首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To investigate the possible role of mast cells (MC) in regulating leukocyte adhesion to vascular endothelial cells (EC), microvascular and macrovascular EC were exposed to activated MC or MC conditioned medium (MCCM). Expression of intercellular and vascular adhesion molecules (ICAM-1 and VCAM-1) on EC was monitored. Incubation of human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells (HUVEC) with activated MC or MCCM markedly increased ICAM-1 and VCAM-1 surface expression, noted as éarly as 4 hr. Maximal levels were observed at 16 hr followed by a general decline over 48 hr. A dose-dependent response was noted using incremental dilutions of MCCM or by varying the number of MC in coculture with EC. At a ratio as low as 1:1,000 of MC:EC, increased ICAM-1 was observed. The ICAM-1 upregulation by MCCM was >90% neutralized by antibody to tumor necrosis factor alpha (TNF-α), suggesting that MC release of this cytokine contributes significantly to inducing EC adhesiveness. VCAM-1 expression enhanced by MCCM was partly neutralized (70%) by antibody to TNF-α; thus other substances released by MC may contribute to VCAM-1 expression. Northern blot analysis demonstrated MCCM upregulated ICAM-1 and VCAM-1 mRNA in both HDMEC and HUVEC. To evaluate the function of MCCM-enhanced EC adhesion molecules, T cells isolated from normal human donors were used in a cell adhesion assay. T-cell binding to EC was increased significantly after exposure of EC to MCCM, and inhibited by antibodies to ICAM-1 or VCAM-1. Intradermal injection of allergen in human atopic volunteers known to develop late-phase allergic reactions led to marked expression of both ICAM-1 and VCAM-1 at 6 hr, as demonstrated by immunohistochemistry. These studies indicate that MC play a critical role in regulating the expression of EC adhesion molecules, ICAM-1 and VCAM-1, and thus augment inflammatory responses by upregulating leukocyte binding. © 1995 Wiley-Liss Inc.  相似文献   

3.
Natural killer (NK) cell degranulation in response to virus-infected cells is triggered by interactions between invariant NK cell surface receptors and their ligands on target cells. Although HIV-1 Vpr induces expression of ligands for NK cell activation receptor, NKG2D, on infected cells, this is not sufficient to promote lytic granule release. We show that triggering the NK cell coactivation receptor NK-T- and -B cell antigen (NTB-A) alongside NKG2D promotes NK cell degranulation. Normally, NK cell surface NTB-A binds to NTB-A on CD4+ T cells. However, HIV-1 Vpu downmodulates NTB-A on infected T cells. Vpu associates with NTB-A through its transmembrane region without promoting NTB-A degradation. Cells infected with HIV-1 Vpu mutant elicited at least 50% more NK cells to degranulate than wild-type virus. Moreover, NK cells have a higher capacity to lyse HIV-infected cells with a mutant Vpu. Thus, Vpu downmodulation of NTB-A protects the infected cell from lysis by NK cells.  相似文献   

4.
Maisch T  Kropff B  Sinzger C  Mach M 《Journal of virology》2002,76(24):12803-12812
CD40 has been identified as an important molecule for a number of processes, such as immune responses, inflammation, and the activation of endothelia. We investigated CD40 in endothelial cells (EC) following infection with an endotheliotropic strain of human cytomegalovirus (HCMV). Between 8 and 72 h postinfection, we observed a significant increase in CD40 levels on the surface of infected EC, as measured by fluorescence-activated cell sorting analysis. As a consequence of CD40 upregulation, increased levels of E-selectin were found on infected EC after stimulation with CD154-expressing T cells. Enhanced expression of CD40 was specific for EC, since infection of fibroblasts did not result in the upregulation of CD40. The addition of neutralizing antibodies as well as UV inactivation of virus completely prevented the upregulation of CD40 on EC. Also, laboratory-adapted HCMV strain AD169 was not able to induce CD40 on EC. De novo protein synthesis was necessary for the increased surface expression. At early times (4 to 24 h) postinfection, this change was not accompanied by increased levels of CD40 protein or mRNA. At late times (48 to 96 h) postinfection, increased amounts of CD40 protein and mRNA were detected. Immunohistochemical analysis of infected tissues demonstrated elevated levels of CD40 on HCMV-infected EC in vivo. Thus, infection of EC by HCMV may result in the activation of endothelia and in the augmentation of inflammatory processes.  相似文献   

