首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contribution of superoxide-mediated injury to oxidative stress is not fully understood. A potential mechanism is the reaction of superoxide with tyrosyl radicals, which either results in repair of the tyrosine or formation of tyrosine hydroperoxide by addition. Whether these reactions occur with protein tyrosyl radicals is of interest because they could alter protein structure or modulate enzyme activity. Here, we have used a xanthine oxidase/acetaldehyde system to generate tyrosyl radicals on sperm whale myoglobin in the presence of superoxide. Using mass spectrometry we found that superoxide prevented myoglobin dimer formation by repairing the protein tyrosyl radical. An addition product of superoxide at Tyr151 was also identified, and exogenous lysine promoted the formation of this product. In our system, reaction of tyrosyl radicals with superoxide was favored over dimer formation with the ratio of repair to addition being approximately 10:1. Our results demonstrate that reaction of superoxide with protein tyrosyl radicals occurs and may play a role in free radical-mediated protein injury.  相似文献   

2.
The pH dependence of the proton NMR chemical shifts of met-cyano and deoxy forms of native and reconstituted myoglobins reflects a structural transition in the heme pocket modulated by a single proton with pK 5.1-5.6. Comparison of this pH dependence of sperm whale and elephant myoglobin and that of the former protein reconstituted with esterified hemin eliminates both the distal histidine as well as the heme propionates as the titrating residue. Reconstitution of sperm whale met-cyano myoglobin with hemin modified at the 2,4-positions leads to a systematic variation in the pK for the structural transition, thus indicating the presence of a coupling between the titrating group and the heme pi system. The results are consistent with histidine FG3 (His-FG3) being the titrating group, and a donor-acceptor pi-pi interaction between its imidazole and the heme is proposed.  相似文献   

3.
We have determined the 1.8 A X-ray crystal structure of a monoheme c-type cytochrome, cytochrome P460, from Nitrosomonas europea. The chromophore possesses unusual spectral properties analogous to those of the catalytic heme P460 of hydroxylamine oxidoreductase (HAO), the only known heme in biology to withdraw electrons from an iron-coordinated substrate. The analysis reveals a homodimeric structure and elucidates a new c-type cytochrome fold that is predominantly beta-sheet. In addition to the two cysteine thioether links to the porphyrin typical of c-type hemes, there is a third proteinaceous link involving a conserved lysine. The covalent bond is between the lysine side-chain nitrogen and the 13'-meso carbon of the heme, which, following cross-link formation, is sp3-hybridized, demonstrating the loss of conjugation at this position within the porphyrin. The structure has implications for the analogous tyrosine-heme meso carbon cross-link observed in HAO.  相似文献   

4.
Zaman MH  Berry RS  Sosnick TR 《Proteins》2002,48(2):341-351
We introduce a method to estimate the loss of configurational entropy upon insertion of a cross-link to a dimeric system. First, a clear distinction is established between the loss of entropy upon tethering and binding, two quantities that are often considered to be equivalent. By comparing the probability distribution of the center-to-center distances for untethered and cross-linked versions, we are able to calculate the loss of translational entropy upon cross-linking. The distribution function for the untethered helices is calculated from the probability that a given helix is closer to its partner than to all other helices, the "Nearest Neighbor" method. This method requires no assumptions about the nature of the solvent, and hence resolves difficulties normally associated with calculations for systems in liquids. Analysis of the restriction of angular freedom upon tethering indicates that the loss of rotational entropy is negligible. The method is applied in the context of the folding of a ten turn helical coiled coil with the tether modeled as a Gaussian chain or a flexible amino acid chain. After correcting for loop closure entropy in the docked state, we estimate the introduction of a six-residue tether in the coiled coil results in an effective concentration of the chain to be about 4 or 100 mM, depending upon whether the helices are denatured or pre-folded prior to their association. Thus, tethering results in significant stabilization for systems with millimolar or stronger dissociation constants.  相似文献   

