首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HENSON  I. E. 《Annals of botany》1983,52(3):385-398
When water stress was imposed on detached leaves of two rice(Oryza sativa L.) cultivars, more ABA per unit fresh weightaccumulated in IR20, a small-leaved cultivar, than in 63–83,a large-leaved cultivar; the difference being up to threefold.In an F2 population of a cross between the two cultivars ABAaccumulation was found to be significantly negatively correlatedwith leaf fresh weight. This correlation persisted in the F3generation. Such a correlation was not evident, however, whena number of rice cultivars, which varied widely in leaf size,were examined. The difference in ABA accumulation between IR20 and 63–83was not accounted for by different spatial patterns of waterloss or ABA accumulation within a leaf, and cultivar differencesin ABA content were maintained both across, and at various positionsalong the leaf. No major differences in leaf anatomy were observed between thetwo cultivars. Differences found in leaf water relations characteristicswere few and generally minor. It therefore seems unlikely thatthese properties account for the difference between the cultivarsin the ability to accumulate ABA or for the correlation withleaf size. Oryza sativa L, rice, water stress, abscisic acid, leaf size  相似文献   

2.
A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS)–induced IR64 (Oryza sativa L. ssp. indica) mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43) with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43) was required for the normal development of chloroplasts and photosynthesis in rice.  相似文献   

3.
Ultraviolet-B (UVB, wavelength 280-320 nm) radiation has beendemonstrated to affect growth and development of many plants.This study was conducted to determine the effect of UVB radiationon stomatal density and opening of Oryza sativa and to testif the stomatal response to UVB was associated with differentsensitivity of growth to UVB in four cultivars. Ten-day-oldseedlings of IR45 and IR74 (UVB sensitive), and IR64 and IR30(UVB less sensitive), were subjected to UVB radiation in a glasshousefor 6 h d-1 for 4 weeks. The unweighted UVB radiation was 1·94W m-2 for UVB treatment and 0·15 W m-2 for control. Leafarea and plant dry mass were determined every 2 weeks whilestomatal density and opening were recorded weekly. Results showedthat a 2-week UVB treatment had no effect on the leaf area orplant dry mass of any test cultivar, but significantly reducedstomatal density and opening in IR45 and IR74. Under 4-weekUVB exposure, leaf area and plant dry mass of IR45 and IR74were significantly reduced. Stomatal density decreased in allcultivars, except in IR64. Greater reduction of stomata on theadaxial surface than on the abaxial surface under 3 and 4 weeksof UVB exposure suggests a direct effect of UVB radiation onstomata. IR45 and IR74 showed significant reductions in stomatalopening after 2 weeks of exposure to UVB, while stomatal openingin IR30 and IR64 decreased significantly after only 4 weeksof UVB treatment. Difference in plant dry mass between UVB treatedand control plants was significantly correlated with the reductionsin stomatal opening and density on adaxial surface under UVBtreatment. Thus, reduction in dry mass of rice plants underUVB in the glasshouse could be attributed to decrease in stomataldensity and opening.Copyright 1995, 1999 Academic Press Oryza sativa, UVB radiation, stomatal density, stomatal opening  相似文献   

4.
Rice cultivar evaluation for phosphorus use efficiency   总被引:12,自引:1,他引:11  
Phosphorus deficiency is one of the most growth-limiting factors in acid soils in various parts of the world. The objective of this study was to screen 25 rice cultivars (Oryza sativa L.) at low, medium, and high levels of soil P. Number of tillers, root length, plant height, root dry weight and shoot dry weight were related to tissue P concentrations, P uptake and P-use efficiency. Shoot weight was found to be the plant parameter most sensitive to P deficiency. Significant cultivar differences in P use efficiency were found. Phosphorus use efficiency was higher in roots than shoots and decreased with increasing levels of soil P. Positive correlations were found among growth parameters such as plant height, tillers, root and shoot weight, and P content of roots and shoots. These results indicate selection of rice cultivars for satisfactory performance under low P availability can be carried out using shoot and root dry weight as criteria.  相似文献   