5.
Chlamydophila pneumoniae is a common respiratory pathogen that has been shown to be associated with coronary artery disease. Recent studies have shown that one of the possible mechanisms of the atherogenicity of C. pneumoniae is overexpression of cell adhesion molecules (CAMs) in infected endothelial cells. We investigated whether exposure of C. pneumoniae-infected endothelial cells to oxidized LDL (oxLDL) leads to further upregulation of CAMs. Flow cytometry and immunoblot analysis of human aortic endothelial cells (HAECs) was performed for intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. ICAM-1 was expressed in 78.7% of C. pneumoniae-infected HAECs. The addition of oxLDL (100 microg/ml) to infected HAECs increased the proportion of ICAM-1-positive cells to 92%. VCAM-1 was only observed in 9.3% of infected HAECs, and the addition of oxLDL had no further effect on the surface expression of VCAM-1. C. pneumoniae also upregulated the surface expression of E-selectin on 52.2% of the cells, and incubation with oxLDL further increased the proportion of positive cells to 63.64%. In conclusion, C. pneumoniae upregulated the expression of the adhesion molecules ICAM-1, VCAM-1, and E-selectin on HAECs. The addition of oxLDL to the infected cells further enhanced the surface expression of ICAM-1 and E-selectin.  相似文献   

6.
In the absence of antiretroviral therapy, infection with human immunodeficiency virus type 1 (HIV-1) can typically not be controlled by the infected host and results in the development of acquired immunodeficiency. In rare cases, however, patients spontaneously control HIV-1 replication. Mechanisms by which such elite controllers (ECs) achieve control of HIV-1 replication include particularly efficient immune responses as well as reduced fitness of the specific virus strains. To address whether polymorphisms in the accessory HIV-1 protein Vpu are associated with EC status we functionally analyzed a panel of plasma-derived vpu alleles from 15 EC and 16 chronic progressor (CP) patients. Antagonism of the HIV particle release restriction by the intrinsic immunity factor CD317/tetherin was well conserved among EC and CP Vpu alleles, underscoring the selective advantage of this Vpu function in HIV-1 infected individuals. In contrast, interference with CD317/tetherin induced NF-κB activation was little conserved in both groups. EC Vpus more frequently displayed reduced ability to downregulate cell surface levels of CD4 and MHC class I (MHC-I) molecules as well as of the NK cell ligand NTB-A. Polymorphisms potentially associated with high affinity interactions of the inhibitory killer immunoglobulin-like receptor (KIR) KIR2DL2 were significantly enriched among EC Vpus but did not account for these functional differences. Together these results suggest that in a subgroup of EC patients, some Vpu functions are modestly reduced, possibly as a result of host selection.  相似文献   

7.
During their passage through the circulatory system, tumor cells undergo extensive interactions with various host cells including endothelial cells. The capacity of tumor cells to form metastasis is related to their ability to interact with and extravasate through endothelial cell layers, which involves multiple adhesive interactions between tumor cells and endothelium (EC). Thus it is essential to identify the adhesive receptors on the endothelial and melanoma surface that mediate those specific adhesive interactions. P-selectin and E-selectin have been reported as adhesion molecules that mediate the cell-cell interaction of endothelial cells and melanoma cells. However, not all melanoma cells express ligands for selectins. In this study, we elucidated the molecular constituents involved in the endothelial adhesion and extravasation of sialyl-Lewis(x/a)-negative melanoma cell lines under flow in the presence and absence of polymorphonuclear neutrophils (PMNs). Results show the interactions of alpha(4)beta(1) (VLA-4) on sialyl-Lewis(x/a)-negative melanoma cells and vascular adhesion molecule (VCAM-1) on inflamed EC supported melanoma adhesion to and subsequent extravasation through the EC in low shear flow. These findings provide clear evidence for a direct role of the VLA-4/VCAM-1 pathway in melanoma cell adhesion to and extravasation through the vascular endothelium in a shear flow. PMNs facilitated melanoma cell extravasation under both low and high shear conditions via the involvement of distinct molecular mechanisms. In the low shear regime, beta(2)-integrins were sufficient to enhance melanoma cell extravasation, whereas in the high shear regime, selectin ligands and beta(2)-integrins on PMNs were necessary for facilitating the melanoma extravasation process.  相似文献   

