共查询到20条相似文献,搜索用时 15 毫秒
1.
Davidson DW 《Oecologia》2005,142(2):221-231
C:N stoichiometry was investigated in relation to diet (15N), N-deprivation, and worker body size for a diverse assemblage of tropical Amazonian ants. Relative nitrogen (N) deprivation was assayed for 54 species as an exchange ratio (ER), defined as SUCmin/AAmin, or the minimum sucrose concentration, divided by the minimum amino acid concentration, accepted as food by 50% of tested workers. On average, N-deprivation (ER) was almost fivefold greater for N-omnivorous and N-herbivorous (N-OH) taxa than for N-carnivores. In two-way ANOVAs at three taxonomic levels (species and species groups, genera, and tribes), higher ER was associated with small body size and (marginally) with less carnivorous diets. ERs did not differ systematically between trophobiont-tending and leaf-foraging functional groups, but specialized wound-feeders and coccid-tenders were prominent among high ER taxa. Paradoxically, some high ER taxa were among the most predatory members of their genera or subfamilies. Biomass % N was lower in N-OH taxa than in carnivores and varied inversely with N-deprivation (log ER) in the former taxa only. In an expanded data set, N-content increased allometrically in N-OHs, N-carnivores, and all ants combined, and with carnivory in large-bodied ants only. Exceptional taxa included small-bodied and predaceous Wasmannia, with high % N despite high ER, and Linepithema, with the lowest % N despite high 15N. Patterns in C:N stoichiometry are explained largely at the genus level and above by elemental composition of alarm/defensive/offensive chemical weaponry and, perhaps in some cases, by reduced N investment in cuticle in taxa with high surface:volume ratios. Several consequences of C:N stoichiometry identify Azteca, and possibly Crematogaster, as taxa preadapted for their roles as prominent associates of myrmecophytes. C:N stoichiometry of ants should be incorporated into models of strategic colony design and examined in a phylogenetic context as opportunities permit.Electronic supplementary material Supplementary material is available for this article at 相似文献
2.
3.
Southwestern Australia has already undergone significant climatic warming and drying and water temperatures are increasing particularly in small streams where riparian vegetation has been cleared. The ability to predict how freshwater fauna may respond to these changes requires understanding of their thermal tolerances. A review of relevant literature and laboratory testing of four aquatic species from southwestern Australia were used to compare upper thermal tolerance (UTT) among key taxonomic groups. UTT for selected species determined by LT50 tests were similar to that of species tested elsewhere. Mean UTT, based on relevant literature and LT50 experiments, ranged from 22.3°C for Ephemeroptera to 43.4°C for Coleoptera. Mean UTT for both Coleoptera and Odonata (41.9°C) were significantly higher than those for all the other groups (22.3–31.5°C) with the exception of Planaria. The mean UTT value of 22.3°C for Ephemeroptera was significantly lower than for Decapoda (29.6°C), Trichoptera (30.1°C) and Mollusca (31.5°C). For three insect orders tested, eurytherms had significantly higher UTT values than stenotherms. The variation in UTT among taxa suggests that additional thermal shifts, caused by riparian disturbance and/or climate change, are likely to create novel assemblages due to the replacement of temperature-sensitive taxa by more tolerant taxa. This has implications for the sustainability of regionally important endemic cool water species. 相似文献
4.
