首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The purpose of this study is to examine plasma cortisol and adrenocorticotropin (ACTH) levels following a brief high-intensity bout of exercise. Each subject (n = 6) performed a 1-min bout of exercise on a cycle ergometer at 120% of his maximum O2 uptake. Blood samples were collected at rest, immediately following the exercise bout, and at 5, 15, and 30 min postexercise. Mean (+/- SE) plasma ACTH levels increased significantly (P less than 0.05) from 2.2 +/- 0.4 pmol/l at rest to 6.2 +/- 1.7 pmol/l immediately following exercise. Mean (+/- SE) plasma cortisol levels increased significantly from 0.40 +/- 0.04 mumol/l at rest to 0.52 +/- 0.04 mumol/l at 15 min postexercise. These data show that brief high-intensity exercise results in significant increases in plasma cortisol and ACTH levels. Furthermore, the temporal sequence between the two hormones suggests that the increase in plasma cortisol levels following brief high-intensity exercise is the result of ACTH-induced steroidogenesis in the adrenal cortex.  相似文献   

2.
The purpose of this investigation was to examine the acute responses of several hormones [total and free testosterone (TT and FT, respectively), adrenocorticotropic hormone (ACTH), cortisol (C), growth hormone (GH), and insulin (INS)] to a single bout of heavy resistance exercise (HRE). Eight younger [30-year (30y) group] and nine older [62-year (62y) group] men matched for general physical characteristics and activity levels performed four sets of ten repetitions maximum (RM) squats with 90 s rest between sets. Blood samples were obtained from each subject via an indwelling cannula with a saline lock pre-exercise, immediately post-exercise (IP), and 5, 15 and 30 min post-exercise. Levels of TT, FT, ACTH, C and lactate significantly increased after HRE for both groups. Pre-HRE pairwise differences between groups were noted only for FT, while post-HRE pairwise differences were found for TT, FT, GH, glucose and lactate. Area under the curve analysis showed that the 30y group had a significantly higher magnitude of increase over the entire recovery period (IP, 5, 15, and 30 min post-exercise) for TT, FT, ACTH and GH. Few changes occurred in the INS response with the only change being that the 62y group demonstrated a decrease IP. Lactate remained elevated at 30 min post-HRE. This investigation demonstrates that age-related differences occur in the endocrine response to HRE, and the most striking changes appear evident in the FT response to HRE in physically active young and older men. Accepted: 11 June 1997  相似文献   

3.
beta-Endorphin (beta-EP), adrenocorticotropin (ACTH), and cortisol plasma concentrations were examined before and after maximal exercise at four intensities [36, 55, 73, and 100% of maximal leg power (MLP)] by means of a computerized cycle ergometer. All intensities were greater than those eliciting peak O2 uptake for the individual subjects. Blood samples were collected at rest, immediately after exercise, and at 5 and 15 min postexercise. Significant (P less than 0.05) increases were observed at 36% MLP for beta-EP and ACTH immediately after exercise and at 5 and 15 min postexercise. Plasma cortisol increased at 36% MLP at 15 min postexercise. Blood lactate significantly increased at all postexercise collection points for exercise intensities of 36, 55, and 73% MLP and at 5 min postexercise for 100% MLP. beta-EP concentrations at 36% MLP were significantly correlated (r = 0.75) with capillary density (mm-2), and cortisol concentrations at 36% MLP were significantly correlated (r = 0.89) with percentage of type II muscle fibers. No other significant relationships were observed. These data show that brief, high-intensity exercise up to maximal power production results in a nonlinear response pattern in peripheral blood hormone concentrations. Furthermore, blood lactate levels do not appear to be related to hypothalamic-pituitary-adrenal hormone plasma concentrations at high exercise intensities.  相似文献   