5.
CARMI  A.; SHOMER  I. 《Annals of botany》1979,44(4):479-484
The effects of starch accumulation on photosynthesis and chloroplastultrastructure were studied in primary leaves of bean (Phaseolusvulgaris L. cv. Bulgarian). De-topping the shoot above the primaryleaf node, caused over an 8-day period, a considerable increasein the photosynthetic activity of the primary leaves, despitethe fact that a large quantity of starch had accumulated intheir chloroplasts. The accumulation of starch was greater inthe chloroplasts of spongy cells in comparison with that ofthe palisade cells. Initiation of starch grains was observedmainly in the peripheral part of the chloroplast, distant fromthe cell wall. As a result, most of the starch was accumulatedclose to the inner part of the cell, leaving a considerablemass of the chloroplast near the cell wall free of starch. Theaccumulation of starch was accompanied by the destruction, deformationand disorientation of grana and thylakoids. It is concludedthat the accumulation of starch is not inevitably a limitingfactor in photosynthesis and the results cast doubt on the hypothesisthat starch accumulation or dissipation is the main factor involvedin the regulation of photosynthesis. Phaseolus vulgaris L, bean, photosynthesis, starch accumulation, chloroplast ultrastructure  相似文献   

6.
Rice is believed to show photosynthetic symmetry between adaxial and abaxial leaf sides. To verify this, we re‐examined dorsoventral asymmetry in photosynthesis, chlorophyll fluorescence and anatomical traits in flag leaves of two Oryza sativa cultivars that differ in nitrogen (N) response and in leaf angle: ‘Akenohoshi’, a cultivar that can adapt to low‐N (LN), with low leaf angle (more erect leaves), and ‘Shirobeniya’, a cultivar that is unable to adapt to LN, with higher leaf angle. Plants were grown under standard‐N (SN) and LN conditions. LN leaves of both cultivars became more erect than SN, but LN Akenohoshi still had more erect ones than Shirobeniya. Contrary to results of previous studies, leaves of both cultivars showed an asymmetry in photosynthetic rate between adaxial and abaxial sides (higher on the adaxial side) under SN. SN leaves of both cultivars showed lower susceptibility to photoinhibition on the adaxial side than on the abaxial side. However, leaves of Akenohoshi showed less asymmetry in these traits under LN than under SN, whereas leaves of Shirobeniya had similar degrees of asymmetry in these traits under both SN and LN. Both cultivars also showed dorsoventral asymmetry in anatomical traits of mesophyll tissue regardless of N level, but the degree of asymmetry was lower in LN Akenohoshi. These data reveal that rice leaves exhibit dorsoventral asymmetry in photosynthetic and anatomical features, and that the degree of asymmetry varies with cultivar and N level. It is suggested that lower leaf angles (particularly in Akenohoshi) in the presence of LN represent a light acclimation to prevent photoinhibition.  相似文献   

7.
小麦黄化突变体叶绿体超微结构研究   总被引:4,自引:0,他引:4  
利用透射电镜对小麦自然黄化突变体及其突变亲本(西农1718)叶片细胞叶绿体的数目、形态及超微结构进行比较分析。结果发现:(1)3种不同黄化程度突变体的叶绿体分布、数目、形状及大小与突变亲本无明显差异;(2)突变体叶绿素含量为野生型58%的黄绿植株与其突变亲本叶绿体超微结构无明显差异,基质类囊体与基粒类囊体高度分化,基粒数目以及基粒片层数目较多;(3)突变体金黄和绿黄植株的叶绿素含量分别为野生型的17%、24%,其叶绿体超微结构与突变亲本明显不同,突变体的叶绿体发育存在明显缺陷,其中突变体金黄植株的叶绿体内无基粒、基质片层清晰可见,有淀粉粒,嗜锇颗粒较多,而突变体绿黄植株的叶绿体内有基粒,但明显少于突变亲本,且基粒片层较少,基质类囊体较发达。结果表明该黄化突变体叶绿体超微结构的改变,是由于叶绿素含量降低造成,推测,该黄化突变是由于叶绿素合成受阻导致的。  相似文献   

8.
Physiological basis of differential response to salinity in rice cultivars   总被引:12,自引:0,他引:12  
Growth analyses of rice Oryza sativa L. seedlings in salinized nutrient solution condition were conducted with 24 cultivars and lines after genetic purification. Cultivar differences in relative growth rate in salinized conditions were chiefly dependent on differences in shoot Na content. The shoot Na content was affected by Na selectivity in the root and by the leaf area ratio (LAR, leaf area per total dry weight). The contribution of LAR was equally important to that of root cultivar selectivity against Na uptake under a higher salinization condition where root selectivity against Na may be decreased due to reduced root activity. Cultivar differences in salt tolerance in highly salinized conditions were mainly attributed to differences in these two factors. A more convenient and efficient screening method for salt tolerance is proposed.  相似文献   

