首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies showed that different amygdaloid nuclei are involved in the control of lordosis behavior in female rats. The objective of the present study was to determine whether these nuclei played a role in the control of lordosis behavior in the male rat. Lesions were placed into different amygdaloid nuclei in male rats castrated as adults and primed with ovarian hormones. Lesions in the corticomedial amygdaloid nucleus completely suppressed lordosis behavior as expressed by the number of animals displaying lordosis responses to male mounts. By contrast extended lesions placed into the lateral amygdaloid nucleus (LN) remained without effects. Lesions placed in the very posterior part of the LN produced "hypersexuality" with a rise in the number of animals displaying lordosis responses and high LQ values. Lesions in the anterior part of the LN induced a decrease in the number of animals showing lordosis responses. The amygdala was then concluded to represent a functionally heterogeneous structure with different regions exerting opposite effects on the display of lordosis behavior in the male rat.  相似文献   

2.
The aim of this study was to determine if the display of lordosis behavior in the male rat could be influenced by the olfactory environment. Unexperienced adult male rats were orchidectomized (ORCH). They were primed with 75 μg estradiol benzoate and 1 mg progesterone was injected at an interval of 39 hr following long-term (LT = 3 weeks) or short-term (SHT = 8 hr 30 min) exposure to the odor of male or female urine. For 10 min they were placed in the presence of a “stimulus” male of proven sexual vigor 9 hr 30 min ± 1 hr after progesterone injection. Both LT and SHT exposure to the odor of male urine caused a significant increase in the number of ORCH rats which showed lordosis response to male mounts compared to either the ORCH rats exposed to the odor of female urine or to the controls. Following complete olfactory bulb removal (COBR), no difference was observed in the occurrence of lordosis behavior between the ORCH rats whether or not exposed to the odor of urine. For the ORCH-COBR rats exposed to male urine the proportion of animals responding to mounts did not differ from that of their nonbulbectomized counterparts. In comparing the effects of COBR vs anterior olfactory bulb removal (AOBR) lordosis behavior occurred more frequently in COBR than in AOBR-ORCH rats. The lordosis quotient (LQ) was not affected by exposure to the odor of male urine in the nonbulbectomized ORCH rats. In contrast, it appeared to be higher in both COBR and AOBR animals than in their nonbulbectomized counterparts. The olfactory bulbs were then concluded to inhibit the display of lordosis behavior in the male rat. It was also thought that the olfactory stimuli originating from male urine were capable of releasing the hypothalamic structures involved in the control of lordosis behavior of the male rat from an olfactory inhibitory influence.  相似文献   

3.
The aim of this study was to investigate the olfactory mechanisms regulating the display of lordosis behavior in intact Wistar male rats bred in our colony. Gonadally intact males show a low capacity to respond by lordosis to male mounts and were insensitive to manipulations of the olfactory system (exposure to the odor of male urine or accessory bulb removal (AOBR)) which have been previously shown to facilitate the display of lordosis behavior in orchidectomized animals primed with ovarian hormones. Treatment with either estradiol benzoate (EB) or EB and progesterone (P) consecutively did not render these gonadally intact animals sensitive to the effects of AOBR. By contrast exposure to male urine was capable of facilitating the display of lordosis behavior in intact male rats given EB + P consecutively. These results are discussed in the light of previous findings showing that (1) two inhibitory structures, the accessory olfactory bulb and the septal and preoptic areas, are involved in the control of lordosis behavior in the male rat; (2) the effects of olfactory cues on the display of lordosis behavior are dependent on the action of both EB and P in orchidectomized animals.  相似文献   

