首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT

Eating behavior is controlled by the energy needs of the organism. The need to provide a constant supply of energy to tissues is a homeostatic drive that adjusts feeding behavior to the energetic condition of the organism. On the other hand, food intake also shows a circadian variation synchronized to the light-dark cycle and food availability. Thus, feeding is subjected to both homeostatic and circadian regulation mechanisms that determine the amount and timing of spontaneous food intake in normal conditions. In the present study we contrasted the influence of the homeostatic versus the chronostatic mechanisms on food intake in normal conditions and in response to fasting. A group of rats was subjected to food deprivation under two different temporal schemes. A constant-length 24-h food deprivation started at different times of day resulted in an increased compensatory intake. This compensatory response showed a circadian variation that resembled the rhythm of intake in non-deprived animals. When subjected to fasting periods of increasing length (24–66 h), the amount of compensatory feeding varied according to the time of day in which food was made available, being significantly less when the fast ended in the middle of the light phase or beginning of the dark phase. These oscillatory changes did not have a correlation with variations in the level of glucose or β-hydroxybutyrate in the blood. The results suggest that the mechanism of homeostatic compensation is modulated chronostatically, presumably as part of the alternation of catabolic and anabolic states matching the daily cycles of activity.  相似文献   

2.
Hibernators exhibit a robust circannual cycle of body mass gain and loss primarily mediated by food intake, but the pathways controlling food intake in these animals have not been fully elucidated. Ghrelin is an orexigenic hormone that increases feeding in all mammals studied so far, but has not until recently been studied in hibernators. In other mammals, ghrelin stimulates feeding through phosphorylation and activation of AMP-activated protein kinase (AMPK). Activation of AMPK phosphorylates and deactivates acetyl Co-A carboxylase (ACC), a committed step in fatty acid synthesis. In order to determine the effects of exogenous ghrelin on food intake and metabolic factors (i.e. non-esterified fatty acids (NEFAs), and hypothalamic AMPK and ACC) in hibernators, ghrelin was peripherally injected into ground squirrels in all four seasons. Changes in food intake and body mass were recorded over a 2-6 hour period post injections, and squirrels were euthanized. Brains and blood were removed, and Western blots were performed to determine changes in phosphorylation of hypothalamic AMPK and ACC. A colorimetric assay was used to determine changes in concentration of serum NEFAs. We found that food intake, body mass, and locomotor activity significantly increased with ghrelin injections versus saline-injected controls, even in animals injected during their aphagic winter season. Injected ghrelin was correlated with increased phosphorylation of AMPK, but didn't have an effect on ACC in winter. Ghrelin-injected animals also had increased levels of serum NEFAs compared with saline controls. This study is the first to show an effect of injected ghrelin on a hibernator.  相似文献   

3.
There are numerous reports about seasonal cycles on food intake in animals but information is limited in dogs and cats. A 4-year prospective, observational, cohort study was conducted to assess differences in food intake in 38 ad-libitum-fed adult colony cats, of various breeds, ages and genders. Individual food intake was recorded on a daily basis, and the mean daily intake for each calendar month was calculated. These data were compared with climatic data (temperature and daylight length) for the region in the South of France where the study was performed. Data were analysed using both conventional statistical methods and by modelling using artificial neural networks (ANN). Irrespective of year, an effect of month was evident on food intake (P<0.001), with three periods of broadly differing intake. Food intake was least in the summer months (e.g. June, to August), and greatest during the months of late autumn and winter (e.g. October to February), with intermediate intake in the spring (e.g. March to May) and early autumn (e.g. September). A seasonal effect on bodyweight was not recorded. Periods of peak and trough food intake coincided with peaks and troughs in both temperature and daylight length. In conclusion, average food intake in summer is approximately 15% less than food intake during the winter months, and is likely to be due to the effects of outside temperatures and differences in daylight length. This seasonal effect in food intake should be properly considered when estimating daily maintenance energy requirements in cats.  相似文献   

4.
A female with infant was chosen as material for study in an attempt to assess the nutritional condition of free ranging Japanese monkeys during winter. Her daily food composition, dry weight intake and nutritional (protein, lipid, carbohydrate, ash and calorie) intake were measured monthly (October to March). About 90% and 8% of the autumn diet consisted of fruits and invertebrate animals, respectively, while 70% of the winter diet (February) consisted of leaves of evergreen trees. Comparing the daily protein intake of this focal female with the requirement level estimated from references, only October and November represented months fulfilling this level. Also, there was a remarkable decrease in lipid intake towards winter. These results coincided well with the observed body weight loss in the female and the increasing feeding activity of her baby towards winter. It is suggested that such seasonal malnutrition of the mother might affect population parameters such as the infant mortality.  相似文献   