9.
The inhibition of kohlrabi chloroplast degeneration by kinetin   总被引:2,自引:1,他引:1  
Summary Detached kohlrabi leaves of late autumn material yellowed completely after 6 days in weak light. This process was accompanied by a decrease in chlorophyll, protein, and ribonucleic acid levels. In the chloroplasts, degeneration symptoms such as reduction in chloroplast volume, the decay of grana, development of the long thylakoid system, disappearance of chloroplast ribosomes, increase in the volume of plastoglobuli, and finally a complete breakdown of plastids in the digesting vacuoles, were observed. The ultrastructural changes in degenerating kohlrabi chloroplasts resembled those described earlier for brussels sprouts (Dennis et al. 1967), which suggests that the plastid degeneration model may be specific for speciesBrassica oleracea L.Kinetin inhibited the fall in the level of chlorophyll, proteins, and RNA in relation to the control material, and even stimulated chlorophyll and protein synthesis to a level higher than that of the initial material. Treatment with kinetin also markedly delayed the loss of chloroplast ribosomes. The most evident effect of the kinetin influence on the plastid ultrastructure was the stimulation of the formation and maintenance of grana. A possible mechanism for these processes in the light of the recent studies on the chloroplast membranes is discussed.  相似文献   

10.
《植物生态学报》2014,38(7):740
Aims In recent years, intercropping system has become one of the major practice of peanut (Arachis hypogaea) cultivation in northern China because of the high land and energy utilization efficiency, to some extent compensating for the production loss caused by decreasing area of cultivation land. Intercropped peanut plants often have a lower pod yield compared with monoculture due to constraint on light availability. This study was conducted to explore the shade-tolerance mechanism in two peanut cultivars, ‘Huayu 22’ and ‘Baisha 1016’, that grew in an intercropping system, by studying chloroplast ultrastructure and rubisco activity under different levels of shading.
Methods A field experiment was conducted with three levels of light treatments, including full natural light (CK), 50% natural light indensity (NLI), and 15% NLI. The ‘Huayu 22’ was used as a shade-tolerant cultivar and the ‘Baisha 1016’ as a shade-susceptible cultivar based on previous studies. Experimental plants of both cultivars were shaded for 40 days from emergency in 2006. Rubisco activity, the number and shapes of chloroplasts and starch grains, and number of grana and granum lamella were investigated in functional leaves of plants in all treatments.
Important findings The functional leaves of peanut plants in the 50% and 15% NLI treatments had a lower rubisco activity than those in the CK treatment. In the ‘Baisha 1016’, the reduction in rubisco activity was 40.1% in the 50% NLI treatment and 59.4% in the 15% NLI treatment, respectively, compared to the CK treatment;whereas no significant differences were found among treatments in the ‘Huayu 22’ in the rubisco activity. Compared with the CK, the number of chloroplasts remained unchanged, the number of grana and lamella in grana increased, and the individual chloroplast was longer and in perfect development in the functional leaves of plants of the ‘Huayu 22’ grown in the 50% NLI treatment. In contrast, the number of chloroplasts, grana and starch grains of the ‘Huayu 22’ plants decreased significantly, the chloroplast membrane and grana lamella were damaged, the number of granum lamella increased, and the individual chloroplast became longer in the 15% NLI treatment. The number and ultrastructure of chloroplasts in the ‘Baisha 1016’ plants followed similar patterns of changes as those of the ‘Huayu 22’ in the 50% NLI treatment. For plants of the ‘Baisha 1016’ in the 15% NLI treatment, their chloroplasts became more roundly shaped, with decreasing number of grana lamella and increasing number of starch grains, compared with the CK. There were a greater decrease in the grana number and more damage in the grana lamella in plants of the ‘Baisha 1016’ than those of the ‘Huayu 22’. In conclusion, the shade tolerance of the ‘Huayu 22’ resulted from lack of changes in rubisco activity and less damage in the ultrastructure of chloroplasts when under low light stress compared with the ‘Baisha 1016’.  相似文献   

