首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type beta transforming growth factor (TGF-beta) had no detectable effect on mitogenic activities of bovine adrenocortical cells in culture. However, the presence of TGF-beta (1 ng/ml) in the medium resulted in a striking alteration of adrenocortical cell steroidogenic activities, maximally expressed after 18-20 h of treatment. TGF-treated cells exhibited a basal as well as an adrenocorticotropin-stimulated cortisol production inhibition by an average 50-60%, while cAMP accumulation in response to the hormone was not modified. Detailed study of the adrenocortical steroid biosynthetic pathway by high performance liquid chromatography analysis and supply of representative steroid substrates revealed a drastic loss (average 50%) of the steroid 17 alpha-hydroxylase activity following TGF treatment. TGF-beta thus appeared as a potent negative modulator of adrenocortical 17 alpha-hydroxylase activity. This TGF-induced loss in the activity of a key steroidogenic enzyme resulted in a shift of the adrenocortical cell secretion pattern at the expense of the 17 alpha-hydroxysteroid end products. This 17 alpha-hydroxylation alteration was also expressed when TGF-treated cells were challenged by angiotensin II. However, in this case, an additional lesion was suggested by a 70-90% inhibition in angiotensin II-activated cortisol production. This could be explained by the observation that TGF-beta exposure induced an average 50% decrease in the adrenocortical cell angiotensin II receptor number without any detectable change in receptor affinity (Ka approximately 10(9) M-1). In addition, a parallel alteration in the angiotensin II-activated phosphoinositide breakdown was observed in TGF-treated cells, indicating that TGF-beta appears as a negative effector of the adrenocortical cell transmembrane signaling system in the case of angiotensin II. It is concluded that, in vitro, TGF-beta is a potent modulator of differentiated adrenocortical cell functions, in which at least two major negatively regulated specific targets were characterized. The mechanism(s) of action and the possible physiological significance of TGF-beta in the control of the development and the differentiated functions of the adrenocortical gland in vivo remain to be established.  相似文献   

2.
3.
125I-Labeled human platelet-derived transforming growth factor beta (125I-TGF-beta) and human alpha 2-macroglobulin (alpha 2M) formed a complex as demonstrated by 5% native polyacrylamide gel electrophoresis. The 125I-TGF-beta.alpha 2M complex migrated at a position identical to that of the fast migrating form of alpha 2M. Most of the 125I-TGF-beta.alpha 2M complex could be dissociated by acid or urea treatment. When 125I-TGF-beta was incubated with serum, the high molecular weight form of 125I-TGF-beta could be immunoprecipitated by anti-human alpha 2M anti-sera as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. alpha 2M purified from platelet-rich plasma also showed the latent transforming growth factor activity and immunoreactivity of TGF-beta. These results suggest that TGF-beta.alpha 2M complex is a latent form of TGF-beta.  相似文献   

4.
The cell biology of transforming growth factor beta   总被引:49,自引:0,他引:49  
The TGF beta family of polypeptide growth factors regulates a remarkable diversity of cellular functions, many of which are not directly associated with cell growth. The present review has summarized many of the recent studies that have just begun to conceptually integrate this expanding array of TGF beta functions into the context of a three-dimensional, multicellular organ or tissue, be it normal or diseased. This fascinating research strongly implicates TGF beta as a key modulator of a wide variety of important physiologic and pathophysiologic processes.  相似文献   

5.
6.
Cross-linking of B-cell membrane immunoglobulin (Ig) receptors induces growth arrest at G1-S, leading to apoptosis and cell death in the immature lymphomas WEHI-231 and CH31, but not in the CH12 B-cell line. In this system, which has been used as a model for B-cell tolerance, we have established that these lymphomas produce active transforming growth factor beta (TGF-beta) when treated with anti-Ig and that their hierarchy of sensitivity to TGF-beta generally correlates with their growth inhibition by anti-Ig. TGF-beta, in turn, has been shown to interfere with the phosphorylation of the retinoblastoma gene product, pRB. Herein, we also demonstrate that in WEHI-231 B-lymphoma cells treated with anti-Ig for 24 h, the pRB protein is found to be predominantly in the underphosphorylated form, as previously reported for cells arrested by the exogenous addition of TGF-beta. However, neutralizing antibodies to TGF-beta failed to prevent growth inhibition by anti-Ig in WEHI-231 and CH31. When WEHI-231 lymphoma cells were selected for growth in TGF-beta, the majority of the TGF-beta-resistant clones remained sensitive to anti-Ig-mediated growth inhibition. In these clones, the retinoblastoma gene product was found to be in the underphosphorylated form after 24-h treatment with anti-Ig, but not with TGF-beta. These data show that anti-Ig treatment of murine B-cell lymphomas stimulates the production of active TGF-beta but that a TGF-beta-independent pathway may be responsible for the pRB underphosphorylation and cell cycle blockade.  相似文献   