8.
Expression of cell adhesion molecule in endothelial cells upon activation by human immunodeficiency virus (HIV) infection is associated with the development of atherosclerotic vasculopathy. We postulated that induction of vascular cell adhesion molecule-1 (VCAM-1) by HIV-1 Tat protein in endothelial cells might represent an early event that could culminate in inflammatory cell recruitment and vascular injury. We determined the role of HIV-1 Tat protein in VCAM-1 expression in human pulmonary artery endothelial cells (HPAEC). HIV-1 Tat protein treatment significantly increased cell-surface expression of VCAM-1 in HPAEC. Consistently, mRNA expression of VCAM-1 was also increased by HIV-1 Tat protein as measured by RT-PCR. HIV-1 Tat protein-induced VCAM-1 expression was abolished by the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) and the p38 MAPK inhibitor SB-203580. Furthermore, HIV-1 Tat protein enhanced DNA binding activity of NF-kappaB, facilitated nuclear translocation of NF-kappaB subunit p65, and increased production of reactive oxygen species (ROS). Similarly to VCAM-1 expression, HIV-1 Tat protein-induced NF-kappaB activation and ROS generation were abrogated by PDTC and SB-203580. These data indicate that HIV-1 Tat protein is able to induce VCAM-1 expression in HPAEC, which may represent a pivotal early molecular event in HIV-induced vascular/pulmonary injury. These data also suggest that the molecular mechanism underlying the HIV-1 Tat protein-induced VCAM-1 expression may involve ROS generation, p38 MAPK activation, and NF-kappaB translocation, which are the characteristics of pulmonary endothelial cell activation.  相似文献   

9.
Production ofreactive oxygen species (ROS) by ischemic tissue afterischemia-reperfusion (I/RP) is an important factor that contributes to tissue injury. The small GTPase Rac1 mediates the oxidative burst, and ROS act on signaling pathways involved in expression of inflammatory genes. Because there is evidence implicating monocytes in the pathogenesis of I/RP injury, our objective was todetermine the molecular mechanisms that regulate adhesive interactions between monocytes and hypoxia-reoxygenation (H/RO)-exposed cultured endothelial cells (ECs). When U937 cells were perfused over human umbilical vein ECs at 1 dyn/cm2, H (1 h at 1%O2)/RO (13 h) significantly increased the fluxes of rollingand stably adherent U937 cells. Either EC treatment with theantioxidant pyrrolidine dithiocarbamate (PDTC) or infection withAdRac1N17, which results in expression of the dominant-negative form ofRac1, abolished H/RO-induced ROS production, attenuated rolling, andabolished stable adhesion of U937 cells to H/RO-exposed ECs. Infectionwith AdRac1N17 also abolished H/RO-induced upregulation of vascularcell adhesion molecule (VCAM)-1. In turn, blocking VCAM-1 abolishedU937 cell stable adhesion and slightly increased rolling. We concludedthat the Rac1-dependent ROS partially regulate rolling and exclusivelyregulate stable adhesion of monocytic cells to ECs after H/RO and thatstable adhesion, but not rolling, is mediated by ROS-induced expressionof VCAM-1.

