首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roseobacter is a dominant lineage in the marine environment. This group of bacteria is diverse in terms of both their phylogenetic composition and their physiological potential. Roseobacter denitrificans OCh114 is one of the most studied bacteria of the Roseobacter lineage. Recently, a lytic phage (RDJLΦ1) that infects this bacterium was isolated and a mutant strain (M1) of OCh114 that is resistant to RDJLΦ1 was also obtained. Here, we investigate the mechanisms supporting phage resistance of M1. Our results excluded the possibilities of several phage resistance mechanisms, including abortive infection, lysogeny, and the clustered regularly interspaced short palindromic repeats (CRISPRs) related mechanism. Adsorption kinetics assays revealed that adsorption inhibition might be a potential cause for the phage resistance of M1. Comparative proteomic analysis of M1 and OCh114 revealed significant changes in the membrane protein compliment of these bacteria. Five membrane proteins with important biological functions were significantly down-regulated in the phage-resistant M1. Meanwhile, several outer membrane porins with different modifications and an OmpA family domain protein were markedly up-regulated. We hypothesize that the down-regulated membrane proteins in M1 may serve as the potential phage receptors, whose absence prevented the adsorption of phage RDJLΦ1 to host cells and subsequent infection.  相似文献   

2.
Roseobacter denitrificans, previously named Erythrobacter species OCh 114, synthesized spheroidenone as a major carotenoid under aerobic dark conditions. When the dark-grown cells were subjected to illumination under anacrobic conditions, many unknown yellow pigments appeared and a considerable amount of spheroidenone disappeared. Absorption maxima of these pigments were blue-shifted from those of spheroidenone. The most abundant of the pigments was isolated, and its chemical structure was determined as 3,4-dihydrospheroidenone on spectroscopic and chemical evidence. Presumably, over-reduction of the photosynthetic apparatus interfered with normal photosynthetic electron transfer and resulted in photoreduction of C=C double bond at the 3,4-position of spheroidenone.  相似文献   

3.
Bacteriochlorophyll(Bchl)-protein complexes were isolated from obligate aerobic bacteria, Erythrobacter longus and Erythrobacter species OCh 114. The apparent molecular weights, absorption spectra and polypeptide compositions of the light-harvesting complexes were, in general, similar to those of the light-harvesting Bchl-protein complexes of purple photosynthetic bacteria. The reaction center complexes of these bacteria also showed similar properties to those of the purple bacteria except for slightly altered polypeptides. However, the following characteristic features of the light-harvesting systems were found in these aerobic bacteria. Major carotenoids were not bound to the Bchl-protein complex in E. longus. In Erythrobacter sp. OCh 114, a new type of Bchl-protein complex which showed a single absorption band in the near infrared region at 806 nm was obtained. The reaction center of strain OCh 114 was associated with a c-type cytochrome.Abbreviations Bchl bacteriochlorophyll a - RC reaction center - SDS sodium dodecylsulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

4.
Reversible photo-oxidation of cytochromes and reversible photobleachingof bacteriochlorophyll were observed in aerobically grown cellsof the aerobic heterotroph, the Erythrobacter species (OCh 114).Light inhibited O2-uptake by cells of this bacterium and Erythrobacterlongus (OCh 101). A vesicular structure of intracytoplasmicmembrane systems was observed in sections of aerobically growncells of OCh 114. These bacteria may be called aerobic photosyntheticbacteria (i.e., photosynthetic bacteria which can utilize lightenergy under aerobic conditions but not under anaerobic conditions). (Received September 9, 1981; Accepted December 2, 1981)  相似文献   

5.
A novel expression system was developed for the high level production of a labile protein in Escherichia coli. The regulatory signal of bacteriophage T4 uvsY gene was fused in frame with the coding region of human ventricular myosin alkali light chain (VLC1) gene. Expression from the regulatory signal was enhanced and continued in a lysis-inhibition state by infection with a cytosine-substituting T4 phage mutant. VLC1 protein was produced at a low level without infection because of its instability in the cells. Although the productivity was partly improved in a lon-deficient mutant without infection, it was improved about 100-fold with T4 phage infection. T4 phage produces protease inhibitor(s) (pin gene product) against proteases of host cell including the lon gene product (protease La).  相似文献   