Nitrogen (N) mineralization rates and the temperature response patterns of mineral N production in surface (0–7.6 cm) soils were compared in laboratory incubation studies based on disturbed, composite samples. Seasonal variation in the field levels of mineral N, and mineralization potential of intact (7.6 × 5.6 cm diameter) soil cores, were also investigated. Ammonification proceeded rapidly in each soil. Nitrification did not occur in grassy forest (GF) soil but was active in both layered forest (LF) and mossy forest (MF) soils, especially the former. Total mineral N production was greatest in MF and least in LF. Ammonification in disturbed samples was maximal at 50°C in all three soils with a secondary peak at 10°C in LF soil. Nitrification in LF and MF soils was most rapid at 25°C. Several species of ammonifying bacteria with different temperature optima were isolated, indicating that the process of ammonification is a composite of the activities of a variety of decomposer microbes. Mean field levels of mineral N and NH4–N throughout the year were greatest in MF and least in LF. Seasonal fluctuations in NH4–N were evident, concentrations being universally low in mid-winter (about 1.5 μgg-1), increasing to a maximum in late summer (about 5 μg g-1 in LF: 16–18 μg g-1 in GF and MF). Field levels of NO3–N were more constant and never more than 5 μg g-1 in any community. Both total mineralization and ammonification in intact cores were greatest in MF and least in LF while nitrification was greatest in LF and almost negligible in GF, thus confirming the results obtained with disturbed samples. The potential for mineralization was large in mid-winter when the amount of mineral N was very low, and small in late summer when field levels were higher: this is interpreted as indicating that seasonal climatic factors regulate the availability of substrates for decomposers. Spatial variability in field levels of mineral N and mineral N production in the laboratory was evidenced by significant ‘sampling site’ effects in each community: however, at the sampling intensity used, the presence of bark mounds around Eucalyptus saligna trees could not be shown to affect these attributes. The inability of GF soil to nitrify when incubated in the laboratory could not be ascribed to a high C/N ratio, low pH, lack of substrate ammonium, or a low population of autotrophic nitrifying bacteria. No attempt was made to investigate the presence of allelopathic nitrification inhibitors. No evidence was obtained to support the view that nitrification is atypical of climax communities in situ. The most productive forest (LF) had the greatest capacity to nitrify and the least productive community (GF) the smallest capacity to do so. 相似文献
5.
Park S. Nobel 《Oecologia》1984,62(3):310-317
Summary Extreme temperatures near the soil surface, which can reach 70°C at the main study site in the northwestern Sonoran Desert, markedly affect seedling survival. Computer simulations indicated that for the rather spherical barrel cactus Ferocactus acanthodes (Lem.) Britt. & Rose the maximum surface temperature decreased 8°C and the minimum temperature increased 3°C as the seedling height was increased from 1 mm up to 50 mm. Simulated changes in shortwave and longwave irradiation alone showed that shading could decrease the maximum temperature by about 5°C for the common desert agave, Agave deserti Engelm., and raise the minimum 1°C. Actual field measurements on seedlings of both species, where shading would affect local air temperatures and wind speeds in addition to irradiation, indicated that shading decreased the average maximum surface temperature by 11°C in the summer and raised the minimum temperature by 3°C in winter.Seedlings grown at day/iight air temperatures of 30°C/20°C tolerated low temperatures of about -7°C and high temperatures of about 56°C, as measured by the temperature where stain uptake by chlorenchyma cells was reduced 50%. Seedling tolerance to high temperatures increased slightly with age, and F. acanthodes was more tolerant than A. deserti. Even taking the acclimation of high temperature tolerance into account (2.7°C increase per 10°C increase in temperature), seedlings of A. deserti would not be expected to withstand the high temperatures at exposed sites, consistent with previous observations that these seedlings occur only in protected microhabitats. Based primarily on greater high temperature acclimation (4.3°C per 10°C), seedlings of F. acanthodes have a greater high temperature tolerance and can just barely survive in exposed sites. Wide ranges in photoperiod had little effect on the thermal sensitivities of either species. When drought increased the chlorenchyma osmotic pressure from about 0.5 MPa to 1.3 MPa, seedlings of both species became about 2°C less tolerant of high temperatures, which would be nonadaptive in a desert environment, and 2°C more tolerant of low temperatures, which also occurs for other species.In conclusion, seedlings of A. deserti and F. acanthodes could tolerate tissue temperatures over 60°C when acclimated to high temperatures and below -8°C when acclimated to low temperatures. However, the extreme environment adjacent to desert soil requires sheltered microhabitats to protect the plants from high temperature damage and also to protect them from low temperature damage at their upper elevational limits. 相似文献
6.
(1) We measured thermal tolerances (critical thermal minimum, CTmin and panting threshold, Tpant) for four populations of Homonota darwinii spanning most of the latitudinal range of the species. (2) CTmin differed across populations, but not latitudinally as predicted, likely because latitude was not as good a proxy for operative temperatures (Te). (3) Some populations had subzero CTmin indicating supercooling or freeze tolerance—the first time either phenomenon has been reported for a gecko. (4) Tpant did not differ significantly among populations. (5) The thermal tolerance breadth appears to be correlated with thermal variability in the environment. (6) Annual Te data indicate gecko retreats play a crucial role in surviving extreme surface temperatures (<0 or >50 °C). 相似文献
7.
8.