7.
Two naturally occurring chrondogenesis inducing peptides have been purified to homogeneity from demineralized bovine bone. Cartilage-inducing factors A and B are the bone-derived equivalents of transforming growth factor-beta types I and II. Both peptides exhibit identical biological activities in chondrogenesis assays and stimulate anchorage independent cell growth. In this study we show that both bone-derived factors are potent (ng/ml) inhibitors of both DNA synthesis and the anchorage independent growth of a variety of human and non-human tumor cells. Unique in this study is also a comparison of the activities of these polypeptide growth factors with recombinant transforming growth factor type I expressed in mammalian cells.  相似文献   

8.
In view of striking similarities between TGF-beta and inhibin, we investigated the possibility that TGF-beta might modulate pituitary hormone release in vitro. Long term incubations of beta transforming growth factor (TGF-beta) with rat anterior pituitary cells for 48 hr stimulates the basal secretion of FSH in a dose-dependent manner. The secretion of LH, TSH, GH, ACTH and PRL is not modified by TGF-beta. The minimal effective concentration of TGF-beta is 10 pg/ml (less than 500 attomolar) and is dose dependent over a range from 1 pg to 10 ng/ml. Treatment of cells with TGF-beta for short incubation times (4 hr) in assays similar to that used for hypophysial releasing factors is not effective, indicating that TGF-beta acts through a cellular mechanism distinct from that of LRF. Inhibin-A, recently characterized on the basis of its capacity to specifically inhibit the secretion of FSH in the 48 hr bioassay system inhibits the stimulatory effect of TGF-beta on FSH-release. Analyses of the dose response curves indicate that the interaction occurs in a typical non-competitive manner. The results suggest that a TGF-beta-like molecule, present in follicular fluid, may be responsible for the FSH-releasing activity ("anti-inhibin" activity) observed by us and others during the process of isolating inhibin from follicular fluids. They also suggest an important role for inhibin and the TGF-beta related molecules in modulating pituitary gonadotropin release.  相似文献   

9.
10.
beta-Nerve growth factor (NGF) is expressed in spermatogenic cells and has testosterone-downregulated low-affinity receptors on Sertoli cells suggesting a paracrine role in the regulation of spermatogenesis. An analysis of the stage-specific expression of NGF and its low affinity receptor during the cycle of the seminiferous epithelium in the rat revealed NGF mRNA and protein at all stages of the cycle. Tyrosine kinase receptor (trk) mRNA encoding an essential component of the high-affinity NGF receptor was also present at all stages. In contrast, expression of low affinity NGF receptor mRNA was only found in stages VIIcd and VIII of the cycle, the sites of onset of meiosis. The low-affinity NGF receptor protein was present in the plasma membrane of the apical Sertoli cell processes as well as in the basal plasma membrane of these cells at stages VIIcd to XI. NGF was shown to stimulate in vitro DNA synthesis of seminiferous tubule segments with preleptotene spermatocytes at the onset of meiosis while other segments remained nonresponsive. We conclude that NGF is a meiotic growth factor that acts through Sertoli cells.  相似文献   

11.
Intracellular transforming growth factors (TGFs) were extracted from a human rhabdomyosarcoma cell line and purified to apparent homogeneity by using gel filtration, cation-exchange, and high-performance liquid chromatography. Two types of transforming growth factor activities, TGF-alpha and TGF-beta, were detected. The intracellular polypeptides which belonged to the TGF-alpha family required TGF-beta for full activity in inducing nonneoplastic normal rat kidney fibroblasts to grow in soft agar. These peptides also bound to the membrane receptor for epidermal growth factor. As determined by sodium dodecyl sulfate-polyacrylamide gels, the apparent molecular weight of these intracellular TGF-alpha's was 18 000. Intracellular TGF-beta required either epidermal growth factor or TGF-alpha for stimulation of soft agar growth. The intracellular TGF-beta was purified to homogeneity as judged by a single peak after reverse-phase high-performance liquid chromatography and a single band on a sodium dodecyl sulfate-polyacrylamide gel. The intracellular TGF-beta from the human tumor cell line was similar in all respects tested (migration on sodium dodecyl sulfate-polyacrylamide gels, stimulation of soft agar growth, binding to the membrane receptor for TGF-beta, and amino acid composition) to intracellular TGF-beta from normal human placenta.  相似文献   