6.
The effects of light on denitrifying activity during growthwere studied in an aerobic photosynthetic bacterium, Roseobacterdenitrificans (formerly Erythrobacter sp. OCh 114). When aerobicallygrown cells were transferred to anaerobic conditions in thepresence of nitrate, this bacterium exhibited denitrifying activity,with either succinate or malate serving as an electron donorin addition to endogenous substrates. The final product of denitrificationwas identified as nitrous oxide (N2O), a result that confirmsthe presence of nitrate and nitrite reductases, but not N2Oreductase, in these cells. Illumination during aerobic growthcaused a marked enhancement of the denitrifying activity. Theactivity increased with increasing intensity of light up to40 mW cm–2 and was over 20 times that in dark-grown cells.Enhancement of denitrifying activity in illuminated cells wasclosely related to increases in levels of components that areinvolved in the denitrifying pathway, namely, nitrate and nitritereductases. Development of a denitrifying system under aerobicconditions and the enhancement of denitrifying ability by lightin Roseobacter denitrificans are unique characteristics, unlikethose of other known denitrifying bacteria. (Received October 29, 1990; Accepted January 17, 1991)  相似文献   

7.
Bacteriophages attacking lactic acid bacteria (LAB) still represent a crucial problem in industrial dairy fermentations. The consequences of a phage infection against LAB can lead to fermentation delay, alteration of the product quality and, in most severe cases, the product loss. Phage particles enumeration and phage-host interactions are normally evaluated by conventional plaque count assays, but, in many cases, these methods can be unsuccessful. Bacteriophages of Lactobacillus helveticus, a LAB species widely used as dairy starter or probiotic cultures, are often unable to form lysis plaques, thus impairing their enumeration by plate assay. In this study, we used epifluorescence microscopy to enumerate L. helveticus phage particles from phage-infected cultures and Atomic Force Microscopy (AFM) to visualize both phages and bacteria during the different stages of the lytic cycle. Preliminary, we tested the sensitivity of phage counting by epifluorescence microscopy. To this end, phage particles of ΦAQ113, a lytic phage of L. helveticus isolated from a whey starter culture, were stained by SYBR Green I and enumerated by epifluorescence microscopy. Values obtained by the microscopic method were 10 times higher than plate counts, with a lowest sensitivity limit of ≥ 6 log phage/ml. The interaction of phage ΦAQ113 with its host cell L. helveticus Lh1405 was imaged by AFM after 0, 2 and 5 h from phage-host adsorption. The lytic cycle was followed by epifluorescence microscopy counting and the concomitant cell wall changes were visualized by AFM imaging. Our results showed that these two methods can be combined for a reliable phage enumeration and for studying phage and host morphology during infection processes, thus giving a complete overview of phage-host interactions in L. helveticus strains involved in dairy productions.  相似文献   

8.
9.

Background  

Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV) of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection.  相似文献   

10.

Background  

Salmonella enterica, a common food-borne bacterial pathogen, is believed to change its protein expression profile in the presence of different environmental stress such as that caused by the exposure to hydrogen peroxide (H2O2), which can be generated by phagocytes during infection and represents an important antibacterial mechanism of host cells. Among Salmonella proteins, the effectors of Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) are of particular interest since they are expressed during host infection in vivo and are important for invasion of epithelial cells and for replication in organs during systemic infection, respectively. However, the expression profiles of these proteins upon exposure to H2O2 or to host cells in vivo during the established phase of systemic infection have not been extensively studied.  相似文献   

11.
Recognition of the bacterial host and attachment to its surface are two critical steps in phage infection. Here we report the identification of Gp108 as the host receptor‐binding protein of the broad host‐range, virulent Listeria phage A511. The ligands for Gp108 were found to be N‐acetylglucosamine and rhamnose substituents of the wall teichoic acids of the bacterial cell wall. Transmission electron microscopy and immunogold‐labelling allowed us to create a model of the A511 baseplate in which Gp108 forms emanating short tail fibres. Data obtained for related phages, such as Staphylococcus phages ISP and Twort, demonstrate the evolutionary conservation of baseplate components and receptor‐binding proteins within the Spounavirinae subfamily, and contractile tail machineries in general. Our data reveal key elements in the infection process of large phages infecting Gram‐positive bacteria and generate insights into the complex adsorption process of phage A511 to its bacterial host.  相似文献   