Alex W. Ireland W. Wyatt Oswald David R. Foster 《Vegetation History and Archaeobotany》2011,20(4):245-252
Broad-scale patterns of vegetation response to three centuries of human disturbance in the northeastern United States are
well understood, but stand-scale (0.1–10 ha) interactions between land-use history and the ecological processes underlying
these patterns are not. Enduring legacies of land-use history, though pervasive in modern forests, are not always obvious
or intuitive, particularly in the regenerating stands that cover most of the region. Focusing on a second-growth, post-agricultural
landscape in Petersham, Massachusetts, this study integrates (i) a stand-scale sedimentary pollen and charcoal record, (ii)
survey and dendroecological data from the surrounding forest, and (iii) analysis of historical documents describing site-specific
ownership and land use history. We demonstrate the strength of this multifaceted approach to vegetation reconstruction on
sites with long land-use histories that are typical of the modern landscape. We infer that periods of low and high intensity
agriculture commenced around 1760 and 1850, respectively, and that the agricultural era was initiated and terminated by episodes
of increased fire. Dendroecological data corroborate deed records and suggest that a portion of the forest regenerated and
was used for small-scale timber production during the mid to late 1800s. Most of the forest established in the early 1900s,
after which time the greatest disturbance was Cryphonectria parasitica (chestnut blight) induced mortality of Castanea dentata (American chestnut) and replacement by Betula (birch) species. This study highlights the potential to expand integrated historical ecological research into landscapes
with lengthy histories of human disturbance and underscores the potential of this research to generate data with spatial and
temporal resolution relevant to management and conservation efforts. 相似文献
9.
Tropical ant communities are frequently diverse, but highly patchy in nature. The availability of suitable nest sites may
be a regulating force in structuring litter ant communities. Our aim was to examine ant resource utilization in naturally
occurring twigs, and to modify the availability of these resources in order to quantify the influence of nest availability
on ant communities in a Papua New Guinean forest. First, we compared ant communities that assemble in artificial twigs (drilled,
wooden dowels), naturally occurring twigs, and the leaf litter. A total of 55 ant species were captured: 33 from the leaf
litter, 29 from naturally occurring twigs, and only 12 from artificial nests. Significantly different communities formed in
each of the three nest types. Second, we examined how the density of natural or artificial nest material influenced the ant
abundance and species richness. Plots had between 5 and 96 potential nest sites. An average of only 11.2% of these twigs was
colonized. Both species richness and the total abundance of adult ants were significantly positively correlated with increasing
naturally occurring twig density. Conversely, increasing the availability of artificial nests from 5 to 20 per plot had no
significant effect on the proportion of artificial nests colonized, species richness, or the colony size. We observed that
ant species richness and abundance increased with natural twig density, at least for naturally occurring communities. But
why so many twigs remain vacant and available for ant colonization remains unknown. Other biotic and abiotic factors likely
influence the use of nesting habitat in these ant communities. 相似文献
10.
Spatial changes in forest floor and foliar chemistry of spruce-fir forests across New England 总被引:5,自引:4,他引:5
In the U.S., high elevation spruce-fir forests receive greater amounts of nitrogen deposition relative to low elevation areas. At high elevations the cycling of nitrogen is naturally low due to slower decomposition and low biological N demand. The combination of these factors make spruce-fir ecosystems potentially responsive to changes in N inputs.Excess nitrogen deposition across the northeastern United States and Europe has provided an opportunity to observe ecosystem response to changing N inputs. Effects on foliar and forest floor chemistry were examined in a field study of 161 spruce-fir sites across a longitudinal (west-to-east) N deposition gradient. Both foliar elemental concentrations and forest floor elemental concentrations and rates of potential N mineralization were correlated with position along this gradient.Nitrogen deposition was positively correlated with potential forest floor nitrification and mineralization, negatively correlated with forest floor C:N and Mg concentrations and with spruce foliar lignin, lignin:N and Mg:N ratios. Foliar lignin:N and forest floor C:N were positively correlated and both were negatively correlated with nitrification and mineralization. Correlations found between forest floor and foliar N and Mg concentrations support the theory of nutrient imbalance as a potential cause of forest decline. 相似文献
11.
