首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of first cleavage in single-cell reconstituted mouse embryos   总被引:3,自引:0,他引:3  
Karyoplasts derived from mouse embryos at the initial and final stages of the first or second mitotic interphase were fused to early and late enucleated 1-cell embryos. The time of cleavage of reconstituted and control embryos was recorded at 1-h or 8-h intervals after manipulation. This enabled assessment of nuclear and cytoplasmic control over the mitotic apparatus of the 1-cell embryo. Early nuclei from 1- or 2-cell embryos fused to late enucleated embryos delayed cleavage but for only a few hours. However, late nuclei fused to early enucleated embryos were unable to advance the cytoplasmic timing of the next cleavage division. Furthermore, these reconstituted embryos stayed in interphase longer than did controls and many embryos with nuclei derived from late 2-cell embryos failed to cleave. These findings suggest that, allowing for a short period, early nuclei can synchronize with late cytoplasm with no major damage to the cleavage apparatus. It is proposed that this period is required for the completion of DNA synthesis by the early nuclei. However, late nuclei cannot induce mitosis before the expected cytoplasmic time, and, with 2-cell karyoplasts, this interaction causes many embryos to 'block' in interphase, without cleaving, suggesting incompatible nucleo-cytoplasmic interactions between late 2-cell karyoplast and early 1-cell stage cytoplasm.  相似文献   

2.
Blastomeres of starfish embryos begin to increase in adhesiveness after the eighth cleavage and form a monolayered hollow blastula. To investigate factors that affect the timing of the adhesiveness increase, we changed the volume of the cytoplasm or the ploidy of embryos and examined the morphologic changes in the descendent blastomeres during early cleavage stages. In parthenogenetic embryos, in which the ploidy is doubled, the timing of the increase in adhesiveness was accelerated by one cell cycle. In contrast, the timing was delayed by approximately one cell cycle in a large-sized embryo formed by the fusion of an egg and a non-nucleate egg fragment. These two sets of observations are in accord with the expectation from the classical concept that the DNA: cytoplasmic ratio may direct the timing of events in early development. However, observations of small-sized embryos with a reduced amount of cytoplasm were contradictory to the expectation based on the DNA: cytoplasmic ratio; the timing of the increase in adhesiveness in half-sized embryos was almost the same as in control embryos and the timing was delayed by only one cell cycle in quarter-sized embryos. Measurement of the diameters of nuclei showed that the size of nuclei was variable, depending on the stage of development, the volume of cytoplasm and ploidy. We calculated a volume ratio of nucleus to cytoplasm (N: C volume ratio) for tetraploid, large-, half- and quarter-sized embryos. We found that the embryonic cells begin to adhere always when their N: C volume ratio reaches 0.06. A plausible model for the cellular timing mechanism of cell contact is proposed.  相似文献   

3.
In this study, cytoplasmic effects on the development of nuclear transplant embryos were examined. In addition, the production of offspring from nuclear transplant embryos was attempted. Nuclei from cleavage-stage embryos were transplanted to enucleated zygotes at different cell cycle stages and with different cytoplasmic volumes. A greater developmental rate to the blastocyst stage was observed in reconstituted late stage zygotes that received nuclei from late 2-cell stage embryos than in early stage zygotes (46.3% vs. 16.9%). A further increase in developmental rate to the blastocyst stage (85.5%) and in cell number was obtained in reconstituted late stage zygotes with reduced cytoplasmic volume. However, developmental potential of nuclei from 4- and 8-cell stage embryos was very limited, although they were transferred to enucleated late stage zygotes with reduced cytoplasm. After the transfer of blastocysts derived from nuclear transplant embryos to recipient females, live young were obtained from reconstituted embryos that received nuclei from late 2-cell stage embryos (28.6%). These results confirm that the development of nuclear transplant embryos can be affected by recipient cell cycle stage and cytoplasmic volume. Furthermore, the nuclei from late 2-cell stage embryos in which activation of the embryonic genome had occurred can be reprogrammed to a certain extent when transplanted into enucleated zygotes, especially late stage zygotes with reduced cytoplasmic content.  相似文献   