4.
In a significant proportion of patients with acromegaly, a non-specific increase in plasma growth hormone (GH) has been recognized following administration of thyrotropin-releasing hormone (TRH) or luteinizing hormone-releasing hormone (LH-RH), probably due to the lack of the specificity of the receptor in their tumor cells. In this study, the effects of corticotropin-releasing factor (CRF), a newly isolated hypothalamic hormone, in addition to TRH and LH-RH, on plasma levels of GH and the other anterior pituitary hormones were evaluated in 6 patients with acromegaly. Synthetic ovine CRF (1.0 microgram/kg), TRH (500 micrograms) or LH-RH (100 micrograms) was given as an iv bolus injection, in the morning after an overnight fast. Blood specimens were taken before and after injection at intervals up to 120 min, and plasma GH, adrenocorticotropin (ACTH), thyrotropin, prolactin, luteinizing hormone, follicle-stimulating hormone and cortisol were assayed by radioimmunoassays. A non-specific rise in plasma GH was demonstrated following injection of TRH and LH-RH, in 5 of 6 and 2 of 5 patients, respectively. In all subjects, rapid rises were observed in both plasma ACTH (34.3 +/- 6.2 pg/ml at 0 min to 79.5 +/- 9.5 pg/ml at 30 min, mean +/- SEM) and cortisol level (9.1 +/- 1.3 micrograms/dl at 0 min to 23.4 +/- 1.2 micrograms/dl at 90 min). However, plasma levels of GH and the other anterior pituitary hormones did not change significantly after CRF injection. These results indicate that CRF specifically stimulates ACTH secretion and any non-specific response of GH to CRF appears to be an infrequent phenomenon in this disorder.  相似文献   

5.
Reports of plasma beta-endorphin (B-EN) levels in response to submaximal exercise have been highly disparate. Variations in experimental design have complicated interpretation of previous research. The present study was designed to determine whether a sequential change in plasma beta-endorphin (B-EN), corticotropin (ACTH), and cortisol levels occurs in response to a 30-min submaximal run. Twenty-three subjects were divided into four groups: male runners, female runners, sedentary males and sedentary females. Subjects ran on a treadmill at 80% of previously determined maximum heart rate. Five plasma samples were obtained through an indwelling catheter before exercise (-30 and 0 min), at 15 and 30 min of exercise, and after 30 minutes of recovery. The run resulted in no rise in B-EN, ACTH, and cortisol despite an elevated rectal temperature. B-EN values were significantly higher in males than in females (p less than 0.01). No sex or training differences were seen with respect to change of hormone concentrations over the course of the run. Three male runners developed symptoms of vasovagal syncope after the catheter placement and had high initial B-EN, ACTH, and cortisol concentrations which decreased throughout the run. These data indicate that gender and training do not affect ACTH and cortisol concentrations before, during, and after 30 min of treadmill running at 80% of maximum heart rate, whereas B-EN concentrations are higher in males under these conditions.  相似文献   

6.
In an attempt to investigate their relationships with plasma volume (PV), heart rate (HR), and other hormonal systems, plasma atrial natriuretic peptide (ANP) levels were determined in response to exercise in the heat, associated with dehydration and rehydration with various fluids. Five normal subjects underwent four 3-h experiments, in a 36 degree C environment, in which 25-min exercise periods on a cycle ergometer at 90 W alternate with 5-min rest periods. Blood samples were collected hourly and ANP, arginine vasopressin (AVP), adrenocorticotropin (ACTH), and cortisol were analyzed in four experimental sessions: without fluid supplement (DH) and with progressive rehydration either with water (W), acid isotonic solution (AISO), or neutral isotonic solution (NISO). Exercise in the heat, accompanied by a decrease in PV and an increase in osmolality, elicited an increase of 28 +/- 1.6 pg/ml in plasma ANP, with concomitant increases in AVP (5.1 +/- 1.4 pg/ml), ACTH (49.6 +/- 12.3 pg/ml), and cortisol (8.4 +/- 2.0 micrograms/100 ml). Progressive rehydration maintained PV and blunted ANP, AVP, ACTH, and cortisol responses. These results demonstrate the importance of rehydration, during exercise in a warm environment, in preventing hormonal increases. They suggest that under our conditions, the PV changes and the inferred atrial pressure changes may not be the primary factors controlling ANP release, as under other physiological conditions. The exercise-related activation of pituitary and adrenals and the stimulation of HR counteract the influence of PV changes due to vascular fluid shifts.  相似文献   