P. S. NOBEL 《Plant, cell & environment》1989,12(6):643-651
Abstract. Temperatures of small succulent plants, such as species in the genera Haworthia and Lithops , are highly influenced by temperatures of the surrounding soil. Indeed, the minimum and the maximum temperatures of the upper leaf epidermis of Haworthia retusa. H. turgida. Lithops leslei , and L. turbiniformis were generally within 1°C of the accompanying soil surface temperatures. An energybudget model closely predicted such soil-to-plant temperature differences as well as the effect of the greater convective exchange for the protruding Haworthia species compared with the Lithops species, which were flush with the soil surface. Although a lower shortwave absorptance would reduce maximum shoot temperatures, the shortwave absorptances of all four species were similar to those of the soil in their respective native habitats in South Africa. Tolerances of the four species to low and to high temperatures at three different day/night air temperatures (15°C/5°C, 30°C/20°C, and 45°C/35°C) were analysed using cellular accumulation of a vital stain, neutral red. Chlorenchyma cells were slightly more tolerant of extreme temperatures than were cells of the water-storage parenchyma. In this regard, H. retusa survived low and high temperatures that killed the water-storage parenchyma but not the chlorenchyma. Acclimation to low temperatures and to high temperatures, which was exhibited by all four species, led to estimated tolerances to 1 h at −16°C and 68°C. Although the low temperature tolerance is not particularly noteworthy, very few vascular plants are reportedly able to tolerate such high temperatures. 相似文献
12.
Imran Khaliq Christian Hof Roland Prinzinger Katrin B?hning-Gaese Markus Pfenninger 《Proceedings. Biological sciences / The Royal Society》2014,281(1789)
The relationships among species'' physiological capacities and the geographical variation of ambient climate are of key importance to understanding the distribution of life on the Earth. Furthermore, predictions of how species will respond to climate change will profit from the explicit consideration of their physiological tolerances. The climatic variability hypothesis, which predicts that climatic tolerances are broader in more variable climates, provides an analytical framework for studying these relationships between physiology and biogeography. However, direct empirical support for the hypothesis is mostly lacking for endotherms, and few studies have tried to integrate physiological data into assessments of species'' climatic vulnerability at the global scale. Here, we test the climatic variability hypothesis for endotherms, with a comprehensive dataset on thermal tolerances derived from physiological experiments, and use these data to assess the vulnerability of species to projected climate change. We find the expected relationship between thermal tolerance and ambient climatic variability in birds, but not in mammals—a contrast possibly resulting from different adaptation strategies to ambient climate via behaviour, morphology or physiology. We show that currently most of the species are experiencing ambient temperatures well within their tolerance limits and that in the future many species may be able to tolerate projected temperature increases across significant proportions of their distributions. However, our findings also underline the high vulnerability of tropical regions to changes in temperature and other threats of anthropogenic global changes. Our study demonstrates that a better understanding of the interplay among species'' physiology and the geography of climate change will advance assessments of species'' vulnerability to climate change. 相似文献
13.
14.
Temperatures and thermal tolerances for cacti exposed to high temperatures near the soil surface 总被引:5,自引:0,他引:5
Abstract Soil surface temperatures in deserts can reach 70 °C, far exceeding the high-temperature tolerance of most vascular plants of about 55 °C. In this study a computer model indicated that the maximum temperatures of small spherical cacti would approach soil surface temperatures, in agreement with measurements on seedlings of Ferocactus acanthodes. Shortwave radiation was the most important environmental variable affecting maximum cactus temperatures: a 70% reduction in shortwave radiation by shading lowered both predicted and measured stem surface temperatures by 17 °C for plants 2 cm in diameter. High-temperature tolerance, measured as the temperature that halved the fraction of cells taking up a vital stain after a 1 h high-temperature treatment, could reach 60 °C for the detached stems of Opuntia bigelovii, which appears crucial for its vegetative reproduction, and 70 °C for O. ficus-indica, apparently the greatest high-temperature tolerance so far reported for higher vascular plants. Two-fold increases in shortwave absorptance from Epithelantha bokei to Mammillaria lasiacantha to Ariocarpus fissuratus led to a 5 °C predicted increase in maximum temperature. However, compensatory differences in high-temperature tolerances occurred for these dwarf cacti, helping to explain their occurrence in the same open habitat in the Chihuahuan Desert. All six species showed acclimation of their high-temperature tolerance as ambient temperatures were increased, including acclimation by the roots of the dwarf cacti, where the greater sensitivity to high temperatures of roots would exclude them from the upper 2 cm of the soil. Using the model, the observed high-temperature acclimation, and the temperatures needed to reduce stain uptake to zero, the three dwarf cacti were predicted to be able to survive soil surface temperatures of up to 74 °C. 相似文献
15.
16.
17.