4.
The purpose of this study was to determine whether the effects of estrogen on lordosis behavior in the male rat were related to the number of progesterone (P) receptors in the mediobasal hypothalamus (MBH) and/or dependent on blood P concentration. Two groups of gonadally intact male rats were given five successive doses of 1.0 or 2.5 micrograms estradiol benzoate (EB) and tested for lordosis behavior with a male stimulus at the end of the treatment. One month later they were again injected with EB and sacrificed under the same temporal schedule, but they were not tested for lordosis so as to prevent any emotionally stressful effects of intermale cohabitation. The males given 2.5 micrograms EB more frequently displayed lordosis responses to male mounts than those receiving 1 microgram EB, with a parallel increase in the number of MBH P receptors. The total number of MBH P receptors also appeared to be higher in the animals that displayed lordosis responses (lordosis group) than in those which did not (no lordosis group). In contrast, the display of lordosis behavior was negatively correlated with blood P concentration. Comparing MBH P receptors and blood P values in the EB treated and in nonhormonally treated gonadally intact animals which had been selected for either ability or inability to spontaneously display lordosis behavior, we observed that (1) EB was capable of increasing the number of MBH P receptors in the male rat; and (2) in the absence of EB treatment blood P values were higher in the animals showing lordosis than in those which did not. These data are discussed with respect to observations made in castrated male rats and in ovariectomized females.  相似文献   

5.
Two brain areas behaviorally responsive to progesterone (P) were examined to determine their possible involvement in the control of rat preceptive behavior, i.e., solicitation behavior directed at the male. Progesterone implants were placed in the habenular nuclei and the interpeduncular nucleus-ventral tegmental area of the midbrain reticular formation (MRF). Different testing procedures and levels of priming with estradiol benzoate (EB) were used in order to distinguish the effects of P in either region on proceptive and receptive behavior during exposure to 10 mounts by stimulus males. To test for receptivity, sexually experienced 60-day-old ovariectomized (ovx) rats bearing stereotaxically placed guide cannulas extending to the habenula or MRF were given 10 μg EB subcutaneously. Forty-eight hours later, lordosis quotient (LQ) was determined. Immediately following this test, each animal was implanted with cholesterol (C) or P and was retested 2 hr later. Treatments for the proceptivity test were similar except that the animals received 2.5 μg EB/100 g body wt sc for 7 days before testing on the eighth day; LQ as well as hopping, darting, and ear wiggling were scored. In the receptivity test, P implantation in both the medial portions of the habenula and the MRF significantly increased lordosis above the levels found both in their preimplantation tests and following control implantation of C. Little proceptivity was observed. In the proceptivity test, P implants in both regions also significantly increased proceptive behavior above both types of control tests. All animals were highly receptive, and there was no difference in LQ among the groups. There was no increase of plasma P levels in similarly implanted animals during a 24-hr monitoring period, indicating that systemic leakage of the hormone was not responsible for the observed behavior. The data indicate that both the habenula and MRF are P-sensitive regions. Progesterone's action on the two areas facilitates expression of both proceptive and receptive components of female sexual behavior, indicating that the neural regulation of the two kinds of behavior is integrated at these levels.  相似文献   

6.
Spayed female rats were given bilateral septal lesions or a sham operation and 3 wk later tested for hormone-induced female sexual behavior. When primed with 0.5, 1.0, or 2.0 μg of estradiol benzoate (EB) per day for 3 days and tested for lordosis behavior on the fourth day, animals with septal lesions showed a positive dose-related increase in mean lordosis quotient (LQ), whereas control animals showed a low mean LQ for all doses of EB. After priming with a low dose of EB (0.5 μg/day for 3 days), progesterone administration prior to behavior testing on day 4 produced a comparable facilitation in LQ for both septal-lesioned and sham-operated animals. When treated for 3 days with either 50 or 150 μg of testosterone propionate (TP) and given progesterone prior to behavior testing on day 4, female rats with septal lesions showed a higher mean LQ than sham-operated rats. Thus, septal lesions increase the behavioral sensitivity of female rats to both EB and TP as measured by female sexual behavior, but do not appear to alter the responsiveness of animals to progesterone.  相似文献   

7.
Male rats castrated as adults were given successive doses of estradiol benzoate (EB) combined or not, with dexamethasone (DEXA) at the end of estrogen treatment. Two experiments were done to determine if progesterone (P) of adrenocortical origin was involved in the display of lordosis behavior under these experimental circumstances. There was a significant rise in blood P concentration in animals given 0.5 and 1.0 microgram EB when compared with oil-control injected animals, an effect which was completely suppressed by DEXA treatment. An increase in the proportion of estrogen treated animals displaying lordosis responses to male mounts was found with increasing doses of EB and paralleled the effects of EB on P adrenocortical secretion. However, the number of feminized animals given 1 microgram EB + DEXA was reduced to the level corresponding to the effects of 0.5 microgram EB on lordosis behavior. These data show that the secretion of P by the adrenals is involved in the expression of lordosis behavior in castrated male rats primed with repeated doses of estrogen.  相似文献   