5.
Sperm whale metmyoglobin, which has tyrosine residues at positions 103, 146, and 151, dimerizes in the presence of H2O2. Equine metmyoglobin, which lacks Tyr-151, and red kangaroo metmyoglobin, which lacks Tyr-103 and Tyr-151, do not dimerize in the presence of H2O2. The dityrosine content of the sperm whale myoglobin dimer shows that it is primarily held together by dityrosine cross-links, although more tyrosine residues are lost than are accounted for by dityrosine formation. Digestion of the myoglobin dimer with chymotrypsin yields a peptide with the fluorescence spectrum of dityrosine. The amino acid composition, amino acid sequence, and mass spectrum of the peptide show that cross-linking involves covalent bond formation between Tyr-103 of one myoglobin chain and Tyr-151 of the other. Replacement of the prosthetic group of sperm whale myoglobin with zinc protoporphyrin IX prevents H2O2-induced dimerization even when intact horse metmyoglobin is present in the incubation. This suggests that the tyrosine radicals required for the dimerization reaction are generated by intra- rather than intermolecular electron transfer to the ferryl heme. Rapid electron transfer from Tyr-103 to the ferryl heme followed by slower electron transfer from Tyr-151 to Tyr-103 is most consistent with the present results.  相似文献   

6.
Oxidation of SCN-, Br-, and Cl- (X-) by horseradish peroxidase (HRP) and other plant and fungal peroxidases results in the addition of HOX to the heme vinyl group. This reaction is not observed with lactoperoxidase (LPO), in which the heme is covalently bound to the protein via two ester bonds between carboxylic side chains and heme methyl groups. To test the hypothesis that the heme of LPO and other mammalian peroxidases is protected from vinyl group modification by the hemeprotein covalent bonds, we prepared the F41E mutant of HRP in which the heme is attached to the protein via a covalent bond between Glu41 and the heme 3-methyl. We also examined the E375D mutant of LPO in which only one of the two normal covalent heme links is retained. The prosthetic heme groups of F41E HRP and E375D LPO are essentially not modified by the HOBr produced by these enzymes. The double E375D/D225E mutant of LPO that can form no covalent bonds is inactive and could not be examined. These results unambiguously demonstrate that a single heme-protein link is sufficient to protect the heme from vinyl group modification even in a protein (HRP) that is normally highly susceptible to this reaction. The results directly establish that one function of the covalent heme-protein bonds in mammalian peroxidases is to protect their prosthetic group from their highly reactive metabolic products.  相似文献   

7.
DNA-protein cross-links are formed when living cells or isolated chromatin is exposed to ionizing radiation. Little is known about the actual cross-linked products of DNA and proteins. In this work, a novel hydroxyl radical induced cross-link of thymine and tyrosine has been isolated along with a tyrosine dimer by high-performance liquid chromatography of aqueous mixtures of tyrosine and thymine that had been exposed to hydroxyl radicals generated by ionizing radiation. The isolated compounds have been examined by gas chromatography-mass spectrometry, high-resolution mass spectrometry, and 1H and 13C nuclear magnetic resonance spectroscopy. The structure of the thymine-tyrosine cross-link has been identified as the product from the formation of a covalent bond between the methyl group of the thymine and carbon 3 of the tyrosine ring. In addition, the 3,3' tyrosine dimer was isolated and characterized. The mechanism of the formation of these compounds is discussed. This work presents the first complete chemical characterization of a hydroxyl radical induced DNA base-amino acid cross-link.  相似文献   

8.
Hong H  Cao H  Wang Y 《Nucleic acids research》2007,35(21):7118-7127
Reactive oxygen species (ROS) can be induced by both endogenous and exogenous processes, and they can damage biological molecules including nucleic acids. Exposure of isolated DNA to X/γ-rays and Fenton reagents was shown to lead to the formation of intrastrand cross-link lesions where the neighboring nucleobases in the same DNA strand are covalently bonded. By employing HPLC coupled with tandem mass spectrometry (LC-MS/MS) with the isotope dilution method, we assessed quantitatively the formation of a guanine–cytosine (G[8-5]C) intrastrand cross-link lesion in HeLa-S3 cells upon exposure to γ-rays. The yield of the G[8-5]C cross-link was 0.037 lesions per 109 nucleosides per Gy, which was ~300 times lower than that of 5-formyl-2′-deoxyuridine (0.011 lesions per 106 nucleosides per Gy) under identical exposure conditions. We further constructed a single-stranded M13 genome harboring a site-specifically incorporated G[8-5]C lesion and developed a novel mass spectrometry-based method for interrogating the products emanating from the replication of the genome in Escherichia coli cells. The results demonstrated that G[8-5]C blocked considerably DNA replication as represented by a 20% bypass efficiency, and the lesion was significantly mutagenic in vivo, which included a 8.7% G→T and a 1.2% G→C transversion mutations. DNA replication in E. coli hosts deficient in SOS-induced polymerases revealed that polymerase V was responsible for the error-prone translesion synthesis in vivo.  相似文献   