7.
Phosphodiesterase type 5 inhibitors may influence human physiology, health, and performance by also modulating endocrine pathways. We evaluated the effects of a 2-day tadalafil administration on adenohypophyseal and adrenal hormone adaptation to exercise in humans. Fourteen healthy males were included in a double-blind crossover trial. Each volunteer randomly received two tablets of placebo or tadalafil (20 mg/day with a 36-h interval) before a maximal exercise was performed. After a 2-wk washout, the volunteers were crossed over. Blood samples were collected at -30 and -15 min and immediately before exercise, immediately after, and during recovery (+15, +30, +60, and +90 min) for adrenocorticotropin (ACTH), β-endorphin, growth hormone (GH), prolactin, cortisol (C), corticosterone, dehydroepiandrosterone-sulfate (DHEAS), and cortisol binding globulin (CBG) assays. C-to-CBG (free cortisol index, FCI) and DHEAS-to-C ratios were calculated. Exercise intensity, perceived exertion rate, O? consumption, and CO? and blood lactate concentration were evaluated. ACTH, GH, C, corticosterone, and CBG absolute concentrations and/or areas under the curve (AUC) increased after exercise after both placebo and tadalafil. Exercise increased DHEAS only after placebo. Compared with placebo, tadalafil administration reduced the ACTH, C, corticosterone, and FCI responses to exercise and was associated with higher β-endorphin AUC and DHEAS-to-C ratio during recovery, without influencing cardiorespiratory and performance parameters. Tadalafil reduced the activation of the hypothalamus-pituitary-adrenal axis during exercise by probably influencing the brain's nitric oxide- and cGMP-mediated pathways. Further studies are necessary to confirm our results and to identify the involved mechanisms, possible health risks, and potential clinical uses.  相似文献   

8.
Corticotrophic secretion of ACTH is stimulated by corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP), and suppressed by glucocorticoids. In vitro and preclinical studies suggest that atrial natriuretic factor (ANF) may be a peptidergic inhibitor of pituitary-adrenocortical activity. The aim of this study was to elucidate a possible role of ANF as a modulator of ACTH release in humans. A bolus injection of 100 micrograms human CRH (hCRH) during a 30 min intravenous infusion of 5 micrograms/min human alpha atrial natriuretic factor (h alpha ANF) was administered at 19:00 to six healthy male volunteers. In comparison to saline, a blunted CRH-stimulated secretion of ACTH (mean maximum plasma level +/- SD 45 min after hCRH: saline 46.2 +/- 14.2 pg/ml, h alpha ANF 34.6 +/- 13.8 pg/ml, p-value = 0.007) and a delayed rise (10 min) in cortisol were detected. The maximum plasma cortisol levels remained nearly unchanged between saline and h alpha ANF administration (mean maximum plasma level +/- SD 60 min after hCRH: saline 182 +/- 26 ng/ml, h alpha ANF 166 +/- 54 ng/ml). No effects of h alpha ANF on basal cortisol levels were observed; in contrast, basal ACTH plasma levels were slightly reduced. Basal blood pressure and heart rate remained unaffected. In the control experiment, infusion of 3 IU AVP in the same experimental paradigm increased basal and stimulated ACTH and cortisol levels significantly in comparison to saline. These observations suggest that intravenously administered haANF inhibits the CRH-stimulated release of ACTH in man.  相似文献   