8.
In order to examine a possible role of adrenaline (AD) or noradrenaline (NA) in the control of lordosis behavior, lordosis quotient (LQ) was observed daily for 8 consecutive days in the ovariectomized rat given daily 1 or 2 microgram/0.1 ml oil of estradiol benzoate (EB) alone or together with 100 microgram/0.1 ml saline of AD or NA. AD but not NA treated together with EB caused a greater change in the daily LQ than the same dose of EB alone and the change in the daily LQ by daily treatment with both 1 microgram EB and 100 microgram AD was equivalent to that by daily treatment with 2 microgram EB alone. A half mg progesterone (P) could induce the lordosis behavior in the ovariectomized rat treated 48 hr prior with both 1 microgram EB and 50 or 100 microgram AD, but not in the one treated with 1 microgram EB alone. While 50, 100 or 200 microgram NA or 10 microgram AD had no effect, 50 or 100 microgram AD pretreated together with 2 microgram EB produced a markedly higher LQ after P than 2 microgram EB alone in the ovariectomized rat. This effect of AD on the induction of lordosis behavior was produced only when AD was pretreated simultaneously with EB and AD priming 24 or 43 hr after EB failed to elicit the effect. Therefore, it is suggested that a change of the brain target site in the estrogen sensitivity produced by AD plays a part in the control of lordosis behavior.  相似文献   

9.
Orchidectomized rats were given estrogen and progesterone and tested for feminine behavior in the presence of a mounting male after accessory olfactory bulb removal (AOBR). Complete AOBR caused a rise in the number of estrogen-progesterone-treated male rats responding by lordosis behavior to male mounts as compared to controls and sham-operated animals. By contrast, LQ scores did not appear to differ in these three groups of animals. The results are discussed in terms of involvement of the main and the accessory olfactory systems in the regulation of feminine behavior in the male rat.  相似文献   

10.
The purpose of this study was to determine whether facilitory effects exerted by olfactory cues on lordosis behavior in the male rat involved changes in estradiol receptors at the hypothalamic level. Male rats were orchidectomized as adults. They were given either 25 micrograms estradiol benzoate (EB) alone or 25 micrograms EB and 100 micrograms progesterone (P) sequentially and exposed or not to the odor of male urine. Some of them were tested for lordosis behavior at 8 h after P. The other ones were killed 4 h after P and used for estradiol (E2) and P receptor assay in mediobasal hypothalamus (MBH). Olfactory cues were shown to increase the number of E2 receptors in both the animals given EB or EB + P. Progesterone as such appeared to be capable of increasing the number and the rate of occupancy of E2 receptors. A population of constitutive and estrogen-inducible P receptors was detected in the MBH. Since only the animals given EB + P were shown to be sensible to the facilitory effects of male urine on lordosis behavior, it may be assumed that E2 and P on one hand and olfactory cues on the other exert cumulative effects at the level of the MBH and that both a high level and a high rate of occupancy of E2 receptors are necessary for the olfactory cues to facilitate the display of lordosis behavior in the male rat.  相似文献   