12.
Cultured Schwann cells divide in response to a limited repertoire of mitogens. In addition to cyclic AMP analogs and reagents that raise intracellular cyclic AMP, the only purified mitogens for Schwann cells are transforming growth factor beta (TGFβ), acidic (a) and basic (b) fibroblast growth factor (FGF), and the BB and AB dimers of platelet-derived growth factor (PDGF). Although individually each one of these growth factors is only weakly mitogenic, it is shown here that when TGFβ and bFGF are added to Schwann cell cultures together, they interact to produce a mitogenic response that is much greater than that produced by either growth factor alone. Both the absolute concentration of each protein and the molar ratio of TGFβ to bFGF determines the magnitude of the Schwann cell response.  相似文献   

13.
We have studied the effect of transforming growth factor beta 1 (TGF-beta 1) on vascular smooth muscle cell (SMC) mitogenesis and expression of thrombospondin and other growth related genes. We found that TGF-beta 1 treatment of vascular SMC induced a prolonged increase in steady-state mRNA levels of thrombospondin as well as alpha 1 (IV) collagen. The increase began at approximately 2 h, peaked by 24 h, and remained considerably elevated 48 h after growth factor addition. There was a corresponding increase in thrombospondin protein as well as increased expression of several other secreted polypeptides. The increase in thrombospondin contrasted sharply with that observed for platelet-derived growth factor (PDGF) which induced a rapid and transient increase in thrombospondin mRNA level. Although TGF-beta 1 was able to directly enhance expression of thrombospondin as well as the growth-related genes c-fos and c-myc, and induced c-fos expression with identical kinetics as PDGF, it was unable to elicit [3H]thymidine incorporation into DNA in three independent smooth muscle cell strains. However, TGF-beta 1 was able to strongly increase the mitogenic response of SMC to PDGF. Addition of both TGF-beta 1 and PDGF to SMC also caused a synergistic increase in the expression of thrombospondin as well as c-myc. Interestingly, in one other smooth muscle cell strain, a weak and delayed mitogenic response to TGF-beta 1 alone was observed. Our results strongly suggest that induction of thrombospondin expression by TGF-beta 1 and by PDGF occurs by distinct mechanisms. In addition, that TGF-beta 1 can enhance PDGF-induced mitogenesis may be due to the ability of TGF-beta 1 to directly induce the expression of thrombospondin, c-fos, c-myc, and the PDGF beta-receptor.  相似文献   

14.
Skeletal tissue and transforming growth factor beta   总被引:8,自引:0,他引:8  
Normal skeletal growth results from a balance between the processes of bone matrix synthesis and resorption. These activities are regulated by both systemic and local factors. Bone turnover is dynamic, and skeletal growth must be maintained throughout life. Although many growth promoters are associated with bone matrix, it is enriched particularly with transforming growth factor beta (TGF-beta) activity. Experimental evidence indicates that TGF-beta regulates replication and differentiation of mesenchymal precursor cells, chondrocytes, osteoblasts, and osteoclasts. Recent studies further suggest that TGF-beta activity in skeletal tissue may be controlled at multiple levels by other local and systemic agents. Consequently, the intricate mechanisms by which TGF-beta regulates bone formation are likely to be fundamental to understanding the processes of skeletal growth during development, maintenance of bone mass in adult life, and healing subsequent to bone fracture.  相似文献   