4.
Nuclear transplantation in mouse embryos   总被引:3,自引:0,他引:3  
The ability of foreign nuclei to support development in nuclear transplantation manipulations has proven an effective means to assess the consequences of nuclear differentiation. In addition, nuclear transplantation might serve to define the persistence and role of maternally inherited cytoplasmic constituents during embryogenesis. We have extended the use of a technique that enables the efficient transfer of one-cell-stage pronuclei into the cytoplasm of enucleated mouse embryos, and have successfully transferred two-, four-, eight-cell-stage and inner cell mass (ICM) cell nuclei. We have also used this technique as a means to determining that the stage-specific embryonic antigen, SSEA-3, is a cytoplasmic contribution of the unfertilized ovum. The potential value of this technique in determining the developmental capacity of nuclei from various embryonic states, and in determining nuclear/cytoplasmic origins or early embryonic gene products, is discussed.  相似文献   

5.
6.
One of the first signs of cell differentiation in the Drosophila melanogaster embryo occurs 3 h after fertilization, when discrete groups of cells enter their fourteenth mitosis in a spatially and temporally patterned manner creating mitotic domains (Foe, V. E. and G. M. Odell, 1989, Am. Zool. 29:617-652). To determine whether cell residency in a mitotic domain is determined solely by cell position in this early embryo, or whether cell lineage also has a role, we have developed a technique for directly analyzing the behavior of nuclei in living embryos. By microinjecting fluorescently labeled histones into the syncytial embryo, the movements and divisions of each nucleus were recorded without perturbing development by using a microscope equipped with a high resolution, charge-coupled device. Two types of developmental maps were generated from three-dimensional time-lapse recordings: one traced the lineage history of each nucleus from nuclear cycle 11 through nuclear cycle 14 in a small region of the embryo; the other recorded nuclear fate according to the timing and pattern of the 14th nuclear division. By comparing these lineage and fate maps for two embryos, we conclude that, at least for the examined area, the pattern of mitotic domain formation in Drosophila is determined by the position of each cell, with no effect of cell lineage.  相似文献   

7.
In the early embryo of many species, comparatively small spindles are positioned near the cell center for subsequent cytokinesis. In most insects, however, rapid nuclear divisions occur in the absence of cytokinesis, and nuclei distribute rapidly throughout the large syncytial embryo. Even distribution and anchoring of nuclei at the embryo cortex are crucial for cellularization of the blastoderm embryo. The principles underlying nuclear dispersal in a syncytium are unclear. We established a cell-free system from individual Drosophila melanogaster embryos that supports successive nuclear division cycles with native characteristics. This allowed us to investigate nuclear separation in predefined volumes. Encapsulating nuclei in microchambers revealed that the early cytoplasm is programmed to separate nuclei a distinct distance. Laser microsurgery revealed an important role of microtubule aster migration through cytoplasmic space, which depended on F-actin and cooperated with anaphase spindle elongation. These activities define a characteristic separation length scale that appears to be a conserved property of developing insect embryos.  相似文献   

8.
9.
The developmental ability of nuclear transplant sheep embryos derived from in vitro matured oocytes was studied by controlling cell-cycle coordination of donor embryonic nuclei and recipient cytoplasts. Oocytes were recovered from nonatretic antral follicles of adult sheep ovaries and cocultured with follicle shells in M199-based medium supplemented with gonadotrophins in a nonstatic system. Effective activation of IVM oocytes was obtained by applying two pulses of 1.0 kv/cm 22 min apart in inositol-based electroporation medium to oocytes matured in vitro for 27 hr. Synthesis of DNA (S-phase) was assessed by BrdU incorporation and was found to initiate around 5 hpa (hours postactivation) and to persist until 18 hpa. Mitotic blastomeres were induced by treating embryos with 6.6 μM nocodazole for 14–17 hr. Three types of transfers were compared directly: “S → S,” early embryonic nuclei (mostly in S-phase) were transferred to presumptive S-phase cytoplasts; “M → MII,” nocodazole-treated embryonic nuclei (most in M-phase) were transferred to MII-phase cytoplasts; and control (S → MII), conventional nuclear transfer of fusion and activation simultaneously. The results showed that fusion and recovery rates did not differ among the three groups. However, after 6 days of in vivo culture, the morula and blastocyst formation rate was significantly higher for the M → MII combination than for the control (28.3% vs. 8.1%, P < 0.05), while no significant differences in developmental rate were observed between S → S and M → MII, and between S → S and control, though developmental rate was also increased for S → S compared to control (20.9% vs. 8.1%, P > 0.05). Transfer of blastocysts derived from M → MII or S → S nuclear cytoplasmic reconstitution to synchronized recipient ewes resulted in the birth of lambs. These data suggest that in vitro matured oocytes can support full-term development of nuclear transplant sheep embryos when the cell cycle of nucleus and cytoplasm is coordinated, and that M → MII nuclear transfer might be an efficient and simple way to improve the developmental competence of the reconstituted embryos. Mol. Reprod. Dev. 47:255–264, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
drop out (dop) is a recessive maternal-effect locus identified in a screen for female-sterile mutations in Drosophila polytene region 71C-F. Phenotypic analyses of the dop mutation indicate that the gene is required for proper formation of the cellular blastoderm. In embryos derived from either homozygous or hemizygous dop mothers, cytoplasmic clearing, nuclear migration and division, and pole cell formation appear normal. However, developmental defects are observed prior to and during cellularization of the blastoderm. At the beginning of nuclear cycle 14, the distinct separation of the internal yolk mass and the cortical cytoplasm breaks down. Subsequently, a population of somatic nuclei located at the periphery of the syncytial blastoderm becomes irregularly spaced and nonuniform in their distribution. Despite a somewhat regular formation of the cortical actin network, cellularization in mutant embryos is extremely variable. Such embryos fail to gastrulate normally and produce variable amounts of defective cuticle. Overall, our analyses suggest that the dop gene functions in maintaining the separation of yolk and cortical cytoplasm and in stabilizing the distribution of somatic nuclei in the Drosophila syncytial blastoderm.  相似文献   