5.
Pancreatic enzyme levels in mammals are influenced by food intake and dietary composition. In this study, we examined the activity and expression of pancreatic amylase in a hibernating mammal, a natural model for long-term fasting. Pancreatic tissues were obtained from summer-active 13-lined ground squirrels and hibernating squirrels that had not eaten for at least 6 weeks. Amylase specific activity was reduced by approximately 50% in the torpid hibernators compared with summer squirrels, and immunoblot analysis revealed that amylase protein expression was reduced by approximately 40% in the hibernators. Similar reductions in amylase specific activity were observed in interbout euthermic hibernators. These results support a strong influence of food intake on pancreatic enzyme expression in hibernating mammals. The maintenance of basal levels of this key digestive enzyme at approximately 50% of summer values despite the extended winter fast likely facilitates the rapid resumption of digestive function after terminal arousal in the spring.  相似文献   

6.
An assessment of the daily activity rhythm of wild Japanese monkeys was tried both from the calculation of the proportion that each activity occupied in the total activities and the “nomadograph,” representing temporary change in the pace of the daily movement. Seasonal and day-to-day changes are recognized in the daily activity rhythm of the troop of wild Japanese monkeys. It seems that seasonal change in the daily activity rhythm corresponds to the seasonal fluctuation of food supply and atmospheric temperature. From autumn to early winter, when much food is available, a clear-cut pattern of activity emerges; namely, three intensive feeding periods are recognized in a day. Moreover, day-to-day variation in the activity rhythm is fairly small and the activity pattern thus becomes standardized. In winter, when least food is available, activity of monkeys drops to the lowest level of the year. Day-to-day variation in the activity rhythm is great. Two to four intensive feeding periods in a day are recognized. In early spring and summer, when food supply is rather scarce, there exist two to three intensive feeding periods in a day. During the heat of the day in summer, activity of monkeys is conspicuously low.  相似文献   

7.
The locomotor activity of Nereis virens Sars associated with food prospecting was investigated in response to photoperiod and season using an actograph. Experimental animals which had been reared under natural photoperiods were exposed to two constant photoperiodic treatments, LD 16:8 and LD 8:16, in both the autumn and winter and in the absence of tidal entrainment. Autocorrelation analysis of rhythmicity showed that during the autumn, animals under the LD 16:8 photoperiod displayed a strong nocturnal rhythm of activity, whereas animals under the LD 8:16 photoperiod showed only a weak nocturnal activity rhythm. This is believed to represent an autumn feeding cessation that is triggered when the animals pass through a critical photoperiod LD(crit) <12:>12. Later in the winter, however, animals exposed to both photoperiodic treatments showed strong rhythms of foraging activity irrespective of the imposed photoperiod. It is suggested that the autumn cessation may maximize the fitness of N. virens, a spring-breeding semelparous organism, by reducing risk during gamete maturation, while spontaneous resurgence of activity after the winter solstice permits animals that are not physiologically competent to spawn to accrue further metabolic reserves. This response is believed to be initiated by a seasonal (possibly circannual) endogenous oscillator or interval timer.  相似文献   

8.
赵志军  曹静  陈可新 《兽类学报》2014,34(2):149-157
为阐明小型哺乳动物体重和能量代谢的季节性变化以及生理调节机制,将黑线仓鼠驯化于自然环境下12个月,测定其体重、能量收支、身体组织器官和血清瘦素水平的季节性变化。黑线仓鼠能量摄入和支出的季节性变化显著,冬季摄入能、基础代谢率(BMR)、非颤抖性产热(NST)显著高于夏季。体重季节性变化不显著,但身体组织器官重量呈现显著的季节性变化,冬季肝脏、心脏、肾脏以及消化道重量显著高于夏季。体脂含量夏季最高,冬季最低,冬季显著低于夏、秋和春季(P <0.01)。血清瘦素水平的季节性变化显著,夏季瘦素水平比秋、冬季分别高88.2% 和52.4% (P <0.05)。结果表明,黑线仓鼠体重维持季节性稳定,与“调定点假说”的预测不同;但脂肪含量和血清瘦素季节性变化显著,符合该假说。夏季血清瘦素升高具有抑制能量摄入的作用,冬季血清瘦素可能是促进代谢产热的重要因子,瘦素对能量代谢和体重的调节作用与气候的季节性变化有关。    相似文献   