11.
It has been shown previously that intracerebral actinomycin-D (Act-D) pellets inhibit estrogen facilitated female sexual behavior, but it was not possible to test the reversibility of this effect. In the present study an attempt was made to distinguish between the possible temporary interruption by Act-D of the biochemical action of estrogen which facilitates sexual receptivity and permanent toxic effects of the drug. Act-D in saline was infused into the third ventricle or the preoptic area (POA) to determine whether a reversible suppression of sexual behavior as measured by the lordosis quotient (LQ) could be produced. Ovariectomized rats were implanted with midline guide tubes entering the third ventricle (eight rats) or with bilateral tubes extending to the corpus callosum above the POA (67 rats). Each animal served as its own control since pretest and Act-D and recovery tests were performed 10–14 days apart in most subjects. For each behavioral test implanted subjects were primed with 3μg estradiol benzoate (EB) and 0.5 mg progesterone (P) 48 hr later. Behavioral tests, each involving 50 mounts, were performed 4–6 hr after P. Following the pretest the animals were retested under experimental conditions. Inner cannulae were inserted into the POA through the guide tubes and 0.11 μg Act-D infused 24 or 12 hr before, simultaneously with, or 6, 12, 18, or 26 hr after EB. A recovery test was performed 10–14 days later with no intracerebral infusion. The control procedure (infusion of of saline either simultaneously with or 12 hr after EB) did not alter the LQ. Act-D infusion produced a reversible suppression of lordosis which was dependent upon the time of administration of Act-D. Intraventricular infusion of Act-D 6 hr after EB reversibly inhibited lordosis behavior and no lesions were produced. Act-D infused into the POA simultaneously with EB or 6 hr later reversibly suppressed the LQ. In the 6 hr group, for example, the LQ fell from 78.3 to 35.7, but 10–14 days later reached 74.3. Although brain lesions of varying extent were produced by Act-D, the marked but reversible suppression of lordosis behavior is consistent with the view that Act-D inhibits estrogen facilitation of lordosis behavior by means of a biochemical rather than cytotoxic action.  相似文献   

12.
Antiestrogens were used to test the hypothesis that estrogen exerts a “maintenance,” as well as a “priming,” effect on rat and hamster sexual receptivity as it apparently does for guinea pigs. MER-25 (75 or 150 mg/kg) significantly reduced rat LQ when given ?2 hr or 8 hr after EB injection. MER-25 given at 34 hr (2 hr prior to P) failed to diminish rat LQ. With hamsters, MER-25 in large doses (750 mg/kg) given either at ?2 hr or 34 hr reduced lordosis duration to 40% of controls, but this effect was confounded by severe illness among the MER-25 injected animals. Lower doses failed to block behavior, but still produced some toxicity. CI 628 (50 mg/kg) greatly reduced hamster lordosis duration and increased lordosis latency when given 0 hr, but not 34 hr, after EB. The results are consistent with similar previous work on rats and do not support the concept of estrogen “maintenance” in either rats or hamsters.  相似文献   

13.
The progestin receptor antagonist RU 38486 (henceforth referred to as RU 486) was tested for facilitative effects on female receptive behavior in ovariectomized Long-Evans rats primed with 2 micrograms estradiol benzoate (EB). RU 486 (0, 0.5, 1.6, or 5.0 mg) was administered 48 hr after estrogen priming. The lordosis quotient (LQ) and lordosis score (LS) were assessed 4 hr after RU 486 administration in a standardized test consisting of a 10-mount test by a stimulus male. A significant dose effect was found by both LQ and LS, with those subjects receiving 5 mg of RU 486 being significantly more receptive than vehicle control animals. Thus RU 486 acted as a weak progestin agonist under testing conditions typical for assessment of progestin facilitation of female sexual behavior in rats. Low levels of proceptive behavior (hops and darts) were seen in a minority of the tests, and did not vary systematically as a function of the dose of RU 486 administered. We also examined the effects of RU 486 given before progesterone (P) on receptivity in a blocking paradigm and confirmed previous reports that the antagonist significantly attenuates facilitation of sexual behavior when given in combination with P. A progestin receptor assay of the cytosols of the hypothalamus-preoptic area in estrogen-primed female rats treated with 5 mg RU 486 revealed a significantly greater depletion of available cytosolic P receptors than when rats were treated with a similarly facilitating dose of P (100 micrograms). The results suggest a possible dual mode of action for RU 486--a weak, receptor-mediated agonistic effect on sexual behavior when given alone to estrogen-primed rats, and a competitive blocking effect on receptivity when administered with P.  相似文献   