11.
Terminal amounts of tyrosinase (EC 1.10.3.1) activity and melanin pigment in the giant melanocytes of cleavage-arrestedCiona intestinalis (L.) embryos are regulated independently of cell size and number of nuclei in the cells. Embryos were cleavage-arrested in cytochalasin B at a time before the last two divisions of the melanocyte lineage took place. The resulting two giant melanocytes, one from each of the two bilateral melanocyte lineages, developed tyrosinase and melanin. The cells were about three times larger in volume than the normal larval melanocytes and each contained four nuclei instead of just one. Quantitative measurements of melanin synthesized and tyrosinase activity in embryos with the giant melanocytes revealed amounts identical to those found in normal embryos. This specification of exact quantities differs markedly from the situation in mammalian melanocytes where cell volume and gene dosage influence the extent of melanotic differentiation. Quantitative control of differentiation in ascidian melanocytes appears to be mediated by a cytoplasmic determinant segregated through the melanocyte lineage and inherited by one daughter at each division of the lineages.  相似文献   

12.
13.
Chromatin fluidity, which is one of the indicators of higher-order structures in chromatin, is associated with cell differentiation. However, little is known about the relationships between chromatin fluidity and cell differentiation status in embryonic development. We established an in vitro reconstitution system that uses isolated nuclei and cytoplasmic extracts of Xenopus embryos and a fluorescence recovery after photobleaching assay to measure the fluidities of heterochromatin protein 1 (HP1) and histone H1 during development. The HP1 and H1 fluidities of nuclei isolated from the tailbuds of early tadpole stage (stage 32) embryos in the cytoplasmic extracts of eggs and of late blastula stage (stage 9) embryos were higher than those in the cytoplasmic extracts of mid-neurula stage (stage 15) embryos. The HP1 fluidities of nuclei isolated from animal cap cells of early gastrula stage (stage 10) embryos and from the neural plates of neural stage (stage 20) embryos were higher than those isolated from the tailbuds of stage 32 embryos in egg extracts, whereas the HP1 fluidities of these nuclei were the same in the cytoplasmic extracts of stage 15 embryos. These results suggest that chromatin fluidity is dependent upon both cytoplasmic and nuclear factors and decreases during development.  相似文献   

14.
In the process of nuclear transfer (NT), different cytoplasm from a donor cell and a recipient oocyte are mixed. However, it is unclear what effect the donor cytoplasm has upon the dedifferentiation of donor nuclei in enucleated ooplasm and upon subsequent production of live cloned offspring. Mitochondria are component parts of cytoplasm so the detection of mitochondrial DNA is helpful to reveal changes of donor cytoplasm in the NT reconstructed embryos. In this study, the experiments were designed to develop efficient DNA extraction techniques and specific primer pairs for mitochondrial DNA of Holstein and Chinese Yellow breeds in order to identify the changes of donor cytoplasm in early stage embryos. Firstly, by adding Triton X-100 and Taq DNA polymerase reaction buffer to the DNA extraction mixture, DNA was rapidly isolated from single diploid cells, single oocytes, early stage embryos and from single hairs. Secondly, two specific primer pairs for the two breeds were designed to detect the cytoplasmic DNA in a different amount of single cells and in early stage embryos. The results show that two specific fragments were successfully amplified from single somatic cells, single oocytes, parthenogenetic embryos and from NT reconstructed embryos. As a result, the techniques provide a powerful tool for studying the developmental mechanism in NT reconstructed embryos.  相似文献   