9.
Mammalian hibernators undergo dramatic seasonal changes of food intake and the use of their gastrointestinal tract. During several months of hibernation fat-storing hibernators do not use their intestinal tract for nutritional intake. However, during the rest of the year they have to increase their energy intake in order to compensate high reproductive investment and store sufficient body fat to survive the following hibernation period. Edible dormice (Glis glis) are obligate fat-storing hibernators which hibernate in Germany from September until June. Males incur high energetic costs during mating and as soon as reproduction is terminated they have to accumulate high quantities of fat to survive hibernation. In order to understand how fat-storing hibernators like edible dormice cope with these energetically demanding situations, we measured body mass changes of captured male edible dormice in the field and studied their feeding ecology. Furthermore, we measured seasonal changes in food ingestion and assimilation rates by feeding experiments carried out in captivity.Results of this study revealed that during the mating season males significantly lowered their body mass, while food ingestion and assimilation rates remained constant. The body mass reduction showed that they used their body fat reserves to pay at least part of the energetic costs of reproduction. During the pre-hibernation fattening period males increased their body mass but held their assimilation rates on a constant level. Nevertheless, they increased the amount of ingested food and subsequently the amount of energy intake. Furthermore, they changed their dietary spectrum in the field by turning to lipid-rich seeds. These behavioral adaptations enable them to restore their energy losses during reproduction and to accumulate sufficient body fat to survive hibernation.  相似文献   

10.
育肥完成后到冬眠前的阶段被认为是贮脂类冬眠动物从体温常态到冬眠之间的过渡阶段。为研究此阶段瘦素对能量平衡和体温调节的作用,将完成育肥的达乌尔黄鼠随机分成3组,分别在侧脑室植入微渗透泵,持续灌注瘦素(0.5μg/day)、瘦素拮抗剂(0.5μg/day瘦素+5μg/day瘦素拮抗剂)以及人工脑脊液(对照组),为期4周。为了检测瘦素对动物入眠的影响,我们在药物处理最后一周将动物移入低温(5 oC±1oC)、恒黑条件下诱导蛰眠。药物处理过程中测定动物体重、能量摄入、代谢率和体温,药物处理结束后测定身体脂肪重量、褐色脂肪组织中解偶联蛋白1(UCP1)含量以及血清中与能量平衡相关的激素水平。结果发现:育肥后达乌尔黄鼠能量摄入、体重和每日体温自发降低。低温条件下,对照组中50%个体自发进入冬眠状态。瘦素处理和瘦素拮抗剂处理对能量摄入和体重变化没有显著影响。瘦素处理对入眠率没有影响,瘦素拮抗剂处理减少蛰眠表达。瘦素拮抗剂组血清中T4水平高于瘦素处理组。育肥后期瘦素以及瘦素拮抗剂处理对脂肪重量、代谢率以及UCP1含量没有显著影响。结果表明,瘦素对育肥结束后达乌尔黄鼠的冬眠表达具有一定调节作用。  相似文献   

11.
The raccoon dog (Nyctereutes procyonoides, Canidae, Carnivora) is a middle-sized omnivore with excessive autumnal fattening and winter sleep. We studied seasonal weight regulation of the species by following the plasma leptin, ghrelin, and growth hormone (GH) levels of farm-bred raccoon dogs (n = 32) for 6 months. In August, half of the raccoon dogs received continuous-release melatonin implants, and in November, half of the animals of both the sham-operated and melatonin-treated groups were fasted for 2 months. In the autumn, the plasma leptin and GH levels were low, but the ghrelin levels were relatively high and correlated positively with energy intake. This represents the period of energy storage. Leptin and GH levels peaked simultaneously in late October, and melatonin advanced the peaks by 1 week. Thereafter, the levels rapidly declined, representing the transition period from autumnal anabolism to wintertime catabolism. In the winter, the leptin and GH levels rose to high levels, but the ghrelin-leptin ratio was very low. This is the period of winter sleep, with fat accumulated in the autumn as the principal metabolic fuel. In the winter, leptin, ghrelin, and GH may work in synergy to increase lipolysis. GH may also induce winter sleep to the raccoon dog. Fasting had no effect on the hormone levels, unlike in humans and rodents. Instead of the amount of fat in the body, the main regulators of the levels of these hormones in the raccoon dog are presumably seasonal rhythms entrained by melatonin.  相似文献   