14.
Although destruction of the septal region markedly facilitates the lordosis behavior of female rats in response to estrogen priming, comparable lesions were found to be ineffective in facilitating the lordotic behavior of estrogen primed male rats. Neither the age at the time of septal destruction nor castration influenced the lordosis behavior of males. However, if prepubertal castrated males were given subcutaneous ovarian grafts or injected daily with 2 μgm estradiol benzoate (EB) during the 30 day period following septal destruction, a prolonged facilitation of the activational effects of EB on lordosis behavior was observed. Male rats subjected to septal destruction alone, chronic exposure to EB alone, exposure to ovarian grafts for 30 days prior to septal destruction, or chronic treatment with EB started 6 mo after septal lesioning, failed to show an increase in behavioral responsiveness to estrogen. Thus, in order for septal lesions to facilitate lordosis behavior of male rats, exposure to EB or ovarian tissue must occur within an apparent critical period following septal destruction. Adult male rats were found to be more responsive to this interaction of septal lesions and EB exposure than pubertal animals. It is suggested that the prolonged facilitation of lordosis behavior which follows septal destruction and estrogen exposure in the male rat may be due to hormonal modifications of the recovery process following brain damage.  相似文献   

15.
The effect of ACTH and various related analogs on lordosis behavior in female rats was compared with that produced by α-MSH. Ovariectomized rats received 2 μg estradiol benzoate on Day 1 and Day 3 either 0.1 or 0.2 mg progesterone. Four hours later the females were placed with sexually experienced male rats and the lordosis quotient (LQ) noted. These particular doses of progesterone were chosen because they were sub-maximal and produced a proportion of both nonreceptive (LQ less than 50%) and receptive (LQ greater than 50%) rats. Treatment with 20 μg α-MSH on Day 2 stimulated lordosis in nonreceptive rats but inhibited lordosis in the receptive rats.Of the other peptides tested only ACTH4–10 was as effective as α-MSH in facilitating and inhibiting lordosis behavior. ACTH1–24 and ACTH4–9 also produced both effects. ACTH1–39 and ACTH1–16, on the other hand, had neither effect but were both effective in stimulating and inhibiting lordosis when administered on Days 1, 2 and 3. It is suggested that ACTH4–10 may contain the essential sequence for these facilitatory and inhibitory effects on female sexual receptivity and that elongation of the peptide chain beyond ACTH 1–13 (α-MSH) may decrease this activity.  相似文献   

16.
Sexually inexperienced male Wistar rats (strain WI in our colony) known to very infrequently display spontaneous lordosis behavior (Schaeffer et al., 1990b) were used. A first group was tested four times at 5-day intervals for lordosis with vigorous stimulus males (heterotypic sexual behavior), immediately following testing for masculine sexual activity with highly receptive females (homotypic sexual behavior). A small number of animals displayed lordosis during the first test, but more and more animals displayed this behavior from the first to the fourth test. There was no relationship between the degree of masculine sexual activity--intromission without ejaculation or ejaculation--and the occurrence of lordosis behavior. A second group was tested only once for both masculine sexual activity and lordosis behavior as above and afterwards three times at 5-day intervals for lordosis behavior in the absence of any previous testing for masculine sexual activity. A few animals displayed lordosis during their first test. As compared to the first group, the animals which had not displayed lordosis in the first test never showed lordosis responses in the following tests. It is concluded that both homotypic and heterotypic sexual interactions are required for the display of lordosis behavior in the strain of Wistar rats used in this study.  相似文献   

17.
In addition to displaying proceptive (hopping and darting) and receptive (lordosis) behaviors during a sexual encounter with a male, female rodents will regulate the timing of the encounter by engaging in a series of approaches and withdrawals from the male, a behavior termed paced mating behavior. Proceptive, receptive, and paced mating behaviors are all regulated by, and sensitive to, estrogen and progesterone, suggesting that compounds capable of disrupting these critical hormones may also perturb the display of female sexual behavior. The present experiments examined the impact of the selective estrogen receptor modulator (SERM) tamoxifen and a popular soy phytoestrogen dietary supplement on female sexual behavior in rats. Ovariectomized female rats were given either tamoxifen (TAMOX) by implant or the soy supplement through the diet then injected with estradiol benzoate (EB, 10 microg) or oil followed 48 h later with an injection of progesterone (P, 500 microg). Animals were then tested for sexual behavior 4 h after the P injection. Neither compound had any effect on sexual behavior when administered in conjunction with P alone; however, both significantly diminished receptive behavior, as measured by the lordosis quotient (LQ), in animals primed with both EB and P. Similarly, the hopping and darting rate was also significantly depressed in both the soy- and TAMOX-treated animals, compared to the EB- and P-treated controls, with the soy-treated animals showing significantly less proceptive behavior than the TAMOX-treated animals. Finally, soy but not TAMOX significantly attenuated paced mating behavior in animals compared to the EB- and P-treated controls. These results demonstrate that both the soy supplement and TAMOX act as estrogen antagonists on both proceptive and receptive behavior in female rats.  相似文献   