9.
The influence of moderate cold exposure on the hormonal responses of atrial natriuretic factor (ANF), arginine vasopressin (AVP), catecholamines, and plasma renin activity (PRA) after exhaustive exercise was studied in 9 young and 10 middle-aged subjects. Exercise tests were randomly performed in temperate (30 degrees C) and cold (10 degrees C) environments. Heart rate, oxygen consumption, and peripheral arterial blood pressure were measured at regular intervals. Blood samples were collected before and immediately after exercise at 30 or 10 degrees C. Plasma sodium and potassium concentrations as well as hemoglobin and hematocrit were measured, and the change in plasma volume was calculated. At rest and during exercise, oxygen consumption was similar during exposure to both temperate and cold temperatures. During submaximal exercise intensities, the rise in heart rate was blunted while the increase in systolic blood pressure was significantly greater at 10 than at 30 degrees C. The increases in plasma sodium and potassium concentrations after exhaustion were similar between environments, as was the decrease in plasma volume. In both groups, all plasma hormones were significantly elevated postexercise, with the AVP response similar at 10 and 30 degrees C. However, the norepinephrine and ANF responses were significantly greater while the PRA response was significantly reduced at 10 degrees C. In the middle-aged subjects the epinephrine response to exercise was higher at 10 than at 30 degrees C. The greater ANF and reduced PRA responses to exercise in the cold may have resulted from central hemodynamic changes caused by cold-induced cutaneous vasoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A placebo and a low and a high dose of dexamethasone (Dex) were administered for 4.5 days, at 3-wk intervals, to 24 healthy men, following a double-blind, random-order, crossover procedure. After the last dose the subjects performed a maximal cycling exercise, during which respiratory exchanges, electrocardiogram, and blood pressures were monitored. Blood was sampled just before and after each exercise bout. Dex showed no significant effect on fitness, sleep, exhaustion during exercise, maximal O(2) consumption, ventilatory threshold, maximal blood lactate, or rest and exercise blood pressures. On the contrary, both doses of Dex significantly decreased heart rate at rest and during maximal exercise. Blood glucose at rest was higher after both doses of Dex than after placebo; the opposite was found during exercise. Blood levels of ACTH, beta-endorphin, cortisol, and cortisol-binding globulin were lowered by Dex at rest and after exercise. Dex stimulated the increase in atrial natriuretic factor during exercise and lowered rest and postexercise aldosterone. Finally, no difference between "fit or trained" and "less fit or untrained" subjects could be found with respect to Dex effects.  相似文献   

11.
On different days, 10 men performed 30-min sessions of cycling at 50-55% of their peak oxygen uptake (VO(2)); one at 40 rpm and another at 80 rpm. Rectal temperature, heart rate (HR), mean arterial pressure (MAP), plasma lactate, glucose, insulin, and cortisol were measured before exercise, during the 15th and 30th min of exercise, and at 5 and 10 min postexercise. Rating of perceived exertion (RPE) was assessed 15 and 30 min into exercise. Electromyography established cadence-specific different intensities of quadriceps activation during cycling. At minute 30 of exercise and 5 min postexercise, HR was significantly (P < 0.05) greater at 40 rpm than at 80 rpm. MAP remained elevated longer after the 40-rpm than after the 80-rpm bout. Similarly, exercise-induced increases in plasma lactate persisted longer after the 40-rpm bout. Cortisol levels were elevated only at 40 rpm. RPE was higher during the slower cadence. These data indicated that the more pronounced muscle activation pattern associated with pedaling at 40 rpm resulted in greater physiological and psychophysiological stress than that observed at 80 rpm even though VO(2) was the same.  相似文献   