12.
We examined the effects of hibernation and fasting on intestinal glucose and proline uptake rates of chuckwallas (Sauromalus obesus) and on the size of organs directly or indirectly related to digestion. These lizards show geographic variation in body size and growth rate that parallels an elevational gradient in our study area. At low elevation, food is available only for a short time during the spring; at high elevation, food may also be available during summer and autumn, depending on rainfall conditions in a given year. We hypothesized that low-elevation lizards with a short season of food availability would show more pronounced regulation of gut size and function than high-elevation lizards with prolonged or bimodal food availability. Hibernating lizards from both elevations had significantly lower uptake rates per milligram intestine for both nutrients, and lower small intestine mass, than active lizards. The combination of these two effects resulted in significantly lower total nutrient uptake in hibernating animals compared to active ones. The stomach, large intestine, and cecum showed lower masses in hibernators, but these results were not statistically significant. The heart, kidney, and liver showed no difference in mass between hibernating and nonhibernating animals. Lizards from low elevations with a short growing season also showed a greater increase in both uptake rates and small intestine mass from the hibernating to the active state, compared to those from high elevations with longer growing seasons. Thus, compared to those from long growing season areas, lizards from short growing season areas have equal uptake capacity during hibernation but much higher uptake capacity while active and feeding. This pattern of regulation of gut function may or may not be an adaptive response, but it is consistent with variation in life-history characteristics among populations. In areas with a short season, those lizards that can extract nutrients quickly and then reduce the gut will be favored; in areas where food may be available later in the year, those lizards that maintain an active gut would be favored. While other researchers have found much greater magnitudes of gut regulation when making comparisons among species, we find the different patterns of change in gut function between different populations of chuckwallas particularly intriguing because they occur within a single species.  相似文献   

13.
Seasonal variation in daily food intake is a well-documented phenomenon in many organisms including wild-type coho salmon where the appetite is noticeably reduced during periods of decreased day length and low water temperature. This reduction may in part be explained by altered production of cholecystokinin (CCK) and growth hormone (GH). CCK is a hormone produced in the brain and gut that mediates a feeling of satiety and thus has an inhibitory effect on food intake and foraging behaviour. Growth hormone (GH) enhances feeding behaviour and consequently growth, but its production is reduced during winter. The objectives of this study were: first, to compare the seasonal feeding behaviour of wild and GH-transgenic coho salmon; second, to determine the behavioural effect of blocking the action of CCK (by using devazepide) on the seasonal food intake; and third, to measure CCK expression in brain and gut tissues between the two genotypes across seasons. We found that, in contrast to wild salmon, food intake in transgenic salmon was not reduced during winter indicating that seasonal control of appetite regulation has been disrupted by constitutive production of GH in transgenic animals. Blocking of CCK increased food intake in both genotypes in all seasons. The increase was stronger in wild genotypes than transgenic fish; however blocking CCK in wild-type fish in winter did not elevate appetites to levels observed in the summer. The response to devazepide was generally faster in transgenic than in wild salmon with more rapid effects observed during summer than during winter, possibly due to a higher temperature in summer. Overall, a seasonal effect on CCK mRNA levels was observed in telencephalon with levels during winter being higher compared to the summer in wild fish, but with no seasonal effect in transgenic fish. No differences in seasonal CCK expression were found in hypothalamus. Higher levels of CCK were detected in the gut of both genotypes in winter compared to summer. Thus, CCK appears to mediate food intake among seasons in both wild-type and GH-transgenic salmon, and an altered CCK regulation may be responsible at least in part for the seasonal regulation of food intake.  相似文献   

