首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro regeneration and morphogenesis studies in common bean   总被引:1,自引:0,他引:1  
An efficient protocol for high frequency in vitro regeneration of multiple shoots and somatic embryos from the embryonic axis of common bean (Phaseolus vulgaris) was developed. Ten common bean cultivars representing a wide range of diversity among current commercial market classes were used for in vitro regeneration evaluation in our study. These cultivars were tested on 63 different media formulations consisting of combinations of cytokinins, namely benzyladenine (BA) and thidiazuron (TDZ) at concentration levels of 0.0, 1.0, 2.5, 5.0 and 10.0 mg l−1 and auxin, namely naphthalene acetic acid (NAA) and indole-3-acetic acid (IAA) at concentration levels of 0.0, 0.05, 0.1 and 1.0 mg l−1. P. vulgaris cv. Olathe pinto bean performed the best producing over 20 multiple shoots per explant while cv. Condor black bean was the poorest with nine multiple shoots per explant. The optimum media for regeneration of multiple shoots was 4.4 mg l−1 Murashige and Skoog (MS) containing 2.5 mg l−1 BA and 0.1 mg l−1 IAA supplemented with 30 mg l−1 silver nitrate. Adventitious shoots and somatic embryos were regenerated on 4.4 mg l−1 MS medium containing 1 mg l−1 TDZ and 0.05 mg l−1 NAA supplemented with 30 mg l−1 silver nitrate or activated charcoal. Efficient and effective rooting of plantlets was achieved by dipping the cut end base of in vitro regenerated shoots in 1.0 mg l−1 indole-3-butyric acid (IBA) solution and culturing on media containing 4.4 mg l−1 MS supplemented by 0.1 mg l−1 IAA, NAA or IBA.  相似文献   

2.
The objective of the present work was selection of cultivar and suitable medium for regenerating shoots from leaf segments of non-heading Chinese cabbage. We evaluated six types of supplemented media with 2.0, 5.0 and 10.0 mg l−1 6-BA; 1.0 and 2.0 mg l−1 TDZ; 0.1, 0.3, 0.5, 0.8 and 1.0 mg l−1NAA; 3.0, 5.0 and 7.5 mg l−1AgNO3; 0.01 mg l−1 2–4, D and 4.0 mg l−1 KT for shoot regeneration and six cultivars “Sanchidaye”, “Liuchuandasuomian”, “Qingyou 4”, “Liangbaiye”, “AiKang 5” and “Hanxiao F3”, furthermore for root formation three types of supplemented media with 0.2, 0.3, 0.5 mg l−1 NAA, and for survival rate two types of base media: turf + vermiculite + manure (1:2:0.2) and soil + vermiculite (1:2). Culturing leaf segments on MS medium supplemented with 2 mg l−1 TDZ; 0.5 mg l−1 NAA and 7.5 mg l−1 AgNO3 gave the highest number of shoots per leaf segment (66) while roots were best formed on the medium supplemented with 0.2 mg l−1 NAA. Survival rate was highest (61.6%) in the turf: vermiculite: manure (1:2:0.2) medium. The highest percentage of responding leaf segments, number of shoots per leaf segment, rooting percentage and survival rate were observed in “Liuchuandasuomian”. The plantlets were transferred to the soil and grown into mature plants in pots. These results could be used for preliminary selections of cultivars to transfer disease resistance (Bt) gene through agrobacterium in non-heading Chinese cabbage.  相似文献   

3.
Lettuce (Lactuca sativa) transformation varies by genotype. Various culture parameters have been studied in order to improve the transformation efficiency of lettuce cultivars. However, no improved transformation procedure for recalcitrant lettuce cultivars has yet been established. Here, we demonstrate the effects of varying concentrations and distinct combinations of growth regulators on recalcitrant lettuce transformation efficiency. More precisely, we assessed differences in the effects of several growth regulator combinations, including N-6(2-isopentenyl)-adenine (2ip), on induction of callus and regeneration of shoots after co-cultivation with Agrobacterium. When two commercial recalcitrant cultivars, Red Romaine and Bibb, were cultured on a medium with 2ip 1 mg l−1, IAA 0.1 mg l−1, and subsequently transferred to a second medium with BA 0.4 mg l−1, NAA 0.05 mg l−1 for selection and shoot regeneration, transformation efficiencies reached 8 and 9%, respectively. Stable integration and transmission of the transgene in T1 generation plants were confirmed by molecular analysis. This procedure represents a simple, efficient, and general means of transforming various lettuce cultivars, including recalcitrant commercial cultivars.  相似文献   