11.
Two cultivars of Digitaria eriantha (cold-sensitive cv. Sudafricana and cold-resistant cv. Mejorada INTA) were exposed to cold stress (5?°C) for 0, 6, 24, or 72?h, and compared in terms of leaf and root growth, recovery period, shoot and leaf anatomy, and levels of chlorophyll, auxin (indole-3-acetic acid, IAA) and cytokinins (CKs). In Sudafricana, cold treatment caused reduced growth, slight changes in chlorophyll level, reduced levels of IAA and CK iso-pentenyladenine (iP), and reduced leaf dry weight (DW) and fresh weight (FW) during the recovery period. Anatomical damage was observed in chloroplasts, main stem, and axillary buds. Ultrastructural study showed reduced numbers of starch grains in chloroplasts of the bundle sheath and mesophyll. In Mejorada, cold treatment had no significant effect on growth or chlorophyll level. Leaf DW and FW quickly returned to normal levels during the recovery period. Anatomy of ground meristem was affected, but ultrastructure of bundle sheath and mesophyll chloroplasts was not. The cold tolerance of cv. Mejorada appears to be related to the stability of chlorophyll and CK levels, increase of IAA, and maintenance of normal shoot and leaf anatomy and ultrastructure.  相似文献   

12.
The effect of ploidy, parental chloroplast type and parentalnuclear genome dosage on net photosynthesis, Rubisco activityand chloroplast ultrastructure was studied among somatic hybridsof diploid S. brevidens and dihaploid S. tuberosum. An increasein nuclear ploidy resulted in an increase in net photosynthesisand specific leaf weight. There were no significant differencesin net photosynthesis or Rubisco activity between the hybridshaving different parental chloroplast type. Examination of thehexaploid hybrids indicated that Rubisco activity was affectedby nuclear-organelle genome incompatibility, the most affectedcombination being tuberosum chloroplast type with brevidensnuclear genome. Examination of chloroplast ultrastructure revealedwide variation in the size of chloroplasts, starch granules,plastoglobuli and in grana stacking among the hybrids and betweenfusion parents. Key words: Somatic hybrids, Solanum, net photosynthesis, Rubisco, chloroplast ultrastructure  相似文献   

13.
The influence of NaCl on senescence-related parameters (proteinand chlorophyll concentrations, membrane permeability and chlorophyllfluorescence) was investigated in young and old leaves of fiverice cultivars differing in salt resistance. NaCl hastened thenaturally-occurring senescence of rice leaves which normallyappears during leaf ontogeny: it decreased chlorophyll and proteinconcentrations and increased membrane permeability and malondialdehydesynthesis. Such an acceleration of deteriorative processes affectedall leaves in salt-sensitive cultivars while it was more markedin oldest than in youngest leaves of salt-resistant genotypes.NaCl-induced senescence also involved specific modifications,such as an increase in basal non-variable chlorophyll fluorescence(F 0) recorded in all cultivars or a transient increase in solubleprotein concentration recorded in salt-resistant genotypes only.Alteration of membrane permeability appeared as one of the firstsymptoms of senescence in rice leaves and allowed discriminationamong cultivars after only 7 d of stress. In contrast, F v/F mratio (variable fluorescence/maximal fluorescence) was thesame for all cultivars during the first 18 d of stress and thuscould not be used for identifying salt-resistant rice exposedto normal light conditions. Relationships between parametersinvolved in leaf senescence are discussed in relation to salinityresistance of rice cultivars. Chlorophyll concentration; chlorophyll fluorescence; electrolyte leakage; magnesium; malondialdehyde; membrane permeability; NaCl; Oryza sativa L.; protein; rice; salinity resistance; senescence; UV absorbing substances  相似文献   

14.
We examined effects of nitrogen (N) supply on leaf emergenceof spring wheat (Triticum aestivum L.) grown in sand with nutrientsolution containing different N concentrations (9NO3: 1NH4).In expt 1, the cultivar 'Gamenya' received nutrient solutiontwice weekly containing a constant N supply ranging from 50to 2400 µM N. In expts 2 and 3, cultivars 'Aroona' and'Gamenya' were irrigated hourly with nutrient solution containingeither low (L = 50 µM N) or high (H = 2000 µM N)N supply. In expt 2, the N supply to half of the plants receivingL and H was changed at the double ridge stage of apical development,producing plants receiving LL, LH, HL and HH. In expt 3, N supplywas changed firstly when the main stem apex was vegetative (oneto two leaves) and secondly when the main stem apex was at doubleridge stage (four to five leaves), producing plants receivingLLL, LHL, HLH and HHH. Leaves on the main stem and primary tillerswere counted. Rate of leaf emergence was estimated from regressionof number of leaves against thermal time; the phyllochron wascalculated as 1/ rate of emergence. Severely N-deficient plants (which had at least a 60% reductionin shoot dry weight) had slower rates of leaf emergence (expt1). Fluctuating N supply sometimes, but not always, changedthe rate of leaf emergence (expts 2 and 3). The N supply beforedouble ridge stage had bigger effects on the phyllochron thanthat afterwards (expt 3). The phyllocrons of the main stemswere generally lower than those of tillers, with a greater differencebetween stems in N-deficient plants. Low N supply at the vegetativeapex stage decreased the total number of leaves on the mainstem, while low N supply after double ridge did not.Copyright1994, 1999 Academic Press Nitrogen, stress, spring wheat, Triticum aestivum, leaf emergence, phyllochron, apical development  相似文献   