14.
Heterothermic mammals increase the proportion of polyunsaturated fatty acids (PUFA) in their body fats prior to entering torpor. Because PUFA have low melting points, it is thought that they play an important role in maintaining the fluidity of depot fats and membrane phospholipids at low body temperatures. However, PUFA are more prone to autoxidation when exposed to reactive oxygen species (ROS) during torpor and during the periodic arousals that characterize hibernation. A lack of PUFA or an excess of PUFA may constrain the use of torpor by heterothermic mammals. We performed a mixed model meta-analysis of 17 controlled-feeding studies to test the effect of dietary PUFA on the depth and expression of torpor by daily heterotherms and hibernators. We also reviewed the literature on the PUFA content of the diet and depot fats of heterothermic mammals to address two principal topics: (1) Do low dietary levels of PUFA reduce the expression of torpor under laboratory conditions and, if so, are free-ranging animals constrained by a lack of PUFA? (2) Do high dietary levels of PUFA result in a reduction in the use, depth, and duration of torpor and, if so, do free-ranging animals seek to optimize rather than maximize PUFA intake? Low-PUFA diets consistently increase the lower setpoint for body temperature and minimum metabolic rate for both hibernators and daily heterotherms. Above the lower setpoint, low-PUFA diets usually increase body temperature and metabolic rate and decrease the duration of torpor bouts and this effect is similar for hibernators and daily heterotherms. Free-ranging rodent hibernators have dietary PUFA intakes that are far higher than those of the low-PUFA diets offered in controlled-feeding experiments, so these hibernators may never experience the constraints associated with a lack of PUFA. Diets of free-ranging insectivorous bats and echidnas have PUFA levels that are less than half as high as those offered in experimental low-PUFA diets, yet they exhibit deep and extended bouts of torpor. We argue that alternate mechanisms exist for maintaining the fluidity of body fats and that high-PUFA intake may not be a prerequisite for deep and extended bouts of torpor. Four studies indicate that animals that were fed high-PUFA diets are reluctant to enter torpor and show shallower and shorter torpor bouts. Although authors attribute this response to autoxidation, these animals did not have a higher PUFA content in their depot fats than animals where PUFA was shown to enhance torpor. We suggest that these contradictory results indicate inter-specific or inter-individual variation in the ability to control ROS and limit autoxidation of PUFA. High dietary levels of PUFA will constrain the expression of torpor only when the oxidative challenge exceeds the capacity of the antioxidant defence system. Studies of diet selection indicate that insectivorous species with low dietary PUFA levels seek to maximize PUFA intake. However, herbivorous species that have access to plants and plant parts of high-PUFA content do not appear to maximize PUFA intake. These data suggest that animals attempt to optimize rather than maximize PUFA intake. The effect of PUFA should be viewed in the light of a cost-benefit trade-off, where the benefit of high-PUFA intake is an easier access to low body temperatures and the cost is increased risk of autoxidation.  相似文献   

15.
The objective of this work was to study the effect of early weaning on circadian rhythm and the behavioral satiety sequence in adult rats. Male Wistar rat pups were weaned for separation from the mother at 15 (D15), 21 (D21) and 30 (D30) days old. Body weight and food intake was measured every 30 days until pups were 150 days old. At 90 days of age, the circadian rhythm of food intake was evaluated every 4 h for three days. Behavioral satiety was evaluated at 35 and 100 days of age. This work demonstrated that body weight and food intake were not altered, but the behavioral satiety sequence demonstrated that the D15 group delayed satiety compared with the D30 group at 100 days of age. In the circadian rhythm of the food intake study, early weaning (D15) changed food intake in the intermediary period of the light phase and in the intermediary period of the dark phase. In conclusion, our study showed that early weaning may alter the feeding behavior mainly in relation to satiety and the circadian rhythm of feeding. It is possible that the presence of other environmental stimuli during early weaning can cause hyperphagia and deregulate the mechanisms of homeostasis and body weight control. This study supports theories that depict insults during early life as determinants of chronic diseases.  相似文献   

16.
Abstract

Neonatal treatment with monosodium glutamate (MSG) results in a substantial degeneration of the inner layer of the retina and a decreased diameter of the optic nerves. Nevertheless, MSG‐treated animals entrain and re‐entrain to a light dark cycle. The question arises whether MSG selectively destroys the optic pathways which are involved in vision but not the retinohypothalamic trart that mediates entrainment. In these experiments not only entrainment and re‐entrainment of the circadian food intake rhythm of MSG‐treated rats was investigated but also the freerunning period under continuous bright and dim light It appears that MSG‐treated rats have shorter freerunning periods under continuous illumination than controls. Therefore, these results suggest that also those pathways involved in entrainment of the circadian food intake rhythm are affected by neonatal treatment with MSG.  相似文献   

