首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Macrophages are key elements in the inflammatory process, whereas depending on the micro-environmental stimulation they exhibit a pro-inflammatory (classical/M1) or an anti-inflammatory/reparatory (alternative/M2) phenotype. Extracellular ATP can act as a danger signal whereas adenosine generally serves as a negative feedback mechanism to limit inflammation. The local increase in nucleotides communication is controlled by ectonucleotidases, such as members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family and ecto-5'-nucleotidase/CD73 (ecto-5'-NT). In the present work we evaluated the presence of these enzymes in resident mice M1 (macrophages stimulated with LPS), and M2 (macrophages stimulated with IL-4) macrophages. Macrophages were collected by a lavage of the mice (6-8 weeks) peritoneal cavity and treated for 24 h with IL-4 (10 ng/mL) or LPS (10 ng/mL). Nitrite concentrations were measured using the Greiss reaction. Supernatants were harvested to determine cytokines and the ATPase, ADPase and AMPase activities were determined by the malachite green method and HPLC analysis. The expression of selected surface proteins was evaluated by flow cytometry. The results reveal that M1 macrophages presented a decreased ATP and AMP hydrolysis in agreement with a decrease in NTPDase1, -3 and ecto-5'-nucleotidase expression compared to M2. In contrast, M2 macrophages showed a higher ATP and AMP hydrolysis and increased NTPDase1, -3 and ecto-5'-nucleotidase expression compared to M1 macrophages. Therefore, macrophages of the M1 phenotype lead to an accumulation of ATP while macrophages of the M2 phenotype may rapidly convert ATP to adenosine. The results also showed that P1 and P2 purinoreceptors present the same mRNA profile in both phenotypes. In addition, M2 macrophages, which have a higher ATPase activity, were less sensitive to cell death. In conclusion, these changes in ectoenzyme activities might allow macrophages to adjust the outcome of the extracellular purinergic cascade in order to fine-tune their functions during the inflammatory set.  相似文献   

3.
In this study, we evaluated the NTPDases and ecto-5'-nucleotidase (CD73) expression profiles and the pattern of adenine nucleotide hydrolysis in rats submitted to the Walker 256 tumor model, 6, 10 and 15 days after the subcutaneous inoculation. Using RT-PCR analysis, we identified mRNA for all of the members of the ecto-nucleoside triphosphate diphosphohydrolase family investigated and a 5'-nucleotidase. By quantitative real-time PCR, Entpd1 (Cd39) and Entpd2 (Cd39L1) and CD73 were identified as the dominant genes expressed by the Walker 256 tumor, at all times studied. Extracellular adenine nucleotide hydrolysis by the Walker 256 tumor was estimated by HPLC analysis. Rapid hydrolysis of extracellular ATP by the tumor cells was observed, leading to the formation of adenosine and inosine in cells obtained from solid tumors at 6 and 10 days after inoculation. Cells obtained from solid tumors at 15 days of growth presented high levels of AMP and presented adenosine as a final product after 90 min of incubation. Results demonstrate that the presence of NTPDases and 5'-nucleotidase enzymes in Walker 256 tumor cells may be important for regulation of the extracellular adenine nucleotides/adenine nucleoside ratio, therefore leading to tumor growth.  相似文献   

4.
Extracellular purines are important signaling molecules that mediate both inflammatory (ATP, ADP) and anti-inflammatory (adenosine) effects in the vasculature. The duration and magnitude of purinergic signaling is governed by a network of purine-converting ectoenzymes, and endothelial and lymphoid cells are generally characterized by counteracting ATP-inactivating and ATP-regenerating/adenosine-eliminating, phenotypes, respectively. By using cultured human umbilical vein endothelial cells and normal or leukemic lymphocytes as an in vitro model of leukocyte-endothelial interactions, we have identified a link between the adhesion cascade and extracellular purine turnover. Upon adhesion, lymphocytes suppress endothelial purine metabolism via (i) inhibition of ecto-5'-nucleotidase/CD73-mediated AMP hydrolysis, (ii) rapid deamination of the remaining adenosine, and (iii) maintenance of the sustained pericellular ATP level through continuous nucleotide release and phosphotransfer reactions. Compensation of the loss of adenosine promotes vascular barrier function (measured as a paracellular flux of 70 kDa fluorescein isothiocyanate-dextran) and decreases transendothelial leukocyte migration. Together, these data show that adherent lymphocytes attempt to prevent adenosine formation in the endothelial environment that, as a consequence, may impair the vascular barrier function and facilitate the subsequent step of leukocyte transmigration into the tissue. These leukocyte adhesion-mediated shifts in the local nucleotide and nucleoside concentrations represent a previously unrecognized paracrine mechanism affecting the functional state of the targeted vascular endothelium and coordinately regulating lymphocyte trafficking between the blood and tissues.  相似文献   