4.
A simple protocol for direct shoot organogenesis and plant regeneration in Lessertia frutescens using hypocotyl and cotyledon segments is reported. l-canavanine content in the derived shoots is also quantified. Media containing different concentrations and combinations of the cytokinins kinetin (K) and benzyladenine (BA) were tested for shoot induction potential. The best shoot regeneration rate (83%) was obtained from hypocotyl segments cultured in Murashige and Skoog (MS) medium supplemented with 1 mg l−1 K; these hypocotyls also produced the largest number of shoots per explant (3.5) and the longest shoots per explant (13.3 mm). The best shoot regeneration rate (46%) using cotyledons as explant material was obtained in MS medium supplemented with 1 mg l−1 K and 1 mg l−1 BA or with 5 mg l−1 K and 0.5 mg l−1 BA. The highest number of cotyledon-derived shoots (1.5) was obtained in MS medium containing 2 mg l−1 K and 0.5 mg l−1 BA, and the longest cotyledon-derived shoots (6.1 mm) were obtained in MS medium containing 1 mg l−1 K and 0.5 mg l−1 BA. Shoots derived from hypocotyls cultured on media containing 1 mg l−1 K contained the highest quantity of l-canavanine (1.42 mg g−1) relative to the control (0.52 mg g−1). Shoots derived from cotyledons cultured on media containing 2 mg l−1 K contained the highest quantity of l-canavanine (2.07 mg g−1) compared to the control. Scanning electron microscopy revealed that shoots regenerated directly from the wounded epidermal tissue, although callus formation was observed in most cultures. Young shoot clusters proliferated into healthy adventitious shoots that were subsequently transferred directly onto rooting medium (MS medium containing 4 mg l−1 indole-3-butyric acid), eliminating the need for an additional multiplication or elongation phase. The in vitro plants were successfully acclimatized in a growth chamber, achieving an 85% survival rate.  相似文献   

5.
The influence of the basal medium and different plant growth regulators on micropropagation of nodal explants from mature trees of lemon cultivars was investigated. Although the basal medium did not affect any of the variables, explants on DKW medium were greener. Several combinations of 6-benzyladenine (BA) and gibberellic acid (GA) were used to optimise the proliferation phase. The number of shoots was dependent on the BA and GA concentrations and the best results were obtained with 2 mg l−1 BA and 1 or 2 mg l−1 GA. Explants length was shorter with the higher BA concentrations and, in all genotypes, shoot length was greater with 2 mg l−1 GA. The best results for productivity (number of shoots × the average shoot length) were obtained with 2 mg l−1 BA and 2 mg l−1 GA, although explants with chlorosis and narrow leaves were observed. The presence of BA and GA in the proliferation medium was essential for the explant multiplication but GA had a greater influence. The transfer of in vitro shoots to rooting media, containing different concentrations of indole butyric acid (IBA) and indole acetic acid (IAA) produced complete plantlets. Lemon shoots rooted well in all rooting combinations. The highest rooting percentages were obtained on media containing 3 mg l−1 IBA alone or IBA in combination with 1 mg l−1 IAA and on these media the highest numbers of roots were produced. The average root length was affected significantly by the IBA and IAA concentrations. Root length was greater when only 3 mg l−1 IBA was used, and in this rooting medium explants had a better appearance, with greener and larger leaves. The success during the acclimatisation was close to 100% and the plantlets exhibited normal growth in soil under greenhouse conditions.  相似文献   