15.
The human teratocarcinoma stem cell line Tera-2 clone 13 is induced by retinoic acid to differentiate in vitro into endodermal or neuroectodermal cell types. In the absence of externally added growth factors, Tera-2 clone 13 cells proliferated at the same rate as in the presence of serum growth factors. Analysis of serum-free medium conditioned by Tera-2 clone 13 cells showed the presence of a polypeptide immunologically and biochemically related to platelet-derived growth factor (PDGF). In addition transforming growth factor beta (TGF-beta), but no TGF-alpha production could be detected. Tera-2 clone 13 cells specifically expressed high levels of the A-chain mRNA, but not the B-chain mRNA of PDGF. During retinoic acid induced differentiation the level of A-chain mRNA became markedly reduced. In contrast the TGF-beta mRNA levels increased significantly upon differentiation. The implications of these findings are discussed in terms of regulation of growth and differentiation in early embryos as well as in (human) teratocarcinomas.  相似文献   

16.
Cultured Schwann cells divide in response to a limited repertoire of mitogens. In addition to cyclic AMP analogs and reagents that raise intracellular cyclic AMP, the only purified mitogens for Schwann cells are transforming growth factor beta (TGF beta), acidic (a) and basic (b) fibroblast growth factor (FGF), and the BB and AB dimers of platelet-derived growth factor (PDGF). Although individually each one of these growth factors is only weakly mitogenic, it is shown here that when TGF beta and bFGF are added to Schwann cell cultures together, they interact to produce a mitogenic response that is much greater than that produced by either growth factor alone. Both the absolute concentration of each protein and the molar ratio of TGF beta to bFGF determines the magnitude of the Schwann cell response.  相似文献   

17.
18.
19.
Our previous results have shown that transforming growth factor beta (TGFbeta) rapidly activates Ras, as well as both ERKs and SAPKs. In order to address the biological significance of the activation of these pathways by TGFbeta, here we examined the role of the Ras/MAPK pathways and the Smads in TGFbeta(3) induction of TGFbeta(1) expression in untransformed lung and intestinal epithelial cells. Expression of either a dominant-negative mutant of Ras (RasN17) or a dominant-negative mutant of MKK4 (DN MKK4), or addition of the MEK1 inhibitor PD98059, inhibited the ability of TGFbeta(3) to induce AP-1 complex formation at the TGFbeta(1) promoter, and the subsequent induction of TGFbeta(1) mRNA. The primary components present in this TGFbeta(3)-inducible AP-1 complex at the TGFbeta(1) promoter were JunD and Fra-2, although c-Jun and FosB were also involved. Furthermore, deletion of the AP-1 site in the TGFbeta(1) promoter or addition of PD98059 inhibited the ability of TGFbeta(3) to stimulate TGFbeta(1) promoter activity. Collectively, our data demonstrate that TGFbeta(3) induction of TGFbeta(1) is mediated through a signaling cascade consisting of Ras, the MAPKKs MKK4 and MEK1, the MAPKs SAPKs and ERKs, and the specific AP-1 proteins Fra-2 and JunD. Although Smad3 and Smad4 were not detectable in TGFbeta(3)-inducible AP-1 complexes at the TGFbeta(1) promoter, stable expression of dominant-negative Smad3 could significantly inhibit the ability of TGFbeta(3) to stimulate TGFbeta(1) promoter activity. Transient expression of dominant-negative Smad4 also inhibited the ability of TGFbeta(3) to transactivate the TGFbeta(1) promoter. Thus, although the Ras/MAPK pathways are essential for TGFbeta(3) induction of TGFbeta(1), Smads may only contribute to this biological response in an indirect manner.  相似文献   

20.
Role of transforming growth factor beta in cancer   总被引:37,自引:0,他引:37  
Transforming growth factor beta (TGF-beta) is an effective and ubiquitous mediator of cell growth. The significance of this cytokine in cancer susceptibility, cancer development and progression has become apparent over the past few years. TGF-beta plays various roles in the process of malignant progression. It is a potent inhibitor of normal stromal, hematopoietic, and epithelial cell growth. However, at some point during cancer development the majority of transformed cells become either partly or completely resistant to TGF-beta growth inhibition. There is growing evidence that in the later stages of cancer development TGF-beta is actively secreted by tumor cells and not merely acts as a bystander but rather contributes to cell growth, invasion, and metastasis and decreases host-tumor immune responses. Subtle alteration of TGF-beta signaling may also contribute to the development of cancer. These various effects are tissue and tumor dependent. Identifying and understanding TGF-beta signaling pathway abnormalities in various malignancies is a promising avenue of study that may yield new modalities to both prevent and treat cancer. The nature, prevalence, and significance of TGF-beta signaling pathway alterations in various forms of human cancer as well as potential preventive and therapeutic interventions are discussed in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号