5.
Depression is a serious condition associated with considerable morbidity and mortality. Selective serotonin reuptake inhibitors and tricyclic antidepressants, such as fluoxetine and nortriptyline, respectively, were commonly used in treatment for depression. Selective serotonin reuptake inhibitors have been associated with increased risk of bleeding complications, possibly as a result of inhibition of platelet aggregation. ATP, ADP and adenosine are signaling molecules in the vascular system and nucleotidases activities are considered an important thromboregulatory system which functions in the maintenance of blood fluidity. Therefore, here we investigate the effect of in vivo (acute and chronic) and in vitro treatments with the antidepressant drugs on nucleotidases activities in rat blood serum. In acute treatment, nortriptyline decreased ATP hydrolysis (41%), but not altered ADP and AMP hydrolysis. In contrast, fluoxetine did not alter NTPDase and ecto-5'-nucleotidase activities. A significant inhibition of ATP, ADP, and AMP hydrolysis were observed in chronic treatment with fluoxetine (60%, 32%, and 42% for ATP, ADP, and AMP hydrolysis, respectively). Similar effects were shown in chronic treatment with nortriptyline (37%, 41%, and 30% for ATP, ADP, and AMP hydrolysis, respectively). In addition, there were no significant changes in NTPDase and ecto-5'-nucleotidase activities when fluoxetine and nortriptyline (100, 250, and 500 microM) were tested in vitro. Our results have shown that fluoxetine and nortriptyline changed the nucleotide catabolism, suggesting that homeostasis of vascular system can be altered by antidepressant treatments.  相似文献   

6.
7.
Here we report the effects of metronidazole and tinidazole on NTPDase1 and ecto-5'-nucleotidase from intact cells of Trichomonas vaginalis. Adenosine triphosphate (ATP) and adenosine diphosphate (ADP) hydrolysis was 5- to 7-fold higher for the fresh clinical strain, when compared with the ATCC (American Type Culture Collection) strain. ATP hydrolysis was activated in the presence of metronidazole in the ATCC strain, whilst it was inhibited 33% by 50 microM tinidazole in a fresh clinical isolate. The treatment of cells in the presence of metronidazole for 2 h inhibited ATP and ADP hydrolysis, whilst treatment with tinidazole inhibited ATP and ADP hydrolysis only in the fresh clinical isolate. The drugs did not change the ecto-5'-nucleotidase activity for both strains. Our results suggest that the modulation of extracellular ATP and ADP levels during treatment with these drugs could be a parasitic defence strategy as a survival mechanism in an adverse environment.  相似文献   

8.
9.
Adenosine production inside rat polymorphonuclear leucocytes.   总被引:13,自引:5,他引:8       下载免费PDF全文
Adenosine synthesis was studied during 2-deoxyglucose-induced ATP catabolism in intact rat polymorphonuclear leucocytes. When both adenosine kinase (EC 2.7.1.20) and adenosine deaminase (EC 3.5.4.4) were selectively inhibited, adenosine accumulated. Adenosine formation took place inside the intact cells by a metabolic pathway independent of the ecto-5'-nucleotidase (EC 3.1.3.5). Distinct metabolic pathways are proposed for adenosine production from intracellular or extracellular nucleotides.  相似文献   

10.
Primary astrocyte cultures from hippocampus, cortex and cerebellum presented different extracellular pattern of adenine nucleotide hydrolysis. The ATP/ADP hydrolysis ratio was 8:1 for hippocampal and cortical astrocytes and 5:1 for cerebellar astrocytes. The AMP hydrolysis in cerebellar astrocytes was seven-fold higher than in cortical or hippocampal cells. No accumulation of extracellular adenosine in all structures studied was observed. Dipyridamol increased significantly inosine levels in the extracellular medium of hippocampal and cortical, but not in cerebellar astrocytes medium. A higher expression of ecto-5′-nucleotidase was identified by RT-PCR in cerebellum. The differences observed may indicate functional heterogeneity of nucleotides in the brain.  相似文献   

