (30.4+/-0.03 degrees C) and mean SST differences between stallions with and without suspensory were smaller in treadmill (0.4 degrees C) than in ridden (2 degrees C) exercise. These findings clearly demonstrate that ambient airflow, which was higher during ridden exercise, is important and effective in SST regulation. In order to prevent possible thermal damage to spermatogenic cells we recommend removing the suspensory immediately after exercise.  相似文献   

16.
This study compared the effects of hypohydration (HYP) on endurance exercise performance in temperate and cold air environments. On four occasions, six men and two women (age = 24 +/- 6 yr, height = 170 +/- 6 cm, weight = 72.9 +/- 11.1 kg, peak O2 consumption = 48 +/- 9 ml.kg(-1).min(-1)) were exposed to 3 h of passive heat stress (45 degrees C) in the early morning with [euhydration (EUH)] or without (HYP; 3% body mass) fluid replacement. Later in the day, subjects sat in a cold (2 degrees C) or temperate (20 degrees C) environment with minimal clothing for 1 h before performing 30 min of cycle ergometry at 50% peak O2 consumption followed immediately by a 30-min performance time trial. Rectal and mean skin temperatures, heart rate, and ratings of perceived exertion measurements were made at regular intervals. Performance was assessed by the total amount of work (kJ) completed in the 30-min time trial. Skin temperature was significantly lower in the cold compared with the temperate trial, but there was no independent effect of hydration. Rectal temperature in both HYP trials was higher than EUH after 60 min of exercise, but the difference was only significant within the temperate trials (P < 0.05). Heart rate was significantly higher at 30 min within the temperate trial (HYP > EUH) and at 60 min within the cold trial (HYP > EUH) (P < 0.05). Ratings of perceived exertion increased over time with no differences among trials. Total work performed during the 30-min time trial was not influenced by environment but was less (P < 0.05) for HYP than EUH in the temperate trials. The corresponding change in performance (EUH-HYP) was greater for temperate (-8%) than for cold (-3%) (P < 0.05). These data demonstrate that 1) HYP impairs endurance exercise performance in temperate but not cold air but 2) cold stress per se does not.  相似文献   

17.
The aim of the present study was to determine the effect of carbohydrate (CHO; sucrose) ingestion and environmental heat on the development of fatigue and the distribution of power output during a 16.1-km cycling time trial. Ten male cyclists (Vo(2max) = 61.7 +/- 5.0 ml.kg(-1).min(-1), mean +/- SD) performed four 90-min constant-pace cycling trials at 80% of second ventilatory threshold (220 +/- 12 W). Trials were conducted in temperate (18.1 +/- 0.4 degrees C) or hot (32.2 +/- 0.7 degrees C) conditions during which subjects ingested either CHO (0.96 g.kg(-1).h(-1)) or placebo (PLA) gels. All trials were followed by a 16.1-km time trial. Before and immediately after exercise, percent muscle activation was determined using superimposed electrical stimulation. Power output, integrated electromyography (iEMG) of vastus lateralis, rectal temperature, and skin temperature were recorded throughout the trial. Percent muscle activation significantly declined during the CHO and PLA trials in hot (6.0 and 6.9%, respectively) but not temperate conditions (1.9 and 2.2%, respectively). The decline in power output during the first 6 km was significantly greater during exercise in the heat. iEMG correlated significantly with power output during the CHO trials in hot and temperate conditions (r = 0.93 and 0.73; P < 0.05) but not during either PLA trial. In conclusion, cyclists tended to self-select an aggressive pacing strategy (initial high intensity) in the heat.  相似文献   

18.
To investigate mechanisms that may be involved in the prolongation of exercise performance with body cooling hypothalamic (Thy), rectal (Tre), and exercising muscle (Tm) temperatures, as well as the heart rate, respiratory rate, blood lactic acid concentration ( [LA] ), and plasma osmolality (Osm) were measured in five dogs during exhaustive treadmill exercise at an ambient temperature (Ta) of 22 +/- 1 degree C without cooling (control) and with external cooling by use of ice packs. In both series of experiments, dehydration of animals was prevented. Compared with exercise with noncooling, exercise with cooling resulted in 1) increased exercise duration from 90 +/- 14 to 145 +/- 15 min (62%, P less than 0.05); 2) attenuated increases in Thy, Tre, and Tm; 3) decreased respiratory and heart rates; and 4) lowered LA. Significant negative correlations were found between both Tm and delta Tm attained at 60 min of the run and time of exercise until exhaustion (r = -0.72 and -0.74, respectively; P less than 0.02). This work failed to differentiate clearly changes or equilibrium levels of brain, core, or muscle temperature as separate factors affecting work tolerance. However, the inverse relationship between Tm reached at 60 min of the run (in both experiments) and the total duration of exercise indicates that sustained muscle hyperthermia may largely contribute to limitation of working ability.  相似文献   

19.
We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.  相似文献   

20.
A temperate environment heat tolerance test (HTT) was formerly reported (Shvartz et al. 1977b) to distinguish heat acclimatized humans from former heat stroke patients. The purpose of this investigation was to evaluate the ability of HTT to measure acute individual changes in the HR and Tre responses of normal subjects, induced by classical heat acclimation procedures, thereby assessing the utility and sensitivity of HTT as a heat tolerance screening procedure. On day 1, 14 healthy males performed HTT (23.2 +/- 0.5 degrees C db, 14.9 +/- 0.5 degrees C wb) by bench stepping (30 cm high, 27 steps x min-1) for 15 min at 67 +/- 3% VO2max. On days 2-9, all subjects underwent heat acclimation (41.2 +/- 0.3 degrees C db, 28.4 +/- 0.3 degrees C wb) via treadmill exercise. Heat acclimation trials (identical on days 2 and 9) resulted in significant decreases in HR (170 +/- 3 vs 144 +/- 5 beats x min-1), Tre (39.21 +/- 0.09 vs 38.56 +/- 0.17 degrees C), and ratings of perceived exertion; plasma volume expanded 5.2 +/- 1.7%. On day 10, subjects repeated HTT; day 1 vs day 10 HR were statistically similar (143 +/- 6 vs 137 +/- 6 beats x min-1, p greater than 0.05) but Tre decreased significantly (37.7 +/- 0.1 vs 37.5 +/- 0.1 degrees C, p less than 0.05). Group mean HTT composite score (day 1 vs day 10) was unchanged (63 +/- 5 vs 72 +/- 6, p greater than 0.05), and individual composite scores indicated that HTT did not accurately measure HR and Tre trends at 41.2 +/- degrees C in 6 out of 14 subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号