9.
A sperm whale myoglobin gene containing multiple unique restriction sites has been constructed in pUC 18 by sequential assembly of chemically synthesized oligonucleotide fragments. Expression of the gene in Escherichia coli DH5 alpha cells yields protein that is identical to native sperm whale myoglobin except that it retains the terminal methionine. Site-specific mutagenesis has been used to prepare all the possible tyrosine----phenylalanine mutants of the recombinant myoglobin, including the three single mutants at Tyr-103, -146, and -151, the three double mutants, and the triple mutant. All of the mutant proteins are stable except the Tyr-103 mutant. Introduction of a second mutation (Lys-102----Gln) stabilizes the Tyr-103 mutant. Absorption spectroscopy suggests that the active sites of the mutant proteins are intact. EPR and absorption spectroscopy show that all the proteins, including the triple mutant devoid of tyrosine residues, react with H2O2 to give a ferryl species and a protein radical. The presence of a protein radical in all the mutants suggests that the radical center is readily transferred from one amino acid to another. Cross-linking studies show, however, that protein dimers are only formed when Tyr-151 is present. Tyr-103, shown earlier to be the residue that primarily cross-links to Tyr-151 (Tew, D., and Ortiz de Montellano, P. R. (1988) J. Biol. Chem. 263, 17880-17886), is not essential for cross-linking. Electron transfer from Tyr-151 to the heme, which are 12 A apart, occurs in the absence of the intervening tyrosines at positions 103 and 146. The present studies show that the peroxide-generated myoglobin radical readily exchanges between remote loci, including non-tyrosine residues, but protein cross-linking only occurs when radical density is located on Tyr-151.  相似文献   

10.
Hydroxyl radical induced formation of a DNA-protein cross-link involving thymine and tyrosine in nucleohistone is described. Hydroxyl radicals were generated in N2O-saturated aqueous solution by ionizing radiation. Samples of nucleohistone were hydrolyzed with HCl and trimethylsilylated. Analysis of irradiated samples by gas chromatography-mass spectrometry with selected-ion monitoring showed the presence of a thymine-tyrosine cross-link on the basis of typical fragment ions from the previously known mass spectrum of its trimethylsilyl derivative. The yield of this DNA-protein cross-link in nucleohistone was measured at incrementing doses of radiation and found to be a linear function of radiation dose between 14 and 300 Gy (J.kg-1). This yield amounted to 0.003 mumol.J-1. The mechanism of formation of this DNA-protein cross-link is thought to result from H atom abstraction by hydroxyl radicals from the methyl group of thymine followed by the addition of the resultant thymine radical to the carbon 3 position of the tyrosine ring and subsequent oxidation of the adduct radical.  相似文献   

11.
Wang X  Pielak GJ 《Biochemistry》1999,38(51):16876-16881
We used isothermal titration calorimetry to study the equilibrium thermodynamics for formation of the physiologically-relevant redox protein complex between yeast ferricytochrome c and yeast ferricytochrome c peroxidase. A 1:1 binding stoichiometry was observed, and the binding free energies agree with results from other techniques. The binding is either enthalpy- or entropy-driven depending on the conditions, and the heat capacity change upon binding is negative. Increasing the ionic strength destabilizes the complex, and both the binding enthalpy and entropy increase. Increasing the temperature stabilizes the complex, indicating a positive van't Hoff binding enthalpy, yet the calorimetric binding enthalpy is negative (-1.4 to -6.2 kcal mol(-)(1)). We suggest that this discrepancy is caused by solvent reorganization in an intermediate state. The measured enthalpy and heat capacity changes are in reasonable agreement with the values estimated from the surface area change upon complex formation. These results are compared to those for formation of the horse ferricytochrome c/yeast ferricytochrome c peroxidase complex. The results suggest that the crystal and solution structures for the yeast complex are the same, while the crystal and solution structures for horse cytochrome c/yeast cytochrome c peroxidase are different.  相似文献   