6.
The organogenic potential and antioxidant potential (1, 1-diphenyl-2-picrylhydrazyl-scavenging activity) of the medicinal plant Piper nigrum L. (black pepper) were investigated. Callus induction and shoot regeneration were induced from leaf explants of potted plants cultured on MS medium supplemented with different plant growth regulators. The best callogenic response was observed on explants cultured for 30 days on MS medium supplemented with either 0.5 or 1.5 mg l−1 6-benzyladenine (BA) + 1.0 mg l−1 α-naphthaleneacetic acid. Subsequent transfer of the callogenic explants onto MS medium supplemented with 1.5 mg l−1 BA + 1.0 mg l−1 gibberellic acid (GA3) achieved 85% shoot organogenesis after 30 days of culture. The maximum number (7.2) of shoots/explant was recorded for explants cultured in MS medium supplemented with 1.0 mg l−1 BA. Following the transfer of shoots to an elongation medium, the longest shoots (5.4 cm) were observed on MS medium supplemented with 1.0 mg l−1 BA + 1.0 mg l−1 GA3. The elongated shoots were rooted on MS medium supplemented with different concentrations of indole butyric acid. An assay of the antioxidant potential of the in vitro-grown tissues revealed that the antioxidant activity of the regenerated shoots was significantly higher than that of callus and the regenerated plantlets.  相似文献   

7.
We have developed a system for the in vitro regeneration of pasqueflowers (Pulsatilla koreana Nakai). The system was based on somatic embryogenesis and shoot organogenesis. Over a growth period of 6 weeks, multiple shoots were initiated from leaf, petiole, and pedicel explants on Murashige and Skoog (MS) medium containing 0.5 mg l−1 indole-3-acetic acid (IAA) and zeatin (Zn), kinetin (Kin), or 6-benzyladenine (BA). We achieved 100% of adventitious shoot induced when petiole and pedicel explants were cultured on MS, 0.5–2.0 mg l−1 Zn, and 0.5 mg l−1 IAA. Somatic embryos developed from the explants and generated shoots on MS medium containing 0.25 mg l−1 Zn and 0.5 mg l−1 IAA. Globular and heart-shaped stages of somatic embryos were observed. Histological studies have revealed the stages of development of somatic embryos. For propagation and growth, the regenerated shoots from organogenic or embryogenic calluses were transferred to MS medium containing either (1) 1.5 mg l−1 Zn and 0.05 mg l−1 IAA or (2) 1.0 mg l−1 BA and 0.05 mg l−1 IAA. After the length of the shoots reached 3 cm, the shoots initiated by organogenesis as well as those initiated by somatic embryogenesis were transferred to the root induction medium. After 2 months of culture in half-strength MS with 1.5 mg l−1 α-naphthalene acetic acid (NAA), the rooting ratio was 93%. Finally, the rooted plantlets were acclimatized in a mixture of mountain soil and perlite.  相似文献   

8.
An efficient micropropagation system for mining ecotype Sedum alfredii Hance, a newly identified Zn/Cd hyperaccumulator, was developed. Frequency of callus induction reached up to 70% from leaves incubated on Murashige and Skoog (MS) medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 mg l−1 6-benzyladenine (BA), and 83% from internodal stem segments grown on MS medium with 0.1 mg l−1 2,4-D and 0.1 mg l−1 BA. Callus proliferated rapidly on MS medium containing 0.2 mg l−1 2,4-D and 0.05 mg l−1 thidiazuron. The highest number of adventitious buds per callus (17.3) and frequency of shoot regeneration (93%) were obtained when calli were grown on MS medium supplemented with 2.0 mg l−1 BA and 0.3 mg l−1 α-naphthalene acetic acid (NAA). Elongation of shoots was achieved when these were incubated on MS medium containing 3.0 mg l−1 gibberellic acid. Induction of roots was highest (21.4 roots per shoot) when shoots were transferred to MS medium containing 2.0 mg l−1 indole 3-butyric acid rather than either indole 3-acetic acid or NAA. When these in vitro plants were acclimatized and transferred to the greenhouse, and grown in hydroponic solutions containing 200 μM cadmium (Cd), they exhibited high efficiency of Cd transport, from roots to shoots, and hyperaccumulation of Cd.  相似文献   