17.
ABSTRACT

Ecological artificial light at night (ALAN) has been increasingly associated with negative effects on the behavior and ecology of wild birds. However, the impacts of short-term bright ALAN on the temporal biology of companion animals and the underlying mediating mechanism are unknown. We evaluated impacts of 1X60-min/middle night ALAN (200 lux, λDominant = 460 nm) nightly with or without melatonin administration on growth performance, reproductive capacity, food and water intake, and stress responses in Australian budgerigars (Melopsittacus undulatus) under captivity. 36 birds were housed in pairs under natural photoperiod and were equally divided into three groups: control, natural conditions; ALAN, control + ALAN; and melatonin, ALAN + melatonin in the drinking water during the dark period. Birds were regularly monitored for body mass, egg production, and hatchability over four months. Food intake, water consumption, and daily rhythm of fecal corticosterone were also evaluated. ALAN increased mass gain, food intake, water consumption, and drastically decreased reproductive capacity, whereas stress responses were markedly augmented. Melatonin restored food and water intake to control levels but partly reversed mass gain. Melatonin failed to ameliorate the impaired reproductive capacity despite reducing the stress responses to basal levels. These results suggest that the ALAN-induced negative impacts cannot be attributed solely to direct effects of melatonin suppression or/and exacerbated stress responses and the involvement of other photoperiodic pathway components warrant further studies. Finally, the results of our study may be of importance for improving the housing conditions of companion animals at least as concern bright ALAN exposures.  相似文献   

18.
For temperate endotherms (i.e., mammals and birds) energy costs are highest during winter but food availability is lowest and many mammals depend on hibernation as a result. Hibernation is made up of energy-saving torpor bouts [periods of controlled reduction in body temperature (T b)], which are interrupted by brief periodic arousals to normothermic T b. What triggers these arousals in free-ranging hibernators is not well understood. Some temperate bats with intermittent access to flying insects during winter synchronize arousals with sunset, which suggests that, in some species, feeding opportunities influence arousal timing. We tested whether hibernating bats from a cold climate without access to food during winter also maintain a circadian rhythm for arousals or whether cues from conspecifics in the same cluster are more important. We used temperature telemetry to monitor skin temperature (T sk) of free-ranging little brown bats (Myotis lucifugus) hibernating in central Manitoba, Canada, where temperatures from 22 October to 22 March were too cold for flying insects. We found no evidence bats synchronized arousals with photoperiod but they did arouse synchronously with other bats in the same cluster. Thus, in the northern part of their range where flying insects are almost never available during winter, little brown bats exhibit no circadian pattern to arousals. Warming synchronously with others could reduce the energetic costs of arousal for individuals or could reflect disturbance of torpid bats by cluster-mates.  相似文献   

19.
The food of emus     
The results of a study of the food of emus, Dromaius novaehollandiae, in inland Western Australia show that they feed on a great variety of fruits, seeds, flowers, insects and green herbage of annual and perennial plants. Shrubs provide most of the food in spring and autumn (September to March), annuals in the autumn and winter (April to August) and insects are taken whenever they occur in abundance, usually in autumn and spring. Although shrubs provide a reliable supply of food in summer, annuals often produce little in the autumn and winter so that emus would have to move extensively to keep in contact with a supply of food. Records from other parts of Australia indicate that the type of food eaten by emus is similar throughout the continent, but the precise species eaten varies from time to time and place to place. Some incidental observations on characteristics of the digestive system of emus are reported. Large quantities of mineral material are carried in the gizzard and individual items may be retained for 3 or 4 months. The acidity of the anterior sections of the gut make bacterial action unlikely. The crude form of copography has been observed. Some food passes through the gut in 3h but other material from the same intake may be retained for at least 48 h. The emu's diet is nutrient-rich, but only a catholic taste and great mobility ensure that it is able to find a continuous supply of food.  相似文献   

20.
《Flora》2006,201(2):135-143
The effects of time of seed maturation and dry seed storage and of light and temperature requirements during seed incubation on final germination percentage and germination rate were assessed for the invasive shrub Prosopis juliflora (Sw.) D.C., grown under desert environmental conditions of the United Arab Emirates (UAE). Seeds were collected from Fujira on the northern coast of the UAE at different times during the growing seasons (autumn, winter and spring) and were germinated immediately and after 8 months of dry storage under room temperature (20±3 °C). Seeds were germinated at three temperatures (15, 25 and 40 °C) in both continuous light and darkness. The results showed significant effects for time of seed collection, seed storage, light and temperature of seed incubation and many of their interactions on both germination percentage and rate. Fresh seeds matured during autumn and winter germinated significantly greater at 40 °C and in light than at lower temperatures and in dark. Storage significantly increased germination percentage and rate; the increase was greater for seeds matured during winter than for seeds matured during spring. This indicates that dormancy breakage was greater in seeds of winter than seeds of spring. The need for high temperature to achieve greater germination was significantly reduced after seed storage, especially for seeds matured in autumn and winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号