12.
Responses of plasma ACTH and cortisol to corticotropin-releasing factor (CRF) were evaluated in 31 normal human males. 1.0 micrograms/ks of sterilized synthetic ovine CRF was administered to the subjects, aged 19 to 53 yr and weighing 50 to 78 kg, at between 9:30 a.m. and 10:30 a.m. as an intravenous bolus injection after an overnight fast. Blood specimens were drawn before and 15, 30, 60, 90 and 120 min after injection for later determination of plasma ACTH and cortisol concentrations by radioimmunoassays. Plasma ACTH and cortisol levels for all subjects rose significantly (p less than 0.001) from the basal level (mean +/- SEM, 26.8 +/- 4.5 pg/ml and 12.6 +/- 0.9 micrograms/dl) to peak levels (58.4 +/- 5.5 pg/ml and 22.9 +/- 1.0 micrograms/dl) at 30 min and at 60 min, respectively. Although the plasma concentrations of ACTH and cortisol thereafter declined gradually, the levels at 120 min (43.4 +/- 5.2 pg/ml and 18.9 +/- 0.9 micrograms/ml, respectively) were still significantly higher than the basal levels (p less than 0.001). Significant inverse correlations were observed between the basal levels of each hormone and the ratio of the peak level to the basal level (p less than 0.01), and the increases in plasma ACTH and cortisol concentrations were either not significant or much smaller for the individuals in whom the basal levels were higher than 65 pg/ml and 17.0 micrograms/dl, respectively. No serious subjective symptom was observed during the experimental period in any of the subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Effects of 1-(m-trifluoromethylphenyl)-piperazine, a serotonin agonist, were examined on rat plasma levels of adrenocorticotropin (ACTH) and arginine vasopressin (AVP), and on hypothalamic contents of corticotropin releasing factor (CRF) and AVP, to investigate the role of brain serotonin in ACTH regulation. Both plasma ACTH and AVP levels increased markedly 30 min after injection of the compound and were still elevated at 80 min. CRF and AVP contents in the median eminence decreased 30 min after injection but returned to the basal levels by 80 min. The AVP content in the supraoptic nucleus was elevated 80 min after injection. The CRF and aVP content did not significantly change in the paraventricular, suprachiasmatic and arcuate nuclei. Serotonin or 1-(m-trifluoromethylphenyl)-piperazine did not stimulate the release of ACTH in pituitary cell cultures. These results suggest that both CRF and AVP were secreted into the portal vessels by 1-(m-trifluoromethylphenyl)-piperazine to release ACTH from the anterior pituitary and that both the ACTH and AVP release were stimulated via the brain serotonergic mechanism.  相似文献   

14.
The hypothalamo-pituitary-adrenal axis is involved throughout the exercise-recovery cycle. Nevertheless, differences in hormone responses during early recovery between sedentary and endurance trained subjects are not well known. The aim of this preliminary study was to monitor plasma cortisol and adrenocorticotropic hormone (ACTH) concentrations both during and after the end of running exercise performed by four endurance trained adults (marathon men) compared to four sedentary subjects. Two parameters, i.e. intensity and duration, were changed on 4 consecutive days. The 1st day (D0) was spent in the laboratory: all blood samples were obtained at rest to determine diurnal variations of each hormone. On the following days (D1–D4) the subjects exercised: D1 and D2 brief (20 min), light (50% maximal heart rate HRmax, D1) or strenuous (80% HRmax, D2), D3 and D4 prolonged (120 min), light (D3) or strenuous (D4). In both groups, neither brief (D1, D2) nor prolonged light exercise (D3) induced any significant variation in plasma ACTH or cortisol concentrations. Plasma ACTH and cortisol concentrations increased only if the exercise was intense and prolonged (D4). The training factor did not modify the intensity or duration thresholds for the activation of the pituitary-adrenocortical response to exercise in the conditions of our experiment. However, during immediate recovery from the four exercise regimens, the plasma ACTH concentrations of the marathon men were constantly above the values of the sedentary subjects, although plasma cortisol concentration remained similar in both groups. As an indirect means of evaluating the relationships between ACTH and cortisol we compared the areas under the cortisol and ACTH curves (AUC) from 0.5 to 3.5h during recovery from D1 to D4 compared to D0 at the same time. Cortisol AUC were similar in the sedentary subjects and marathon men although the ACTH AUC were different in the sedentary subjects and marathon men, suggesting a change in the pituitary-adrenal relationship at some yet indeterminate level. During the immediate recovery from exercise whatever its intensity, the magnitude of the ACTH response was increased in the trained subjects but with a reduced effect upon its target, the adrenal glands. This phenomenon has not been described in the literature. Two non-exclusive phenomena may be involved, i.e. a decreased adrenal sensitivity to ACTH stimulation, and/or a decreased hypothalamo-pituitary axis sensitivity to cortisol negative feedback. Accepted: 6 August 1996  相似文献   