11.
The physiological action of extracellular ATP and other nucleotides in the nervous system is controlled by surface-located enzymes (ecto-nucleotidases) of which several families with partially overlapping substrate specificities exist. In order to identify ecto-nucleotidases potentially associated with neural cells, we chose PC12 cells for analysis. PC12 cells revealed surface-located ATPase and ADPase activity with apparent K(m)-values of 283 microM and 243 microM, respectively. Using PCR we identified the mRNA of all members of the ecto-nucleoside triphosphate diphosphohydrolase family investigated (NTPDase1 to NTPDase3, NTPDase5/6), of ecto-nucleotide pyrophosphatase/phosphodiesterase3 (NPP3), tissue-non-specific alkaline phosphatase and ecto-5'-nucleotidase. The surface-located catalytic activity differed greatly between the various enzyme species. Our data suggest that hydrolysis of ATP and ADP is mainly due to members of the ecto-nucleoside triphosphate diphosphohydrolase family. Activity of ecto-5'-nucleotidase and alkaline phosphatase was very low and activity of NPP3 was absent. For a detailed analysis of the cellular distribution of ecto-nucleotidases single and double transfections of PC12 cells were performed, followed by fluorescence analysis. Ecto-nucleotidases were distributed over the entire cell surface and accumulated intracellularly in varicosities and neurite tips. PC12 cell ecto-nucleotidases are likely to play an important role in terminating autocrine functions of released nucleotides and in producing extracellular nucleosides supporting the survival and neuritic differentiation of PC12 cells.  相似文献   

12.
Extracellular adenine nucleotide hydrolysis in the circulation is mediated by the action of an NTPDase (CD39, apyrase) and of a 5′-nucleotidase (CD73), presenting as a final product, adenosine. Among other properties described for adenine nucleotides, an anti-cancer activity is suggested, since ATP is considered a cytotoxic molecule in several tumour cell systems. Conversely, some studies demonstrate that adenosine presents a tumour-promoting activity. In this study, we evaluated the pattern of adenine nucleotide hydrolysis by serum and platelets from rats submitted to the Walker 256 tumour model. Extracellular adenine nucleotide hydrolysis by blood serum and platelets obtained from rats at, 6, 10 and 15 days after the subcutaneous Walker 256 tumour inoculation, was evaluated. Our results demonstrate a significant reduction in ATP, ADP and AMP hydrolysis in blood serum at 6, 10 and 15 days after tumour induction. In platelets, a significant reduction in ATP and AMP hydrolysis was observed at 10 and 15 days after tumour induction, while an inhibition of ADP hydrolysis was observed at all times studied. Based on these results, it is possible to suggest a physiologic protection mechanism against the tumoral process in circulation. The inhibition in nucleotide hydrolysis observed probably maintains ATP levels elevated (cytotoxic compound) and, at the same time, reduces the adenosine production (tumoor-promoting molecule) in the circulation.  相似文献   

13.
Adenosine, a well-known neuromodulator, may be formed intracellularly in the CNS from degradation of AMP and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. This study reports the enzymatic properties of an ecto-5'-nucleotidase activity in brain membranes of zebrafish (Danio rerio). This enzyme was cation-dependent, with a maximal rate for AMP hydrolysis in a pH range of 7.0-7.5 in the presence of Mg(2+). The enzyme presented a maximal activity for AMP hydrolysis at 37 degrees C. The apparent K(m) and V(max) values for Mg(2+)-AMP were 135.3+/-16 microM and 29+/-4.2 nmol Pi.min(-1).mg(-1) protein, respectively. The enzyme was able to hydrolyze both purine and pyrimidine monophosphate nucleotides, such as UMP, GMP and CMP. Levamisole and tetramisole (1 mM), specific inhibitors of alkaline phosphatases, did not alter the enzymatic activity. However, a significant inhibition of AMP hydrolysis (42%) was observed in the presence of 100 microM alpha,beta-methylene-ADP, a known inhibitor of ecto-5'-nucleotidase. Since 5'-nucleotidase represents the major enzyme responsible for the formation of extracellular adenosine, the enzymatic characterization is important to understand its role in purinergic systems and the involvement of adenosine in the regulation of neurotransmitter release.  相似文献   