12.
The extracellular matrix in most tissues is characterized by progressive age-related stiffening and loss of proteolytic digestibility that are accelerated in diabetes and can be duplicated by the nonenzymatic reaction of reducing sugars and extracellular matrix proteins. However, most cross-links of the Maillard reaction described so far are present in quantities too low to account for these changes. Here we have determined in human skin and glomerular basement membrane (GBM) collagen the levels of the recently discovered lysine-arginine cross-links derived from glucose, methylglyoxal, glyoxal, and 3-deoxyglucosone, i.e. glucosepane, MODIC, GODIC, and DOGDIC, respectively. Insoluble preparations of skin collagen (n = 110) and glomerular basement membrane (GBM, n = 28) were enzymatically digested, and levels were measured by isotope dilution technique using liquid chromatography/mass spectrometry. In skin, all cross-links increased with age (p < 0.0001) except DOGDIC (p = 0.34). In nondiabetic controls, levels at 90 years were 2000, 30, and 15 pmol/mg for glucosepane, MODIC, and GODIC, respectively. Diabetes, but not renal failure, increased glucosepane to 5000 pmol/mg (p < 0.0001), and for all others, increased it to <60 pmol/mg (p < 0.01). In GBMs, glucosepane reached up to 500 pmol/mg of collagen and was increased in diabetes (p < 0.0001) but not old age. In conclusion, glucosepane is the single major cross-link of the senescent extracellular matrix discovered so far, accounting for up to >120 mole% of triple helical collagen modification in diabetes. Its presence in high quantities may contribute to a number of structural and cell matrix dysfunctions observed in aging and diabetes.  相似文献   

13.
14.
Oxidative alteration of mitochondrial cytochrome c (cyt c) has been linked to disease pathophysiology and is one of the causative factors for pro-apoptotic events. Hydrogen peroxide induces a short-lived cyt c-derived tyrosyl radical as detected by the electron spin resonance (ESR) spin-trapping technique. This investigation was undertaken to characterize the fate and consequences of the cyt c-derived tyrosyl radical. The direct ESR spectrum from the reaction of cyt c with H(2)O(2) revealed a single-line signal with a line width of approximately 10 G. The detected ESR signal could be prevented by pretreatment of cyt c with iodination, implying that the tyrosine residue of cyt c was involved. The ESR signal can be enhanced and stabilized by a divalent metal ion such as Zn(2+), indicating the formation of the protein tyrosine ortho-semiquinone radical (ToQ.). The production of cyt c-derived ToQ. is inhibited by the spin trap, 2-methyl-2-nitrosopropane (MNP), suggesting the participation of tyrosyl radical in the formation of the ortho-semiquinone radical. The endothelium relaxant factor nitric oxide is well known to mediate mitochondrial respiration and apoptosis. The consumption of NO by cyt c was enhanced by addition of H(2)O(2) as verified by inhibition electrochemical detection using an NO electrode. The rate of NO consumption in the system containing cyt c/NO/H(2)O(2) was decreased by the spin traps 5,5-dimethyl pyrroline N-oxide and MNP, suggesting NO trapping of the cyt c-derived tyrosyl radical. The above result was further confirmed by NO quenching of the ESR signal of the MNP adduct of cyt c tyrosyl radical. Immunoblotting analysis of cyt c after exposure to NO in the presence of H(2)O(2) revealed the formation of 3-nitrotyrosine. The addition of superoxide dismutase did not change the cyt c nitration, indicating that it is peroxynitrite-independent. The results of this study may provide useful information in understanding the interconnection among cyt c, H(2)O(2), NO, and apoptosis.  相似文献   