15.
The purpose of this study was to examine the effect of different durations of rest between two bouts of exercise on immunoendocrine responses during and after the second bout of exercise. Nine endurance athletes participated in three 25-h trials: 1) complete bed rest (REST), 2) two bouts of exercise separated by 3 h of rest (SHORT), and 3) two bouts of exercise separated by 6 h of rest (LONG). Each cycle ergometer exercise bout lasted 75 min at 75% of maximal O(2) uptake. We observed a more pronounced increase in epinephrine, norepinephrine, adrenocorticotropic hormone, and cortisol, but not in growth hormone, and a larger neutrophilia and lymphocytopenia in connection with the second bout of exercise in trial SHORT compared with trial LONG. Lymphocyte activation was unaltered by the difference in rest protocol. In conclusion, a second bout of exercise elicited more pronounced change in neuroendocrine factors and leukocyte counts when preceded by 3 h of rest as opposed to 6 h of rest after the first bout of exercise.  相似文献   

16.
Plasma concentrations of corticotropin releasing hormone (CRH) and the serum concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone, adrenocorticotropic hormone (ACTH) and cortisol were measured in seven physically active males after acute exercise on a treadmill using the Bruce protocol. Measurements were made in the basal pre-exercise state, immediately after exercise, and at 30-min intervals for 3 h after exercise. Serum LH concentrations declined following exercise reaching nadir values between 60 and 180 min after exercise (90 min post exercise in the group). The nadir values in individual volunteers were significantly lower than both the baseline and post-exercise levels. This fall in serum LH concentration appeared to follow a slight but significant elevation of the plasma concentration of CRH which reached peak levels when measured immediately post exercise. Plasma ACTH concentrations paralleled the rise in CRH, but fell to undetectable levels of below 13.8 nmol.l-1 (less than 5 ng.l-1) 60 min after exercise. Plasma cortisol concentrations peaked approximately 30 min after the rise in ACTH, after which they gradually declined to baseline levels. Plasma testosterone concentrations paralleled the concentrations of LH. The data suggest that CRH, on the basis of its previously described gonadotropin-depressant property, may be the hormone involved in the exercise-mediated decline in serum LH. Alternatively, some as yet unidentified factor(s), may be involved in producing the altered concentrations of both LH and CRH.  相似文献   

17.
Leptin, an ob gene product of adipocytes, plays a key role in the control of food intake and energy expenditure but little is known about leptin response to strenuous exercise in fasted and fed subjects or before and after blood donation. This study was designed to determine the immediate effects of strenuous exercise in healthy volunteers under fasting or fed conditions and before and one day after blood donation (450 ml) on plasma levels of leptin and gut hormones [gastrin, cholecystokinin (CCK), pancreatic polypeptide (PP) and insulin], as well as on "stress" hormones (cortisol, catecholamines and growth hormone. Two groups (A and B) of healthy non-smoking male volunteers were studied. All subjects performed incremental exercise tests until exhaustion (up to maximal oxygen uptake--VO2max), followed by 2 h of rest session. Group A perfomed the tests on a treadmill, while group B on a cycloergometer. In group A, one exercise was performed under fasting conditions and the second following ingestion of a standard liquid meal. In group B, one exercise test was performed as a control test and the second 24 h after blood donation (450 ml). Blood samples were withdrawn 5 min before the start of the test, at the VO2max, and 2 h after finishing the exercise. No significant change in plasma teptin were observed both immediately and 2 h after the exercise in fasted subjects, but after the meal the plasma leptin at VO2max and 2 h after the test was significantly higher, while after blood donation was significantly reduced. The postprandial rise in plasma leptin was accompanied by a marked increment in gut hormones; gastrin, CCK and PP and stress hormones such as norepinephrine, cortisol and GH. These hormonal changes could contribute to the postprandial rise in plasma leptin concentrations, while the fall of leptin after blood donation could be attributed to the inadequate response of stress hormones and autonomic nervous system to exhausting exercise. We conclude that strenuous physical exercise; 1) fails to affect plasma leptin level but when performed after meal but not after blood withdrawal it results in an increase and fall in plasma leptin, and 2) the release of gut hormones (gastrin, CCK and PP) and stress hormones (norepinephrine, cortisol, GH) increase immediately after exercise independently of feeding or blood donation and 3) following blood donation the strenuous exercise resulted in a marked reduction in the plasma leptin, cortisol and GH concentrations, possibly due to the impairment in the autonomic nervous control of these hormones.  相似文献   