18.
Four experiments were performed in order to evaluate further the hypothesis that androgen must be aromatized to estrogen for the activation of masculine sexual behavior in the male rat. In Experiment 1 it was found that the anti-estrogen MER-25 failed to disrupt mounting behavior in castrated males which simultaneously received testosterone propionate (TP). However, in Experiment 2 it was found that MER-25 as weil as 3β-androstanediol effectively activated masculine behavior in castrated males treated simultaneously with dihydrotestosterone propionate. Both MER-25 and 3β-androstanediol had previously been shown to display an affinity for cytoplasmic estradiol-17β receptors present in male rat anterior hypothalamus. In Experiments 3 and 4, performed with ovariectomized females, it was found that whereas MER-25 antagonized the stimulatory effect of estradiol benzoate (EB) on lordosis behavior, 3β-androstanediol did not. In addition, 5α-dihydrotestosterone and 3α-androstanediol, two compounds which had previously been shown to have almost no affinity for estradiol-17β receptors in the hypothalamus, both inhibited the stimulatory effect of EB on lordosis. It is concluded that the fact that anti-estrogens suppress lordosis induced in females with either EB or TP, but fail to disrupt TP-induced mounting behavior in male rats does not argue against the aromatization hypothesis for masculine sexual behavior.  相似文献   

19.
Two estrogen antagonists, CI-628 (CI) and tamoxifen (TX), were used to examine the relationship between estrogen priming of lordosis behavior and progestin receptor induction in the hypothalamus-preoptic area (HPOA) of ovariectomized female rats. Lordosis behavior was assessed by measuring lordosis quotients (LQ) in response to injection of 2 micrograms of estradiol benzoate (EB) followed 48 hr later by 500 micrograms of progesterone (P). Behavior testing began 4 hr after P injection. The effects of antiestrogens were assessed by injecting CI and TX (1-2 mg) from 0 to 48 hr prior to EB. Levels of cytosol progestin receptor in the HPOA were determined by quantifying the specific binding of 0.5 nM [3H]R5020 to cytosols from animals receiving the same EB and antiestrogen treatments used in behavioral testing. TX given concurrently with or CI given 2 hr before EB abolished both lordosis behavior and induction of HPOA progestin receptors. In contrast, CI given 12 hr prior to EB abolished lordosis but permitted a 95% elevation in the concentration of progestin binding sites in the HPOA. TX or CI given 48 hr before EB resulted in moderate levels of lordosis (mean LQs from 56 to 69) and induction of HPOA progestin receptors from 85 to 130% above noninjected controls. However, CI given 24 hr prior to EB produced less than a 40% increase in brain R5020 binding even though lordosis behavior was equivalent to that seen in the 48-hr animals (mean LQ = 53). These data indicate that the effects of antiestrogens on female sexual behavior and on the synthesis of brain progestin receptors depend on which antiestrogen is used and the time interval between administration of estrogen and antiestrogen. They also demonstrate that under some conditions estrogen induction of cytosol progestin receptors in the HPOA can be dissociated from estrogen priming of lordosis behavior in rats.  相似文献   

20.
Septal lesions increase behavioral responsiveness to estrogen of male, female, and androgen-sterilized female (ASF) rats as measured by lordosis behavior. Male and ASF animals normally show low levels of female sexual receptivity when compared to normal female rats. However, the level of female sexual behavior in male and ASF rats with septal lesions is comparable to that of highly receptive female rats. Progesterone facilitates the estrogen-induced female sexual behavior of female, but not male or ASF, animals. Andrenalectomy had no effect on the increased behavioral sensitivity to estrogen induced by septal lesions. Amygdala lesions, comparable in size to septal lesions, did not facilitate female sexual behavior. The male or female pattern of gonadotropin release is not affected by septal lesions, indicating a disassociation between the regulation of gonadotropin release and sexual behavior. Since septal lesions facilitate lordosis behavior in rats, the septal region appears to exert a tonic inhibition on female sexual behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号