12.
The Roseobacter clade of aerobic marine proteobacteria, which compose 10–25% of the total marine bacterial community, has been reported to fix CO2, although it has not been determined what pathway is involved. In this study, we report the first metabolic studies on carbohydrate utilization, CO2 assimilation, and amino acid biosynthesis in the phototrophic Roseobacter clade bacterium Roseobacter denitrificans OCh114. We develop a new minimal medium containing defined carbon source(s), in which the requirements of yeast extract reported previously for the growth of R. denitrificans can be replaced by vitamin B12 (cyanocobalamin). Tracer experiments were carried out in R. denitrificans grown in a newly developed minimal medium containing isotopically labeled pyruvate, glucose or bicarbonate as a single carbon source or in combination. Through measurements of 13C-isotopomer labeling patterns in protein-derived amino acids, gene expression profiles, and enzymatic activity assays, we report that: (1) R. denitrificans uses the anaplerotic pathways mainly via the malic enzyme to fix 10–15% of protein carbon from CO2; (2) R. denitrificans employs the Entner-Doudoroff (ED) pathway for carbohydrate metabolism and the non-oxidative pentose phosphate pathway for the biosynthesis of histidine, ATP, and coenzymes; (3) the Embden-Meyerhof-Parnas (EMP, glycolysis) pathway is not active and the enzymatic activity of 6-phosphofructokinase (PFK) cannot be detected in R. denitrificans; and (4) isoleucine can be synthesized from both threonine-dependent (20% total flux) and citramalate-dependent (80% total flux) pathways using pyruvate as the sole carbon source.  相似文献   

13.
14.
Leishmania is a protozoan parasite that resides and replicates in macrophages and causes leishmaniasis. The parasite alters the signaling cascade in host macrophages and evades the host machinery. Small G‐proteins are GTPases, grouped in 5 different families that play a crucial role in the regulation of cell proliferation, cell survival, apoptosis, intracellular trafficking, and transport. In particular, the Ras family of small G‐proteins has been identified to play a significant role in the cellular functions mentioned before. Here, we studied the differential expression of the most important small G‐proteins during Leishmania infection. We found major changes in the expression of different isoforms of Ras, mainly in N‐Ras. We observed that Leishmania donovani infection led to enhanced N‐Ras expression, whereas it inhibited K‐Ras and H‐Ras expression. Furthermore, an active N‐Ras pull‐down assay showed enhanced N‐Ras activity. L donovani infection also increased extracellular signal–regulated kinase 1/2 phosphorylation and simultaneously decreased p38 phosphorylation. In contrast, pharmacological inhibition of Ras led to reduction in the phosphorylation of extracellular signal–regulated kinase 1/2 and enhanced the phosphorylation of p38 in Leishmania‐infected cells, which could lead to increased interleukin‐12 expression and decreased interleukin‐10 expression. Indeed, farnesylthiosalicyclic acid (a Ras inhibitor), when used at the effective level in L donovani–infected macrophages, reduced amastigotes in the host macrophages. Thus, upregulated N‐Ras expression during L donovani infection could be a novel immune evasion strategy of Leishmania and would be a potential target for antileishmanial immunotherapy.  相似文献   

15.
Summary The survival of UV-irradiated cholera phage e5 was found to increase when the host cells, Vibrio cholerae MAK757, were exposed to a low dose of UV irradiation before phage infection (Weigle reactivation), indicating the existence of a UV-inducible DNA repair pathway (SOS repair) in V. cholerae MAK757. The induction signal generated by UV irradiation was transient in nature and lasted about 20–30 min at 37°C. Maximal weigle reactivation of the phage was obtained when the host cells were irradiated with a UV dose of 16 J/m2. V. cholerae MAK757 was also found to possess efficient photoreactivation and host cell reactivation of UV-damaged DNA in phage e5.  相似文献   

16.