9.
A protocol was developed for the micropropagation of Pinus massoniana and mycorrhiza formation on rooted microshoots. Seedling explants were first cultured on Gresshoff and Doy (GD) medium supplemented with 6-benzyladenine (BA) alone or in combination with α-napthaleneacetic acid (NAA) to stimulate the formation of intercotyledonary axillary buds. The frequency of axillary bud induction was up to 97% on medium supplemented with 4.0 mg l−1 BA and 0. 2 mg l−1 NAA, and the average number of buds per explant reached up to 5.5 on medium with 4.0 mg l−1 BA and 0.1 mg l−1 NAA. Axillary buds elongated rapidly after being transferred to half-strength GD medium containing activated charcoal (0.1% w/v). Shoot proliferation was achieved by cutting elongated shoots into stem segments and subculturing on GD medium containing 2 mg l−1 BA and 0.2 mg l−1 NAA. Root primordia were induced in 82% of shoots when transferred to half-strength GD medium containing 0.2 mg l−1 NAA. Root elongation was achieved in a hormone-free GD agar medium or a perlite substrate. Rooted plantlets were inoculated with the mycelium of ectomycorrhizal fungus Pisolithus tinctorius and the formation of ectomycorrhiza-like structures was achieved in vitro.  相似文献   

10.
The morphogenic potential and free-radical scavenging activity of the medicinal plant, Silybum marianum L. (milk thistle) were investigated. Callus development and shoot organogenesis were induced from leaf explants of wild-grown plants incubated on media supplemented with different plant growth regulators (PGRs). The highest frequency of callus induction was observed on explants incubated on Murashige and Skoog (MS) medium supplemented with 5.0 mg l−1 6-benzyladenine (BA) after 20 days of culture. Subsequent transfer of callogenic explants onto MS medium supplemented with 2.0 mg l−1 gibberellic acid (GA3) and 1.0 mg l−1 α-naphthaleneacetic acid (NAA) resulted in 25.5 ± 2.0 shoots per culture flask after 30 days following culture. Moreover, when shoots were transferred to an elongation medium, the longest shoots were observed on MS medium supplemented with 0.5 mg l−1 BA and 1.0 mg l−1 NAA, and these shoots were rooted on a PGR-free MS basal medium. Assay of antioxidant activity of in vitro and in vivo grown tissues revealed that significantly higher antioxidant activity was observed in callus than all other regenerated tissues and wild-grown plants.  相似文献   

11.
An aerobic microbial consortium constructed by the combination of Rhodotorula mucilaginosa Z1, Streptomyces albidoflavus Z2 and Micrococcus luteus Z3 was immobilized in polyurethane foam and its ability to degrade nitrobenzene was investigated. Batch experimental results showed that polyurethane-foam-immobilized cells (PFIC) more efficiently degrade 200–400 mg l−1 nitrobenzene than freely suspended cells (FSC). Kinetics of nitrobenzene degradation by PFIC was well described by the Andrews equation. Compared with FSC, PFIC exhibited better reusability (over 100 times) and tolerated higher shock-loadings of nitrobenzene (1,000 mg l−1). Moreover, In the presence of salinity (≤5% NaCl, w/v), phenol (≤150 mg l−1) and aniline (≤50 mg l−1), respectively, degradation efficiency of nitrobenzene by PFIC reached over 95%. Even in the presence of both 100 mg l−1 phenol and 50 mg l−1 aniline, over 75% nitrobenzene was removed by PFIC in 36 h. Therefore, the immobilization of the defined consortium in polyurethane foam has application potential for removing nitrobenzene in industrial wastewater treatment system.  相似文献   

12.
The effect of increasing concentration of polycyclic aromatic hydrocarbon (PAH) fluoranthene (FLT; 0.1, 1 and 5 mg l−1) on the growth, ethylene production and anatomy of stems of 21-day-old pea plants cultivated in vitro in MS medium, with or without FLT, enriched with 0.1 mg l−1 indole-3-acetic acid (IAA) or with combination of 0.1 mg l−1 IAA + 0.1 mg l−1 N6-benzyladenine (BA) were investigated. The low concentration of 0.1 mg l−1 FLT, in both IAA- and IAA + BA-treated plants, significantly stimulated the growth of pea callus, while higher concentrations 1 mg l−1 and especially 5 mg l−1 FLT significantly inhibited it. Pea shoots were significantly influenced only after application of 5 mg l−1 FLT in IAA treatment. Significantly increased production of ethylene was found in IAA + BA treatments in all concentrations of FLT, whereas in IAA treatments in 1 and 5 mg l−1 FLT. The lysigenous aerenchyma formation in the cortex of pea stems significantly increased in all FLT treatments and its highest proportion was found in plants exposed to 1 mg l−1 FLT.  相似文献   