  相似文献   

10.
While human cells express potent antiviral proteins as part of the host defense repertoire, viruses have evolved their own arsenal of proteins to antagonize them. BST2 was identified as an inhibitory cellular protein of HIV-1 replication, which tethers virions to the cell surface to prevent their release. On the other hand, the HIV-1 accessory protein, Vpu, has the ability to downregulate and counteract BST2. Vpu also possesses the ability to downmodulate cellular CD4 and SLAMF6 molecules expressed on infected cells. However, the role of Vpu in HIV-1 infection in vivo remains unclear. Here, using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrate that Vpu contributes to the efficient spread of HIV-1 in vivo during the acute phase of infection. Although Vpu did not affect viral cytopathicity, target cell preference, and the level of viral protein expression, the amount of cell-free virions in vpu-deficient HIV-1-infected mice was profoundly lower than that in wild-type HIV-1-infected mice. We provide a novel insight suggesting that Vpu concomitantly downregulates BST2 and CD4, but not SLAMF6, from the surface of infected cells. Furthermore, we show evidence suggesting that BST2 and CD4 impair the production of cell-free infectious virions but do not associate with the efficiency of cell-to-cell HIV-1 transmission. Taken together, our findings suggest that Vpu downmodulates BST2 and CD4 in infected cells and augments the initial burst of HIV-1 replication in vivo. This is the first report demonstrating the role of Vpu in HIV-1 infection in an in vivo model.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1)-specific Vpu is an 81-amino-acid amphipathic integral membrane protein with at least two different biological functions: (i) enhancement of virus particle release from the plasma membrane of HIV-1-infected cells and (ii) degradation of the virus receptor CD4 in the endoplasmic reticulum (ER). We have previously found that Vpu is phosphorylated in infected cells at two seryl residues in positions 52 and 56 by the ubiquitous casein kinase 2. To study the role of Vpu phosphorylation on its biological activity, a mutant of the vpu gene lacking both phosphoacceptor sites was introduced into the infectious molecular clone of HIV-1, pNL4-3, as well as subgenomic Vpu expression vectors. This mutation did not affect the expression level or the stability of Vpu but had a significant effect on its biological activity in infected T cells as well as transfected HeLa cells. Despite the presence of comparable amounts of wild-type and nonphosphorylated Vpu, decay of CD4 was observed only in the presence of phosphorylated wild-type Vpu. Nonphosphorylated Vpu was unable to induce degradation of CD4 even if the proteins were artificially retained in the ER. In contrast, Vpu-mediated enhancement of virus secretion was only partially dependent on Vpu phosphorylation. Enhancement of particle release by wild-type Vpu was efficiently blocked when Vpu was artificially retained in the ER, suggesting that the two biological functions of Vpu are independent, occur at different sites within a cell, and exhibit different sensitivity to phosphorylation.  相似文献   

12.
Chemokine (CC motif) receptor-like 2 (CCRL2) binds leukocyte chemoattractant chemerin and can regulate local levels of the attractant, but does not itself support cell migration. In this study, we show that CCRL2 and VCAM-1 are upregulated on cultured human and mouse vascular endothelial cells (EC) and cell lines by proinflammatory stimuli. CCRL2 induction is dependent on NF-κB and JAK/STAT signaling pathways, and activated endothelial cells specifically bind chemerin. In vivo, CCRL2 is constitutively expressed at high levels by lung endothelial cells and at lower levels by liver endothelium; and liver but not lung EC respond to systemic LPS injection by further upregulation of the receptor. Plasma levels of total chemerin are elevated in CCRL2(-/-) mice and are significantly enhanced after systemic LPS treatment in CCRL2(-/-) mice compared with wild-type mice. Following acute LPS-induced pulmonary inflammation in vivo, chemokine-like receptor 1 (CMKLR1)(+) NK cell recruitment to the airways is significantly impaired in CCRL2(-/-) mice compared with wild-type mice. In vitro, chemerin binding to CCRL2 on endothelial cells triggers robust adhesion of CMKLR1(+) lymphoid cells through an α(4)β(1) integrin/VCAM-1-dependent mechanism. In conclusion, CCRL2 is expressed by EC in a tissue- and activation-dependent fashion, regulates circulating chemerin levels and its bioactivity, and enhances chemerin- and CMKLR1-dependent lymphocyte/EC adhesion in vitro and recruitment to inflamed airways in vivo. Its expression and/or induction on EC by proinflammatory stimuli provide a novel and specific mechanism for the local enrichment of chemerin at inflammatory sites, regulating the recruitment of CMKLR1(+) cells.  相似文献   

13.
Gastroesophageal reflux disease is the most common malady of the esophagus, affecting 7% of the United States population. Histological assessment demonstrates classic inflammatory mechanisms including selective leukocyte recruitment and hemorrhage, suggesting a prominent role for the microvasculature. We isolated and characterized human esophageal microvascular endothelial cells (EC) (HEMEC), examined inflammatory activation in response to cytokines, LPS, and acidic pH exposure, and identified signaling pathways that underlie activation. HEMEC displayed characteristic morphological and phenotypic features including acetylated LDL uptake. TNF-alpha/LPS activation of HEMEC resulted in upregulation of the cell adhesion molecules (CAM) ICAM-1, VCAM-1, E-selectin, and mucosal addressin CAM-1 (MAdCAM-1), increased IL-8 production, and enhanced leukocyte binding. Both acid and TNF-alpha/LPS activation lead to activation of SAPK/JNK in HEMEC that was linked to VCAM-1 expression and U-937 leukocyte adhesion. Expression of constitutive inducible nitric oxide synthase in HEMEC was in marked contrast to intestinal microvascular endothelial cells. In this study, we demonstrate that HEMECs are phenotypically and functionally distinct from lower gut-derived endothelial cells and will facilitate understanding of inflammatory mechanisms in esophageal inflammation.  相似文献   