18.
To test the influence of the accumulation of metabolites on exercise-induced hormone responses, plasma concentrations of cortisol, growth hormone (GH), insulin, testosterone, thyrotropin (TSH), free thyroxine (fT4) and triiodothyronine (T3) were compared during exercise performed under normal conditions (control) and under conditions of restricted blood flow of exercising leg muscles (ischaemia) in nine healthy young men. Blood supply was reduced by 15%–20% by the application of 50 mmHg external pressure over the exercising leg. During 45-min cycling exercise during ischaemia the increase in GH concentration was twice as large as under normal conditions. Despite the below-threshold exercise intensity for activation of the pituitary-adrenocortical system under normal exercise conditions ischaemic exercise elicited cortisol and T3 responses (concentration increases of 83% and 9.5%, respectively). Ischaemic exercise attenuated the decrease of plasma insulin concentration found under normal conditions. The concentrations of testosterone, TSH and fT4 were not changed significantly during exercise performed in either condition. The results support the suggested essential role of muscle metaboreceptors in the control of hormone responses during muscle activity. Accepted: 6 November 1997  相似文献   

19.
We wished to determine whether the increased ACTH duringprolonged exercise was associated with changes in peripheralcorticotropin-releasing hormone (CRH) and/or argininevasopressin (AVP). Six male triathletes were studied during exercise: 1 h at 70% maximal oxygen consumption, followed by progressivelyincreasing work rates until exhaustion. Data obtained during theexercise session were compared with a nonexercise control session.Venous blood was sampled over a 2-h period for cortisol, ACTH, CRH,AVP, renin, glucose, and plasma osmolality. There were significantincreases by ANOVA on log-transformed data in plasma cortisol(P = 0.002), ACTH(P < 0.001), CRH(P < 0.001), and AVP(P < 0.03) during exercise comparedwith the control day. A variable increase in AVP was observed after the period of high-intensity exercise. Plasma osmolality rose with exercise(P < 0.001) and was related toplasma AVP during submaximal exercise(P < 0.03) but not with theinclusion of data that followed the high-intensity exercise. Thisindicated an additional stimulus to the secretion of AVP. The mechanismby which ACTH secretion occurs during exercise involves both CRH andAVP. We hypothesize that high-intensity exercise favors AVP release andthat prolonged duration favors CRH release.

  相似文献   

20.
The role of angiotensin II in the hormonal and renal responses to maximal exercise was investigated by using the angiotensin-converting enzyme inhibitor captopril. Nine male subjects performed a standardized maximal treadmill test with and without acute captopril treatment (25 mg orally). At rest, captopril elevated plasma renin activity and lowered aldosterone levels. With maximal exercise, captopril treatment reduced the increase in mean arterial blood pressure by 8 mmHg and the increase in plasma renin activity by 3.0 ng ANG I.ml-1.h-1. The responses of adrenocorticotropin (ACTH), cortisol, and vasopressin to maximal exercise were not altered by captopril treatment. Although aldosterone levels were reduced at rest with captopril, during maximal exercise no difference was noted between treatments. Captopril treatment had no effects on the renal handling of salts or water during exercise. In conclusion, angiotensin II plays a role in the increase in mean blood pressure during maximal exercise in normal subjects but has no effect on the exercise responses of ACTH, vasopressin, and aldosterone or on the renal handling of salts and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号