13.
An efficient protocol for secondary somatic embryogenesis in camphor tree is reported. Secondary somatic embryos (SSEs), initially obtained from the primary embryos of a nascent embryogenic culture in 2002, were proliferated and maintained for more than 4 yr via cyclic secondary somatic embryogenesis. Throughout this period, the embryo populations retained a high level of competence for plant regeneration. SSEs were produced on the surfaces of the cotyledons and radicular ends of maternal somatic embryos (MSEs). Histological observations of the various stages of secondary embryo development revealed four typical stages, namely, globular, heart-shaped, torpedo, and cotyledonary. The process of secondary embryogenesis continued in a cyclic way, with each newly formed embryo producing a subsequent generation of secondary embryos. In order to progress developmentally beyond proliferation cycles, cotyledonary embryos from one of embryogenic lines (L14) were cultured on Murashige and Skoog (MS) medium with 0.1–3.0 mg l−1 abscisic acid (ABA) or 0.05–1.0 mg l−1 thidiazuron (TDZ) in darkness for 2 mo to achieve maturation. Matured embryos were then transferred to MS-based germination medium containing either 0.1 mg l−1 TDZ, 0.2 mg l−1 indole-3-butyric acid (IBA), and 0.5 mg l−1 6-benzylaminopurine (BA) or 0.1 mg l−1 TDZ and 0.2 mg l−1 IBA and were cultured in light for germination. Over 50% of embryos matured in the presence of 0.5 mg l−1 ABA were able to germinate with shoots and poor root system. Frequencies of embryos germinating normal shoots among different genotypes did not change significantly. A total of 93% of the shoots from the germinated embryos converted to plantlets on half strength MS medium with 0.5 mg l−1 IBA by 3 wk. Plantlets acclimatized successfully to ex vitro conditions and developed as field-grown plants with normal appearance.  相似文献   

14.
Saussurea involucrata is a valuable traditional Chinese medicinal herb. This is the first report of a successful genetic transformation protocol for S. involucrata using Agrobacterium tumefaciens. Leaf explants were incubated with A. tumefaciens strain EHA105 harboring the binary vector pCAMBIA 1301, which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, about 23.7% of the explants produced hygromycin-resistant calli on MS basal medium (Murashige and Skoog in Physiol Plant 15: 473–497, 1962) supplemented with 1 mg l−1 benzyladenine (BA), 0.1 mg l−1 α-naphthaleneacetic acid (NAA), 0.1 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D), 20 mg l−1 hygromycin, and 500 mg l−1 cefotaxime. Shoots were regenerated following transfer of the resistant calli to shoot induction medium containing 1.5 mg l−1 BA, 0.1 mg l−1 NAA, 0.25 mg l−1 gibberellic acid (GA3), 20 mg l−1 hygromycin, and 250 mg l−1 cefotaxime, and about 67.5% of the resistant calli differentiated into shoots. Finally, 80% of the hygromycin-resistant shoots rooted on MS media supplemented with 0.2 mg l−1 NAA, 20 mg l−1 hygromycin, and 250 mg l−1 cefotaxime. The transgenic nature of the transformants was demonstrated by detection of β-glucuronidase activity in the primary transformants and by Southern blot hybridization analysis. About 16% of the total inoculated leaf explants produced transgenic plants after approximately 5 months. Using this optimized transformation system, a rice ortholog of the Arabidopsis FLOWERING LOCUS T gene, Hd3a, was transferred into S. involucrata. Introduction of this gene caused an early-flowering phenotype in S. involucrata.  相似文献   