14.
The use of nucleotides and their analogs in the pharmacological studies of nucleotide receptors (P2 class) should be preceded by detailed studies on their degradation connected with ecto-enzymes of a given cell type. In the present studies we have analyzed stability of some phosphorothioate and phosphonate analogs of ATP and ADP in the HeLa epitheloid carcinoma and endothelial HUVEC cells cultures. Our studies have revealed that ecto-nucleotide pyrophosphatase (E-NPP) is one of the main enzymes involved in the extracellular degradation of ATP and other nucleotides in the HeLa cells. On the other hand, the ecto-ATPDase is responsible for the hydrolysis of extracellular nucleotides in human endothelial cell cultures, while the E-NPP-like enzymes of the HUVEC cells are not essential to this degradation. The concerted action of the aforementioned ecto-enzymes and nucleotide pyrophosphatase, 5'-nucleotidase and adenosine deaminase present in fetal bovine serum (FBS) supplied to the culture medium, results in partial or complete degradation of the phosphorothioate (ATPgammaS) and phosphonate analogs of adenosine nucleotides (alpha,beta-methylene-ATP and beta,gamma-methylene-ATP) in the cell cultures. Only ADPbetaS appears to be resistant to these enzymes. The influence of some nucleotides and their analogs on the proliferation of the HeLa cells in presence or absence of FBS is also discussed.  相似文献   

15.
Extracellular nucleotides ATP, ADP, AMP and adenosine are well known signaling molecules of the cardiovascular system that are involved in several physiological processes: cell proliferation, platelet aggregation, inflammatory processes and vascular tonus. The levels of these molecules are controlled by ecto-NTPDases and ecto-5′-nucleotidase/CD73 (ecto-5′-NT/CD73) actions, which are responsible for the complete ATP degradation to adenosine. The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), play important roles in the vascular system promoting vasodilatation. Here we investigated the influence of thyroid hormones on the enzyme cascade that catalyzes the interconversion of purine nucleotides in vascular smooth muscle cells (VSMC). Exposure of VSMCs to 50nM T3 or T4 did not change ATP and ADP hydrolysis significantly. However, the same treatment caused an increase of 75% in AMP hydrolysis, which was time-dependent but dose-independent. Moreover, T3 treatment significantly increased ecto-5′-NT/CD73 mRNA expression, which suggests a genomic effect of this hormone upon ecto-5′-NT/CD73. In addition to the importance of the ecto-5′-NT in cell proliferation and differentiation, its overexpression could result in higher extracellular levels of adenosine, an important local vasodilatator molecule.  相似文献   

16.
Changes in transport, receptors and production of extracellular adenosine have been observed after induction of hyperthyroidism. Adenosine is associated with inhibitory actions such as reduction in release of excitatory neurotransmitters and antinociception at spinal site. In contrast, ATP acts as an excitatory neurotransmitter and produces pronociceptive actions. ATP may be completely hydrolyzed to adenosine by an enzyme chain constituted by an ATP diphosphohydrolase and an ecto-5'-nucleotidase, as previously described in the spinal cord. Thus, we now investigated the effects of the hyperthyroidism on adenine nucleotide hydrolysis in the spinal cord and verified the nociceptive response in this pathology during different phases of development. Hyperthyroidism was induced in male Wistar rats, aged 5, 60 and 330 days by daily intraperitoneal injections of L-thyroxine (T4) for 14 days. Nociception was assessed with a tail-flick apparatus. Rats starting the treatment aged 5 days demonstrated a significant increase in ADP and AMP hydrolysis and increased tail-flick latency (TFL). In contrast, in the spinal cord from hyperthyroid rats aged 60 and 330 days old, the hydrolysis of ATP, ADP and AMP were significantly decreased. Accordingly, the tail-flick latency was decreased, indicating a hyperalgesic response. These results suggest the involvement of ecto-nucleotidases in the control of the hyperthyroidism-induced nociceptive response in rats at distinct developmental stages.  相似文献   

17.
Adenosine produces analgesia in the spinal cord and can be formed extracellularly through enzymatic conversion of adenine nucleotides. A transverse push-pull microprobe was developed and characterized to sample extracellular adenosine concentrations of the dorsal horn of the rat spinal cord. Samples collected via this sampling technique reveal that AMP is converted to adenosine in the dorsal horn. This conversion is decreased by the ecto-5'-nucleotidase inhibitor, alpha,beta-methylene ADP. Related behavioral studies demonstrate that AMP administered directly to the spinal cord can reverse the secondary mechanical hyperalgesia characteristic of the intradermal capsaicin model of inflammatory pain. The specific adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT) inhibits the antihyperalgesia produced by AMP. This research introduces a novel microprobe that can be used as an adjunct sampling technique to microdialysis and push-pull cannulas. Furthermore, we conclude that AMP is converted to adenosine in the dorsal horn of the spinal cord by ecto-5'-nucleotidase and subsequently may be one source of adenosine, acting through adenosine A(1) receptors in the dorsal horn of the spinal cord, which produce antihyperalgesia.  相似文献   