15.
The syncytial divisions of the Drosophila melanogaster embryo lack some of the well established cell-cycle checkpoints. It has been suggested that without these checkpoints the divisions would display a reduced fidelity. To test this idea, we examined division error frequencies in individuals bearing an abnormally long and rearranged second chromosome, designated C(2)EN. Relative to a normal chromosome, this chromosome imposes additional structural demands on the mitotic apparatus in both the early syncytial embryonic divisions and the later somatic divisions. We demonstrate that the C(2)EN chromosome does not increase the error frequency of the late larva neuroblast divisions. However, in the syncytial embryonic nuclear divisions, the C(2)EN chromosome produces a 10-fold increase in division errors relative to embryos with a normal karyotype. During late anaphase of the neuroblast divisions, the sister C(2)EN chromosomes cleanly separate from one another. In contrast, during late anaphase of the syncytial divisions in C(2)EN-bearing nuclei, large amounts of chromatin often lag on the metaphase plate. Live analysis of C(2)EN-bearing embryos demonstrates that individual nuclei in the syncytial population of dividing nuclei often delay in their initiation of anaphase. These delays frequently lead to division errors. Eventually the products of the nuclei delayed in anaphase sink inward and are removed from the dividing population of syncytial nuclei. These results suggest that the Drosophila embryo may be equipped with mechanisms that monitor the fidelity of the syncytial nuclear divisions. Unlike checkpoints that rely on cell cycle delays to identify and correct division errors, these embryonic mechanisms rely on cell cycle delays to identify and discard the products of division errors.  相似文献   

16.
The transfer of nuclei from cleavage stage embryos to enucleated activated meiotic metaphase II oocytes results in a reprogramming of the transferred nucleus such that it behaves as a zygotic nucleus. One estimator of nuclear reprogramming is nuclear swelling after nuclear transfer. The diameter of nuclei after nuclear transfer was not found to be dependent upon the amount of cytoplasm transferred with the donor cell or the amount of cytoplasm in the recipient cell. Nuclei from 4-, 8-, and 16-cell stage embryos swelled to a similar diameter after nuclear transfer (26.9, 27.3, and 27.2 microns, respectively) and this was significantly different from the diameter of contemporary donor embryos (18.3, 14.3, and 13.0 microns, respectively). This is a swelling of 47, 91, and 109%, respectively. Since the degree of nuclear swelling does not appear to be related to cytoplasmic volume it is concluded that the components mediating nuclear swelling are not in a limiting supply.  相似文献   

17.
Organization of the cytoskeleton in early Drosophila embryos   总被引:29,自引:21,他引:8       下载免费PDF全文
The cytoskeleton of early, non-cellularized Drosophila embryos has been examined by indirect immunofluorescence techniques, using whole mounts to visualize the cortical cytoplasm and sections to visualize the interior. Before the completion of outward nuclear migration at nuclear cycle 10, both actin filaments and microtubules are concentrated in a uniform surface layer a few micrometers deep, while a network of microtubules surrounds each of the nuclei in the embryo interior. These two filament-rich regions in the early embryo correspond to special regions of cytoplasm that tend to exclude cytoplasmic particles in light micrographs of histological sections. After the nuclei in the interior migrate to the cell surface and form the syncytial blastoderm, each nucleus is seen to be surrounded by its own domain of filament-rich cytoplasm, into which the cytoskeletal proteins of the original surface layer have presumably been incorporated. At interphase, the microtubules seem to be organized from the centrosome directly above each nucleus, extending to a depth of at least 40 microns throughout the cortical region of cytoplasm (the periplasm). During this stage of the cell cycle, there is also an actin "cap" underlying the plasma membrane immediately above each nucleus. As each nucleus enters mitosis, the centrosome splits and the microtubules are rearranged to form a mitotic spindle. The actin underlying the plasma membrane spreads out, and closely spaced adjacent spindles become separated by transient membrane furrows that are associated with a continuous actin filament-rich layer. Thus, each nucleus in the syncytial blastoderm is surrounded by its own individualized region of the cytoplasm, despite the fact that it shares a single cytoplasmic compartment with thousands of other nuclei.  相似文献   