15.
In this study, attempts were made to develop a protocol for regeneration of transgenic plants via Agrobacterium tumefaciens-mediated transformation of leaf segments from ‘Valencia’ sweet orange (Citrus sinensis L. Osbeck) using gfp (green fluorescence protein) as a vital marker. Sensitivity of the leaf segments regeneration to kanamycin was evaluated, which showed that 50 mg l−1 was the best among the tested concentrations. In addition, factors affecting the frequency of transient gfp expression were optimized, including leaf age, Agrobacterium concentration, infection time, and co-cultivation period. Adventitious shoots regenerated on medium containing Murashige and Tucker basal medium plus 0.1 mg l−1 α-naphthaleneacetic acid (NAA), 0.5 mg l−1 6-benzyladenine (BA) and 0.5 mg l−1 kinetin (KT). The leaf segments from 3-month-old in vitro seedlings, Agrobacterium concentration at OD600 of 0.6, 10-min immersion, and co-cultivation for 3 days yielded the highest frequency of transient gfp expression, shoots regeneration response and transformation efficiency. By applying these optimized parameters we recovered independent transformed plants at the transformation efficiency of 23.33% on selection medium (MT salts augmented with 0.5 mg l−1 BA, 0.5 mg l−1 KT, 0.1 mg l−1 NAA, 50 mg l−1 kanamycin and 250 mg l−1 cefotaxime). Expression of gfp in the leaf segments and regenerated shoots was confirmed using fluorescence microscope. Polymerase chain reaction (PCR) analysis using gfp and nptII gene-specific primers further confirmed the integration of the transgene in the independent transgenic plants. The transformation methodology described here may pave the way for generating transgenic plants using leaf segments as explants.  相似文献   

16.
Dorema ammoniacum D. Don. (Apiaceae), a native medicinal plant in Iran, is classified as a vulnerable species. Root, hypocotyl, and cotyledon segments were cultured on Murashige and Skoog (MS) (1962) medium supplemented with either 2,4-dichlorophenyoxyacetic acid (2,4-D) or naphathalene acetic acid (NAA), at 0–2 mg l−1, alone or in combination with either benzyladenine (BA) or kinetin (KN), at 0–2 mg l−1 for callus induction. The best response (100%) was observed from root segments on MS medium containing 1 mg l−1 NAA and 2 mg l−1 BA. The calli derived from various explants were subcultured on MS medium supplemented with BA (1–4 mg l−1) alone or in combination with NAA or indole-3-butyric acid (IBA), at 0.2 or 0.5 mg l−1 for shoot induction. Calli derived from hypocotyl segments showed significantly higher frequency of plantlet regeneration and number of plantlets than the calli derived from root and cotyledon segments. Therefore, MS medium supplemented with 2 mg l−1 BA and 0.2 mg l−1 IBA produced the highest frequency of shoot regeneration (87.3%) in hypocotyl-derived callus. The optimal medium for rooting contained 2.5 mg l−1 IBA on which 87.03% of the regenerated shoots developed roots with an average number of 5.2 roots per shoots within 30 days. These plantlets were hardened and transferred to the soil. The described method can be successfully employed for the large-scale multiplication and conservation of germplasm this plant.  相似文献   

17.
The green twigs of 1-year-old Eucalyptus microtheca F. Muell seedlings were cultured on modified MS medium, supplemented with α-naphthalene acetic acid (NAA) and kinetin (Kin) hormones at 12 different concentrations. After 4 weeks, the combination of 1 mg l−1 NAA + 1 mg l−1 Kin induced the highest number of axillary shoots. Meanwhile, embryogenic calli were observed in media containing 4 mg l−1 NAA + 0.5 mg l−1 Kin, without any regeneration. The hormone treatments were followed by subculturing the twigs in different levels of thidiazuron (TDZ). The combination of 1 mg l−1 NAA + 1 mg l−1 Kin together with 0.01 mg l−1 TDZ resulted in an increase of direct shoot, while higher amounts of TDZ led to adventitious shoot induction. Somatic embryogenesis was observed in the treatment containing 0.01 mg l−1 TDZ + 4 mg l−1 NAA + 0.5 mg l−1Kin. The peroxidase (POD) band patterns in regenerated plantlets were investigated in order to determine the effect of different levels of TDZ on loci synthesis. A dimer locus, a tetramer locus and two epigenetic bands (a new band for NAA + Kin and the other for TDZ) were observed in the POD profiles. In case of low (0.01 mg l−1 and 0.1 mg l−1) levels of TDZ, one heterozygote allele was disappeared from dimer locus, while at higher TDZ levels, the dimer locus lost its stability and tetramer locus showed a high activity. Thus, POD allele patterns seems to be a feasible marker for different types of regeneration.  相似文献   