15.
16.
The heme of cytochrome P460 of Nitrosomonas europaea, which is covalently crosslinked to two cysteines of the polypeptide as with all c-type cytochromes, has an additional novel covalent crosslink to lysine 70 of the polypeptide [Arciero, D.M. & Hooper, A.B. (1997) FEBS Lett.410, 457-460]. The protein can catalyze the oxidation of hydroxylamine. The gene for this protein, cyp, was expressed in Pseudomonas aeruginosa strain PAO lacI, resulting in formation of a holo-cytochrome P460 which closely resembled native cytochrome P460 purified from N. europaea in its UV-visible spectroscopic, ligand binding and catalytic properties. Mutant versions of cytochrome P460 of N. europaea in which Lys70 70 was replaced by Arg, Ala, or Tyr, retained ligand-binding ability but lost catalytic ability and differed in optical spectra which, instead, closely resembled those of cytochromes c'. Tryptic fragments containing the c-heme joined only by two thioether linkages were observed by MALDI-TOF for the mutant cytochromes P460 K70R and K70A but not in wild-type cytochrome P460, consistent with the structural modification of the c-heme only in the wild-type cytochrome. The present observations support the hypothesized evolutionary relationship between cytochromes P460 and cytochromes c' in N. europaea and M. capsulatus[Bergmann, D.J., Zahn, J.A., & DiSpirito, A.A. (2000) Arch. Microbiol. 173, 29-34], confirm the importance of a heme-crosslink to the spectroscopic properties and catalysis and suggest that the crosslink might form auto-catalytically.  相似文献   

17.
Reactions of the hydroxyl radical with polynucleotides   总被引:1,自引:0,他引:1  
  相似文献   

18.
The reaction of hydroxyl radicals (?OH) and superoxide anions (O2?) with methional were investigated by pulse-radiolytic methods. The second-order rate constant for the attack of OH was determined at 8.2×109 M?1 sec?1. In the case of O2? a slow first-order decay rate of 5.2×103 sec?1 suggests a far less efficient reaction. The transient species were identified by comparison with published results of pulse radiolysis and EPR spectroscopy of model compounds. The mechanism for the oxidation of methional by OH was found to be more complex than a simple fragmentation reaction.  相似文献   

19.
The triplet state absorption and phosphorescence of Zn and Pd derivatives of myoglobin were compared. Both metal derivatives exhibit long triplet state lifetimes at room temperature, but whereas the Pd derivative showed exponential decay and an isosbestic point in the transient absorption spectra, the decay of the Zn derivative was nonsingle exponential and the transient absorption spectra showed evidence of more than one excited state species. No difference was seen in triplet quenching by oxygen for either derivative, indicating that differences in the polypeptide chain between the two derivatives are not large enough to affect oxygen penetrability. Quenching was also observed by anthraquinone sulfonate. In this case, the possibility of long-range transfer by an exchange mechanism is considered.  相似文献   

20.
Using ESR, a radical (g = 2.004) was detected in the reaction mixture of 3-hydroxykynurenine (3-HKY), H2O2, and horseradish peroxidase. The radical was stable and was detected even after 5 h. On HPLC analysis of the reaction mixture, two radical peaks (Peak-1 and Peak-2) were detected using ESR. The ESR spectra of Peak-1 and Peak-2 radicals were the same and identical with that of the original radical in the reaction mixture. The retention times of Peak-1 and Peak-2 corresponded to those of authentic xanthommatin (XA) and hydroxanthommatin (Hydro-XA), respectively, XA being formed in the oxidation of 3-HKY by potassium ferricyanide and Hydro-XA being formed in the reduction of XA by sodium metabisulfite. The absorbance spectra of Peak-1 and Peak-2 were nearly identical with those of authentic XA and Hydro-XA. The absorbance spectrum of Peak-2 changed from that of Hydro-XA to that of XA, indicating that Hydro-XA auto-oxidized to XA in the air. The ESR signal intensity of the Peak-2 radical developed in accordance with the progress of this auto-oxidation of Hydro-XA to XA. It was supposed that the Peak-2 radical was generated in the auto-oxidation of Hydro-XA after its elution from the HPLC column. Thus, the radical seemed to be the one-electron oxidized form of Hydro-XA. The Peak-1 radical appeared to be the true retention of the radical on the column and to be eluted with a much larger amount of XA. The separation of the radical from XA was impossible on the column. Hemoglobin (Hb) or hematin also induced the same radical in the reaction mixture of 3-KHY, H2O2, and Hb or hematin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号