18.
The activity of a cytoplasmic factor (MPF), capable of inducing nuclear membrane breakdown (germinal vesicle breakdown) when injected into amphibian oocytes, has been studied during the course of early cleavage in amphibian embryos. Mature egg cytoplasm was found to contain high levels of this activity, but this was quickly lost after fertilization or artificial activation. MPF activity later reappeared in the egg cytoplasm and started to cycle with time. The peak of embryonic MPF activity during each cycle coincided with the time the embryonic nuclei were entering the G2-M transition, i.e., mitosis. However, in colchicine-arrested embryos, this activity remained at an elevated level and no longer oscillated. The timing of the appearance and disappearance of this activity appeared to be under the control of the cytoplasm because such behavior was still observed in enucleated eggs. Continued protein synthesis in the embryo was required for the reappearance, but not for the disappearance, of this activity. MPF, previously thought to be restricted to oocyte maturation, may play a more general role in controlling nuclear membrane breakdown during mitosis as well as meiosis.  相似文献   

19.
THE CYTOPLASMIC CONTROL OF NUCLEAR ACTIVITY IN ANIMAL DEVELOPMENT   总被引:20,自引:0,他引:20  
1.This article reviews the occurrence, mechanism, and functional significance of the cytoplasmic regulation of nuclear activity during cell differentiation and especially during early animal development. 2.Nuclei from brain, and from other kinds of adult cell normally inactive in DNA synthesis, are rapidly induced to commence DNA synthesis by components or properties of intact egg cytoplasm. The components of egg cytoplasm which induce DNA synthesis are not species-specific and they are likely to include DNA polymerase. It is known that DNA polymerase exists in egg cytoplasm before it becomes associated with nuclei in which it is effective. The induction of DNA synthesis in brain nuclei by living egg cytoplasm is always preceded by a pronounced nuclear swelling, a dispersion of chromosomes or chromatin, and the entry of cytoplasmic protein into the nucleus. 3.RNA synthesis can be experimentally induced or repressed by living cytoplasm. The cytoplasm of unfertilized and fertilized eggs appears to contain components which can reversibly and independently repress the synthesis of ribosomal RNA, transfer RNA, and heterogeneous RNA. RNA synthesis can be induced by introducing nuclei inactive in this respect into the cytoplasm of cells very active in RNA synthesis. The induction and repression of RNA synthesis is preceded by a marked swelling of the nucleus and the dispersion of its chromosome material. 4.The cytoplasmic control of chromosome condensation before division has been demonstrated by introducing sperm or adult brain nuclei into the cytoplasm of oocytes undergoing meiotic maturation. 5.The evidence that regional differences in the composition of eggs and other cells are associated with changes in nuclear and gene activity is reviewed in Section 111. While it is certain that these regional differences are of great importance in cell differentiation, evidence that they have a direct effect on nuclear activity has been obtained in a few instances only. In some species it has been shown that the cytoplasmic components related to germ-cell differentiation include RNA and, frequently, granules. 6.It is concluded that whenever nuclei are introduced experimentally into the cytoplasm of another cell, they very quickly assume, in nearly every respect, the nuclear activity characteristic of the host cell. In many instances, altered function has been demonstrated in nuclei which subsequently support normal development. The induced nuclear changes are therefore regarded as normal and it is believed that they are achieved through the same mechanism as that by which the host cell nucleus originally came to function in its characteristic way. Examples are cited to show that changes in gene activity very frequently arise immediately after mitosis. The changes induced experimentally in transplanted nuclei resemble in very many respects those undergone by nuclei which are naturally reconstituted after mitosis, and it is argued that the two processes are functionally equivalent, It is suggested that during telophase of mitosis, chromosomes are reprogrammed in respect of potential gene activity by association with cytoplasmic proteins. Inter-phase nuclei seem not to show changes of gene activity except when they undergo a pronounced enlargement after entering a new cytoplasmic environment.  相似文献   

20.
The intracellular compartmentation of Ap4A in various growth and cell-cycle stages in mammalian cells was studied by applying a non-aqueous extraction procedure for cell nuclei. In both slowly and in exponentially growing Ehrlich ascites tumour cells from random cultures, more than 75% of the whole cellular Ap4A content is localized in the nuclei. In G1 and early S-phase cells of synchronized baby hamster kidney (BHK) fibroblast cultures, approx. 90% of the intracellular Ap4A pool is confined to the nuclear compartment. In contrast, Ap4A is distributed to nearly equal amounts between cytoplasm and nuclei during mid-S phase. After transition through the S-phase, increasing proportions of Ap4A (78% 18 h and 96% 22 h after serum replenishing, respectively) are again localized in the nuclear compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号