15.
Soybean plants grown in controlled environment cabinets under light intensities of 220 w/m2 or 90 w/m2 (400–700 nm) and day to night temperatures of 27.5–22.5 C or 20.0–12.5 C in all combinations, exhibited differences in growth rate, leaf anatomy, chloroplast ultrastructure, and leaf starch, chlorophyll, and chloroplast lipid contents. Leaves grown under the lower light intensity at both temperatures had palisade mesophyll chloroplasts containing well-formed grana. The corresponding leaves developed under the higher light intensity had very rudimentary grana. Chloroplasts from high temperature and high light had grana consisting of two or three appressed thylakoids, while grana from the low temperature were confined to occasional thylakoid overlap. Spongy mesophyll chloroplasts were less sensitive to growth conditions. Transfer experiments showed that the ultrastructure of chloroplasts from mature leaves could be modified by changing the conditions, though the effect was less marked than when the leaf was growing.  相似文献   

16.
Kinetin and auxin when applied to excised segments of wheat coleoptiles bring about changes in chloroplast structure and chlorophyll content of parenchymatous cells. Auxin (IAA) alone at a concentration of 10-5M stimulated the elongation (growth), but the chloroplast membrane system was less developed and the chlorophyll content was lowest in comparison with control and other variants. Kinetin (KIN) exhibited various effects depending on the concentration used. 10-6M KIN somehow stimulated the elongation and enhanced the amount of grana coming to one chloroplast section, but the individual grana were relatively small and the chlorophyll content a little higher than in the control. On the other hand 10-5M KIN which did not promote the elongation of wheat coleoptiles, had the maximum stimulatory effect on the chloroplast membrane system, especially on the occurrence of large grana, and the chlorophyll content was highest in comparison with the other variants. The occurrence of starch grains in chloroplasts was lower than in the other variants. The effect of a joint treatment of KIN and IAA did not exceed that of KIN (10-5M) alone. Thus the development of chloroplasts and the accumulation of chlorophyll in wheat coleoptiles are stimulated by the concentration of KIN which does not promote the elongation of coleoptiles.  相似文献   

17.
The durations of the photoperiod-sensitive and photoperiod-insensitivephases of development to panicle emergence were estimated infour contrasting indica cultivars of rice (Oryza sativa L.)in a reciprocal-transfer experiment. Plants were grown in potsin glasshouses maintained at warmer (32/26 C) or cooler (28/20C) day/night temperatures, and the durations from sowing topanicle emergence were determined for plants moved from relativelyshort (11 h) to relatively long (13.5 h) days and vice versaat various times after sowing. Panicle emergence was delayedby long days in all cultivars, but the traditional cvs Carreonand Peta were much more sensitive to photoperiod than the moderncvs IR8 and IR36 The durations of the photoperiod-insensitivepre-inductive phase (equivalent to some definitions of the basicvegetative phase) varied from 14.4 d in cv. Carreon at 32/26C to 42.0 d in cv. IR8 at 28/20 C. In all cultivars this initialphase was of a longer duration in the cool than in the warmregime. The duration of the photoperiod-insensitive post-inductivephase was also consistently greater, but usually only slightso, at cool than relatively warm temperatures; it varied from6.8 d in cv. IR8 at 32/26 C to 272 d in cv. Carreon at 28/20C. As expected, the length of the intervening photoperiod-sensitiveinductive phase was greater in long days, but the effect oftemperature on these durations was not consistent; for example,these durations were longer in warm than in cool temperaturesin cv. 1R8 but, if anything, they were slightly longer in coolthan in warm temperatures in cv. IR36. This difference is compatiblewith previous findings that cv. IR36 has a warmer optimum temperaturefor rate of progress towards panicle emergence than cv. IR8.A subsequent reciprocal-transfer experiment with cv. Peta providedestimates of the durations of the photoperiod-insensitive andphotoperiod-sensitive phases of pre-flowering development whichwere compatible with our earlier estimates. Furthermore, panicleinitiation was found to occur after about 80% of the photoperiod-sensitiveinductive phase had elapsed. We conclude that although the durationof the photoperiod-insensitive pre-inductive phase in rice isgreater than in many other annual crops, genotypic variationin this duration may well be less than was previously deduced.We also conclude that, despite common assumptions to the contrary,photoperiod-sensitivity during rice plant development does notend at panicle initiation. Oryza sativa L., rice, panicle initiation, panicle emergence, photoperiodism, temperature  相似文献   