18.
This study demonstrates the morphogenic potential of pulvinus, an important organ situated at the base of the petiole or rachis of leguminous plants. Plant regeneration via pulvinus-derived calli of Caesalpinia bonduc has been achieved. Organogenic calli have been derived from the explant 45 days after culture on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) alone or in combination with 6-benzylaminopurine (BA). Optimum callus induction (100%) occurred when the pulvini were cultured on MS medium fortified with 6 mg l−1 2,4-D and 1 mg l−1 BA. The highest shoot induction was obtained when the calli were transferred to MS medium supplemented with 5 mg l−1 BA and 1 mg l−1 indole-3-acetic acid (IAA). On this medium, 87% cultures responded with an average number of 4.2 shoots per culture. The maximum root induction from the regenerated shoots was observed on half strength MS medium containing 6 mg l−1 indole-3-butyric acid (IBA). Here 100% shoots rooted with a mean number of 6.3 roots per shoot. The regenerated plantlets were acclimatized and subsequently showed normal growth. This efficient protocol will be helpful for propagating elite clones on a mass scale and could be utilized for genetic transformation study.  相似文献   

19.
To investigate the effects of boron (B) on growth, B concentration and distribution of two navel orange cultivars, ‘Newhall’ (Citrus sinensis Osbeck) and ‘Skagg’s Bonanza’ (Citrus sinensis Osbeck) grafted on the rootstock trifoliate orange [Poncirus trifoliata (L.) Raf.], B at five levels was exogenously supplied to 1-year-old grafted plants of both cultivars under greenhouse conditions. Plants were grown in sand:perlite (1:1, v/v) medium and were irrigated every 2 days with half-strength Hoagland’s No. 2 nutrient solutions containing different B, 0.01, 0.05, 0.10, 0.25 and 2.50 mg l−1 (0.25 and 2.50 mg l−1 were considered as control and excess B treatment, respectively, and the other three B levels were considered as low B treatments). After treatments for 183 days, leaves (from basal, middle, upper parts of the shoots), stem of scion, stem of rootstock and root were separately sampled. Our results showed that plant growth (plant height, root volume and dry weights of various parts) was inhibited in response to low or excess B supplies in both cultivars. It was found that B concentrations in the upper leaves of both cultivars were substantially higher than those in the basal leaves when low concentrations (≤0.05 mg l−1) of exogenous B were applied, suggesting that B was preferentially translocated to the upper-younger leaves to support their growth. Analysis of B distribution in different parts indicated that translocation of B from the root to the scion’s shoots (stems and leaves of scion) may be restricted upon exposure to low B conditions. When B was inadequately supplied, growth of ‘Skagg’s Bonanza’ was better than ‘Newhall’, implying that the former cultivar was more tolerant to low B status, which may be due to the higher efficiency of B translocation from the root to the scion’s shoots. However, when the plants were treated with excess B (2.50 mg l−1), both cultivars showed a similar degree of B toxicity. The probability of scion–rootstock interactions in relation to the differential responses of growth and different efficiency of B translocation involved in the two orange cultivars following the long-term low B stress were discussed.  相似文献   

20.
The cell cultures of Pueraria tuberosa, a perennial leguminous lianas, were maintained in modified MS medium (KNO3 475 mg l−1, thiamine 1 mg l−1, biotin 1 mg l−1, calcium pantothenate 1 mg l−1) containing 0.1 mg l−1 2,4,5-trichloroacetic acid and 0.1 mg l−1 kinetin. Isoflavonoids (puerarin, genistin, daidzein, genistein) accumulation in cell suspension cultures was increased by 14-fold to ~12 mg l−1 after 48 h of adding 100 μM ethrel. Ethrel inhibitors (silver nitrate and silver thiosulfate) completely inhibited this effect in the presence of ethrel and isoflavonoids were not detected in the spent medium. The increase was dose dependent and can be explored to trigger high yield of isoflavonoids production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号