This communication focuses on the efficacy of a specific lytic phage, phage F S1, as a control agent of Pseudomonas fluorescens biofilms. The effect of phage infection temperature and the host growth temperature were evaluated. The results obtained showed that the phage infection process was temperature dependent and that the optimum temperature of infection of planktonic cells and biofilms was 26°C. At this temperature, bacteriophage F S1, at a multiplicity of infection (MOI) of 0.5 infected both planktonic cells and biofilms causing a biomass reduction of about 85% in both cases.  相似文献   

17.
A bacterium which cleaves dimethylsulfoniopropionate (DMSP) to form dimethylsulfide (DMS) was isolated from surface Sargasso Sea water by a DMSP enrichment technique. The isolate, here designated LFR, is a Gram-negative, obligately aerobic, rod-shaped, carotenoid-containing bacterium with a DNA G+C content of 70%. Sequencing and comparison of its 16S ribosomal ribonucleic acid (rRNA) with that of known eubacteria revealed highest similarity (91% unrestricted sequence similarity) to Roseobacter denitrificans (formerly Erythrobacter species strain OCh114), an aerobic, bacteriochlorophyll-containing marine representative of the -Proteobacteria. However, physiological differences between the two bacteria, and the current lack of other characterized close relatives, preclude assignment of strain LFR to the Roseobacter genus. Screening of fifteen characterized marine bacteria revealed only one, Pseudomonas doudoroffii, capable of degrading DMSP to DMS. Strain LFR is deposited with the American Type Culture Collection (ATCC 51258) and 16S rRNA sequence data are available under GenBank accession number 15345.Contribution no. 8337 of the Woods Hole Oceanographic Institution  相似文献   

18.
Summary The gene expression of nine phages of the T7 group was compared after infection of Escherichia coli B(P1). With the exception of phage 13a which grew normally, all of them infected E. coli B(P1) abortively. Differences were found in the efficiency of host killing which ranged from 100% for phage 13a to 37% for phage A1122. Infection by T7 prevented colony formation by about 70% of the cells but they showed filamentous growth until about 2h after infection. It was shown by SDS-polyacrylamide gel electrophoresis and autoradiography of [35S]methionine-labelled phage-coded proteins that all phages except for 13a showed measurable expression only of the early genes. No correlation was observed between killing capacity and the pattern of gene expression, and the ability to hydrolyse S-adenosyl-methionine (SAM, a cofactor for the P1 restriction endonuclease) by means of a phage-coded SAMase. Mixed infection of E. coli B(P1) with 13a and T7 yielded mixed progeny indistinguishable from that observed after mixed infection of the normal host E. coli B. Genetic crosses with amber mutants of 13a and T7 showed that the 13a marker opo + (overcomes P one), required for growth on B(P1), is located in the early region, to the left of gene 1 (RNA polymerase gene).  相似文献   

19.
Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography‐tandem mass spectrometry (LC‐MS3) analysis. C. trachomatis (serovar D, MOI 1)–infected HeLa‐229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis–infected HeLa‐229 cells indicate complex host‐pathogen interactions at early phase of chlamydial infection.  相似文献   

20.
Cyanophages, that is, viruses infecting cyanobacteria, are a key component driving cyanobacterial community dynamics both ecologically and evolutionarily. In addition to reducing biomass and influencing the genetic diversity of their host populations, they can also have a wider community‐level impact due to the release of nutrients by phage‐induced cell lysis. In this study, we isolated and characterized a new cyanophage, a siphophage designated as vB_NpeS‐2AV2, capable of infecting the filamentous nitrogen fixing cyanobacterium Nodularia sp. AV2 with a lytic cycle between 12 and 18 hours. The role of the phage in the ecology of its host Nodularia and competitor Synechococcus was investigated in a set of microcosm experiments. Initially, phage‐induced cell lysis decreased the number of Nodularia cells in the cultures. However, around 18%–27% of the population was resistant against the phage infection. Nitrogen was released from the Nodularia cells as a consequence of phage activity, resulting in a seven‐fold increase in Synechococcus cell density. In conclusion, the presence of the cyanophage vB_NpeS‐2AV2 altered the ecological dynamics in the cyanobacterial community and induced evolutionary changes in the Nodularia population, causing the evolution from a population dominated by susceptible cells to a population dominated by resistant ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号