18.
BREWSTER  J. L. 《Annals of botany》1982,49(5):609-617
Growth, bulb development, partition of dry weight between leafblades and bulbs, and the interception of solar radiation weremeasured in overwintered crops of five cultivars of bulb onionwith different maturity dates sown on successive dates in threeseasons. The onset of bulbing was later the later maturity ofthe cultivar. Later sowing did not delay the onset of bulbingbut it did delay maturity. There was little mean differencebetween cultivars in the duration of bulb growth defined asthe interval between onset of bulbing and maturity, but therewere considerable differences between cultivars within a season,and between seasons for a given cultivar. Duration of bulb growthranged from 11 to 46 days with a mean of 35 days. Increases in total shoot dry weight during bulb developmentand, in the absence of much bolting, bulb dry-matter yieldswere linearly related to the total radiation intercepted duringbulb growth. These relationships were similar to those reportedfor other crops in Britain. Radiation interception during thephase of bulb growth was low compared with other crops, witha mean value of 49 per cent and a maximum of 65 per cent. Thepercentage of solar radiation intercepted during bulb developmentwas higher from early sowings than from later ones, particularlyin early maturing cultivars. The harvest index was high, withtypically more than 80 per cent of the shoot dry weight in bulbsat maturity. Allium cepa L., onion, blub, growth, partition of dry matter, radiation interception  相似文献   

19.
Complete submergence of rice plants (Oryza sativa L. cv. ‘IR42’)in dilute nutrient solution for 3–6 d almost stopped theaccumulation of dry matter, depressed soluble carbohydrate concentrationby over 75% and promoted chlorosis in fully expanded leaves.Increase in fresh weight by the shoots was not impaired. Extensionby the youngest visible leaf was stimulated. Extension by thenext leaf to appear was retarded by submergence. These growthresponses to submergence were associated with a 1-5-fold increasein the partial pressure of endogenous ethylene (ethene). Applying ethylene (0.3–0.35 Pa) in the gas-phase to non-submergedplants reproduced some, but not all, of these effects of submergence.Thus, greater leaf extension and chlorosis of submerged plantscould be attributable to accumulated ethylene but neither theslow relative growth rate nor the decreased extension of leavesemerging after the start of submergence could be so attributed. Two cultivars (‘FR13A’ and ‘Kurkaruppan’)already known to tolerate submergence, differed little fromsubmergence-intolerant ‘IR42’ in their relativegrowth rate and soluble carbohydrate concentration during submergence.However, their underwater leaf extension was less than in ‘IR42’and chlorosis was much less prevalent, especially in ‘FR13A’.Similarly, ethylene supplied to non-submerged plants was a lesseffective promotor of leaf extension and chlorosis in the twosubmergence tolerant cultivars. Application of 1.0 kPa carbondioxide in the gas-phase prevented the chlorosis response toethylene. The results indicate that accumulated ethylene is a likely causeof fast leaf extension and chlorosis in submergence intolerantforms of rice, particularly when amounts of dissolved carbondioxide are minimal. Key words: Oryza sativa L., aeration, ethylene (ethene), stress-tolerance  相似文献   

20.
CMU inhibits oxygen evolution in greening etiolated bean leaves.In the presence of this compound chlorophyll content is reducedand fine structure development of the chloroplasts is markedlyaffected. The number of grana per chloroplast is reduced butthe grana are larger and contain more thylakoids than the granain chloroplasts of the greening control leaves. Sucrose reversesthe effect of CMU on pigment content and fine structure developmentof chloroplasts. (Received September 14, 1965; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号