14.
15.
Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by targeting BST-2/tetherin, a cellular protein inhibiting virus release. The widely used HIV-1(NL4-3) Vpu functionally inactivates human BST-2 but not murine or monkey BST-2, leading to the notion that Vpu antagonism is species specific. Here we investigated the properties of the CXCR4-tropic simian-human immunodeficiency virus DH12 (SHIV(DH12)) and the CCR5-tropic SHIV(AD8), each of which carries vpu genes derived from different primary HIV-1 isolates. We found that virion release from infected rhesus peripheral blood mononuclear cells was enhanced to various degrees by the Vpu present in both SHIVs. Transfer of the SHIV(DH12) Vpu transmembrane domain to the HIV-1(NL4-3) Vpu conferred antagonizing activity against macaque BST-2. Inactivation of the SHIV(DH12) and SHIV(AD8) vpu genes impaired virus replication in 6 of 8 inoculated rhesus macaques, resulting in lower plasma viral RNA loads, slower losses of CD4(+) T cells, and delayed disease progression. The expanded host range of the SHIV(DH12) Vpu was not due to adaptation during passage in macaques but was an intrinsic property of the parental HIV-1(DH12) Vpu protein. These results demonstrate that the species-specific inhibition of BST-2 by HIV-1(NL4-3) Vpu is not characteristic of all HIV-1 Vpu proteins; some HIV-1 isolates encode a Vpu with a broader host range.  相似文献   

16.
Patients with the leukocyte adhesion deficiency (LAD) syndrome have a genetic defect in the common beta 2-chain (CD18) of the leukocyte integrins. This defect can result in the absence of cell surface expression of all three members of the leukocyte integrins. We investigated the capacity of T cell clones obtained from the blood of an LAD patient and of normal T cell clones to adhere to human umbilical vein endothelial cells (EC). Adhesion of the number of LAD T cells to unstimulated EC was approximately half of that of leukocyte function-associated antigen (LFA)-1+ T cells. Stimulation of EC with human rTNF-alpha resulted in an average 2- and 2.5-fold increase in adhesion of LFA-1+ and LFA-1- cells, respectively. This effect was maximal after 24 h and lasted for 48 to 72 h. The involvement of surface structures known to participate in cell adhesion (integrins, CD44) was tested by blocking studies with mAb directed against these structures. Adhesion of LFA-1+ T cells to unstimulated EC was inhibited (average inhibition of 58%) with mAb to CD11a or CD18. Considerably less inhibition of adhesion occurred with mAb to CD11a or CD18 (average inhibition, 20%) when LFA-1+ T cells were incubated with rTNF-alpha-stimulated EC. The adhesion of LFA-1- T cells to EC stimulated with rTNF-alpha, but not to unstimulated EC, was inhibited (average inhibition, 56%) by incubation with a mAb directed to very late antigen (VLA)-4 (CDw49d). In contrast to LAD T cell clones and the LFA-1+ T cell line Jurkat, mAb to VLA-4 did not inhibit adhesion of normal LFA-1+ T cell clones to EC, whether or not the EC had been stimulated with rTNF-alpha. We conclude that the adhesion molecule pair LFA-1/intercellular adhesion molecule (ICAM)-1 plays a major role in the adhesion of LFA-1+ T cell clones derived from normal individuals to unstimulated EC. Adhesion of LFA-1-T cells to TNF-alpha-stimulated EC is mediated by VLA-4/vascular cell adhesion molecule (VCAM)-1 interactions. Since we were unable to reduce significantly the adhesion of cultured normal LFA-1+ T cells to 24 h with TNF-alpha-stimulated endothelium with antibodies that block LFA-1/ICAM-1 or VLA-4/VCAM-1 interactions, and lectin adhesion molecule-1 and endothelial leukocyte adhesion molecule-1 appeared not to be implicated, other as yet undefined cell surface structures are likely to participate in T cell/EC interactions.  相似文献   