18.
The involvement of extracellular nucleotides and adenosine in an array of cell-specific responses has long been known and appreciated, but the integrative view of purinergic signalling as a multistep coordinated cascade has emerged recently. Current models of nucleotide turnover include: (i) transient release of nanomolar concentrations of ATP and ADP; (ii) triggering of signalling events via a series of ligand-gated (P2X) and metabotropic (P2Y) receptors; (iii) nucleotide breakdown by membrane-bound and soluble nucleotidases, including the enzymes of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) family, ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) family, ecto-5'-nucleotidase/CD73, and alkaline phosphatases; (iv) interaction of the resulting adenosine with own nucleoside-selective receptors; and finally, (v) extracellular adenosine inactivation via adenosine deaminase and purine nucleoside phosphorylase reactions and/or nucleoside uptake by the cells. In contrast to traditional paradigms that focus on purine-inactivating mechanisms, it has now become clear that "classical" intracellular ATP-regenerating enzymes, adenylate kinase, nucleoside diphosphate (NDP) kinase and ATP synthase can also be co-expressed on the cell surface. Furthermore, data on the ability of various cells to retain micromolar ATP levels in their pericellular space, as well as to release other related compounds (adenosine, UTP, dinucleotide polyphosphates and nucleotide sugars) gain another important insight into our understanding of mechanisms regulating a signalling cascade. This review summarizes recent advances in this rapidly evolving field, with particular emphasis on the nucleotide-releasing and purine-converting pathways in the vasculature.  相似文献   

19.
Obata T 《Life sciences》2002,71(18):2083-2103
Adenosine exerts cardioprotective effects on the ischemic myocardium. A flexibly mounted microdialysis probe was used to measure the concentration of interstitial adenosine and to assess the activity of ecto-5'-nucleotidase (a key enzyme responsible for adenosine production) in in vivo rat hearts. The level of adenosine during perfusion of adenosine 5'-adenosine monophosphate (AMP) was given as an index of the activity of ecto-5'-nucleotidase in the tissue. Endogenous norepinephrine (NE) activates both alpha(1)-adrenoceptors and protein kinase C (PKC), which, in turn, activates ecto-5'-nucleotidase via phosphorylation thereby enhancing the production of interstitial adenosine. Histamine-release NE activates PKC, which increased ecto-5'-nucleotidase activity and augmented release of adenosine. Opening of cardiac ATP sensitive K(+) (K(ATP)) channels may cause hydroxyl radical (.OH) generation through NE release. Lysophosphatidylcholine (LPC), an endogenous amphiphiphilic lipid metabolite, also increases the concentration of interstitial adenosine in rat hearts, through the PKC-mediated activation of endogenous ecto-5'-nucleotidase. Nitric oxide (NO) facilitates the production of interstitial adenosine, via guanosine 3',5'-cyclic monophosphate (cGMP)-mediated activation of ecto-5'-nucleotidase as another pathway. These mechanisms play an important role in high sensitivity of the cardiac adenosine system. Adenosine plays an important role as a modulator of ischemic reperfusion injury, and that the production and mechanism of action of adenosine are linked with NE release.  相似文献   

20.
Intact cells of Vibrio costicola hydrolyzed ATP, ADP, and AMP. The membrane-bound 5'-nucleotidase (C. Bengis-Garber and D. J. Kushner, J. Bacteriol. 146:24-32, 1981) was solely responsible for these activities, as shown by experiments with anti-5'-nucleotidase serum and with the ATP analog, adenosine 5'-(beta gamma-imido)-diphosphate. Fresh cell suspensions rapidly accumulated 8-14C-labeled adenine 5'-nucleotides and adenosine. The uptake of ATP, ADP, and AMP (but not the adenosine uptake) was inhibited by adenosine 5'-(beta gamma-imido)-diphosphate similarly to the inhibition of the 5'-nucleotidase. Furthermore, the uptake of nucleotides had Mg2+ requirements similar to those of the 5'-nucleotidase. The uptake of ATP was competitively inhibited by unlabeled adenosine and vice versa; inhibition of the adenosine uptake by ATP occurred only in the presence of Mg2+. These experiments indicated that nucleotides were dephosphorylated to adenosine before uptake. The hydrolysis of [alpha-32P]ATP as well as the uptake of free adenosine followed Michaelis-Menten kinetics. The kinetics of uptake of ATP, ADP, and AMP also each appeared to be a saturable carrier-mediated transport. The kinetic properties of the uptake of ATP were compared with those of the ATP hydrolysis and the uptake of adenosine. It was concluded that the adenosine moiety of ATP was taken up via a specific adenosine transport system after dephosphorylation by the 5'-nucleotidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号