The leaves of woody plants at Harvard Forest in Central Massachusetts, USA, changed color during senescence; 70% (62/89) of the woody species examined anatomically contained anthocyanins during senescence. Anthocyanins were not present in summer green leaves, and appeared primarily in the vacuoles of palisade parenchyma cells. Yellow coloration was a result of the unmasking of xanthophyll pigments in senescing chloroplasts. In nine red-senescing species, anthocyanins were not detectable in mature leaves, and were synthesized de novo in senescence, with less than 20µg cm–2 of chlorophyll remaining. Xanthophyll concentrations declined in relation to chlorophyll to the same extent in both yellow- and red-leaved taxa. Declines in the maximum photosystemII quantum yield of leaves collected prior to dawn were only slightly less in the red-senescing species, indicating no long-term protective activity. Red-leaved species had significantly greater mass/area and lower chlorophylla/b ratios during senescence. Nitrogen tissue concentrations in mature and senescent leaves negatively correlated to anthocyanin concentrations in senescent leaves, weak evidence for more efficient nitrogen resorption in anthocyanic species. Shading retarded both chlorophyll loss and anthocyanin production in Cornus alternifolia, Acer rubrum, Acer saccharum, Quercus rubra and Viburnum alnifolium. It promoted chlorophyll loss in yellow-senescing Fagus grandifolia. A reduced red:far-red ratio did not affect this process. Anthocyanins did not increase leaf temperatures in Q.rubra and Vaccinium corymbosum on cold and sunny days. The timing of leaf-fall was remarkably constant from year to year, and the order of senescence of individual species was consistent. 相似文献
18.
Nathan W. Riser 《Hydrobiologia》1981,84(1):139-145
Eleven species of the proseriate turbellarian family Coelogynoporidae have been encountered between Cape Cod, Mass. and the southern shore-line of New Brunswick, Canada. The distributions of Coelogynopora schultzii, C. biarmata and Cirrifera cirrifera are reported. Four new species belonging to the genus Coelogynopora, one new species of Cirrifera and a species belonging to a new genus are described. Two species remain undescribed. Biological observations on a laboratory-reared colony of C. biarmata maintained since 1978 are reported. 相似文献
19.
The extent to which phenotypic plasticity might mediate short-term responses to environmental change is controversial. Nonetheless, theoretical work has made the prediction that plasticity should be common, especially in predictably variable environments by comparison with those that are either stable or unpredictable. Here we examine these predictions by comparing the phenotypic plasticity of thermal tolerances (supercooling point (SCP), lower lethal temperature (LLT), upper lethal temperature (ULT)), following acclimation at either 0, 5, 10 or 15 degrees C, for seven days, of five, closely-related ameronothroid mite species. These species occupy marine and terrestrial habitats, which differ in their predictability, on sub-Antarctic Marion Island. All of the species showed some evidence of pre-freeze mortality (SCPs -9 to -23 degrees C; LLTs -3 to -15 degrees C), though methodological effects might have contributed to the difference between the SCPs and LLTs, and the species are therefore considered moderately chill tolerant. ULTs varied between 36 degrees C and 41 degrees C. Acclimation effects on SCP and LLT were typically stronger in the marine than in the terrestrial species, in keeping with the prediction of strong acclimation responses in species from predictably variable environments, but weaker responses in species from unpredictable environments. The converse was found for ULT. These findings demonstrate that acclimation responses vary among traits in the same species. Moreover, they suggest that there is merit in assessing the predictability of changes in high and low environmental temperatures separately. 相似文献
20.
Brandon S. Cooper Jeffery M. Tharp II Isaiah I. Jernberg Michael J. Angilletta Jr. 《Journal of thermal biology》2012
Variation in temperature imposes selection pressures on organisms. In variable environments, organisms must adopt fixed or plastic strategies that enable persistence over a broad range of temperatures. In coarse-grained environments, where the thermal variation among generations exceeds that within generations, selection should favor developmental plasticity. Here, we compare the degree of developmental plasticity of thermal tolerances between populations of Drosophila melanogaster from environments with relatively high (Marlton, NJ, USA) and relatively low (Miami, FL, USA) variance in temperature among generations. We predicted that flies from Marlton would exhibit a greater plasticity of thermal tolerances than would flies from Miami. Flies from both populations were reared in three ecologically relevant treatments, after which we assessed knockdown and chill-coma recovery times. Flies from both populations responded plastically to temperature, but flies from New Jersey did not exhibit greater plasticity. Our results complement previous comparative studies and indicate that selection favors plasticity of thermal tolerances equally in these populations. 相似文献