17.
18.
The human immunodeficiency virus type 1 (HIV-1) evades the immune responses of natural killer (NK) cells through mechanisms that have been partially deciphered. Here we show that in HIV-1-infected T lymphocytes, the early viral Nef protein downmodulates PVR (CD155, Necl-5), a ligand for the activating receptor DNAM-1 (CD226) expressed by all NK cells, CD8(+) T cells, and other cell types. This novel Nef activity is conserved by Nef proteins of laboratory HIV-1 strains (NL4-3, SF2) and of a patient-derived virus, but it is not maintained by HIV-2. Nef uses the same motifs to downregulate PVR and HLA-I molecules, likely by the same mechanisms. Indeed, as previously demonstrated for HLA-I, Nef reduces the total amounts of cell-associated PVR. Optimal downregulation of cell surface PVR by Nef also requires the presence of the late viral factor Vpu. In line with PVR reduction, the NK cell-mediated lysis of T cells infected by a wild-type but not Nef-deficient virus is virtually abrogated upon blocking of both DNAM-1 and another activating receptor, NKG2D, previously shown to mediate killing of HIV-infected cells. Together, these data demonstrate that the PVR downmodulation by Nef and Vpu is a strategy evolved by HIV-1 to prevent NK cell-mediated lysis of infected cells. The PVR downregulation reported here has the potential to affect the immune responses of other DNAM-1-positive cells besides NK cells and to alter multiple PVR-mediated cellular processes, such as adhesion and migration, and may thus greatly influence HIV-1 pathogenesis.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) Vpu accessory protein is a transmembrane protein that down regulates CD4 expression and promotes the release of new virions. We screened a human leukocyte-specific yeast two-hybrid expression library to discover novel Vpu-interacting cellular proteins. The major histocompatibility complex class II (MHC II) invariant chain, also called Ii or CD74, was found to be one such protein. We show direct binding of Vpu and CD74 by using a yeast two-hybrid assay and coimmunoprecipitation from HIV-1-infected cells. The cytoplasmic region of Vpu was found to interact with the 30-amino-acid cytoplasmic tail of CD74. Human monocytic U937 cells infected with wild-type or Vpu-defective HIV-1 and transfected cells showed that Vpu down modulated the surface expression of mature MHC II molecules. The reduction in cell surface mature MHC II molecules correlated with decreased antigen presentation to T cells in culture. Thus, the Vpu protein also contributes to viral persistence by attenuating immune responses during HIV infection. This report further exemplifies the rich diversity and redundancy shown by HIV in immune evasion.  相似文献   

20.
We propose that leukocyte-derived cytokines induce the expression of adhesion molecules on the surface of neural cells that facilitates the subsequent attachment of leukocytes. Leukocyte adherence may contribute to some of the neural cell injury seen with various inflammatory diseases of the nervous system. With an in vitro model system, we have shown that mononuclear leukocytes bind to human neuroblastoma and cortical neuron cells only after the neural cells are stimulated with TNF-alpha. TNF-alpha stimulates expression of vascular cell adhesion molecule-1 (VCAM-1) in both of these neural cell lines. VCAM-1 mRNA is increased and VCAM-1 protein can be identified on the neural cell membranes with a new VCAM-1-specific mAb, CL40/2 F8. TNF-alpha also induces ICAM-1 in both of these neural cell lines. Leukocyte beta 1 (CD29) and beta 2 (CD18) integrins and their respective ligands, ICAM-1 and VCAM-1, on neural cells appear to be the dominant ligands mediating MNL:neural cell adhesive interactions. mAb to CD18 block 32 to 57% of the MNL binding to neural cells; similar inhibition is seen with mAb to ICAM-1. mAb to CD29 block 16 to 17% of the MNL binding to the neural cells suggesting that leukocyte beta 1 integrins and neural VCAM-1 may be a second route for MNL:neural cell interactions. Addition of both anti-CD18 and anti-CD29 mAb have an additive blocking effect; both ligand pairs may participate in MNL adhesion to neural cells, reminiscent of the multiplicity of ligands used by MNL when binding to endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号