首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transposon mutagenesis was used to isolate insertion mutants of the photosynthetic bacterium Rhodobacter capsulatus which were unable to grow under aerobic conditions in the dark on malate, succinate or fumarate as sole carbon sources. Of five mutants isolated, all were deficient in C4-dicarboxylate transport. However, these mutants were still capable of photoheterotrophic growth, although at a slower rate than the wild type, on malate and succinate (but not fumarate). The mutated locus (designated dct) was complemented in trans using a cosmid gene bank. Subcloning and complementation analysis indicated that at least three closely linked genes essential for aerobic dicarboxylate transport were contained within an 8.3 kb region of the Rhodobacter capsulatus chromosome.  相似文献   

2.
Succinate transport in Rhizobium leguminosarum.   总被引:19,自引:13,他引:6       下载免费PDF全文
The transport of succinate was studied in an effective streptomycin-resistant strain of Rhizobium leguminosarum. High levels of succinate transport occurred when cells were grown on succinate, fumarate, or malate, whereas low activity was found when cells were grown on glucose, sucrose, arabinose, or pyruvate as the sole carbon source. Because of the rapid metabolism of succinate after transport into the cells, a succinate dehydrogenase-deficient mutant was isolated in which intracellular succinate accumulated to over 400 times the external concentration. Succinate transport was completely abolished in the presence of metabolic uncouplers but was relatively insensitive to sodium arsenate. Succinate transport was a saturable function of the succinate concentration, and the apparent Km and Vmax values for transport were determined in both the parent and the succinate dehydrogenase mutant. Malate and fumarate competitively inhibited succinate transport, whereas citrate and malonate had no effect. Succinate transport mutants were isolated by transposon (Tn5) mutagenesis. These mutants were unable to transport succinate or malate and were unable to grow on succinate, malate, or fumarate as the sole carbon source. The mutants grew normally on pyruvate, oxaloacetate, citrate, or arabinose, and revertants isolated on succinate minimal medium had regained the ability to grow on malate and fumarate. From these data, we conclude that R. leguminosarum possesses a C4-dicarboxylic acid transport system which is inducible and mediates the active transport of succinate, fumarate, and malate into the cell.  相似文献   

3.
4.
The mechanism of fumarate reduction in Geobacter sulfurreducens was investigated. The genome contained genes encoding a heterotrimeric fumarate reductase, FrdCAB, with homology to the fumarate reductase of Wolinella succinogenes and the succinate dehydrogenase of Bacillus subtilis. Mutation of the putative catalytic subunit of the enzyme resulted in a strain that lacked fumarate reductase activity and was unable to grow with fumarate as the terminal electron acceptor. The mutant strain also lacked succinate dehydrogenase activity and did not grow with acetate as the electron donor and Fe(III) as the electron acceptor. The mutant strain could grow with acetate as the electron donor and Fe(III) as the electron acceptor if fumarate was provided to alleviate the need for succinate dehydrogenase activity in the tricarboxylic acid cycle. The growth rate of the mutant strain under these conditions was faster and the cell yields were higher than for wild type grown under conditions requiring succinate dehydrogenase activity, suggesting that the succinate dehydrogenase reaction consumes energy. An orthologous frdCAB operon was present in Geobacter metallireducens, which cannot grow with fumarate as the terminal electron acceptor. When a putative dicarboxylic acid transporter from G. sulfurreducens was expressed in G. metallireducens, growth with fumarate as the sole electron acceptor was possible. These results demonstrate that, unlike previously described organisms, G. sulfurreducens and possibly G. metallireducens use the same enzyme for both fumarate reduction and succinate oxidation in vivo.  相似文献   

5.
6.
Data mining of the Corynebacterium glutamicum genome identified 4 genes analogous to the mshA, mshB, mshC, and mshD genes that are involved in biosynthesis of mycothiol in Mycobacterium tuberculosis and Mycobacterium smegmatis. Individual deletion of these genes was carried out in this study. Mutants mshC- and mshD- lost the ability to produce mycothiol, but mutant mshB- produced mycothiol as the wild type did. The phenotypes of mutants mshC- and mshD- were the same as the wild type when grown in LB or BHIS media, but mutants mshC- and mshD- were not able to grow in mineral medium with gentisate or 3-hydroxybenzoate as carbon sources. C. glutamicum assimilated gentisate and 3-hydroxybenzoate via a glutathione-independent gentisate pathway. In this study it was found that the maleylpyruvate isomerase, which catalyzes the conversion of maleylpyruvate into fumarylpyruvate in the glutathione-independent gentisate pathway, needed mycothiol as a cofactor. This mycothiol-dependent maleylpyruvate isomerase gene (ncgl2918) was cloned, actively expressed, and purified from Escherichia coli. The purified mycothiol-dependent isomerase is a monomer of 34 kDa. The apparent Km and Vmax values for maleylpyruvate were determined to be 148.4 +/- 11.9 microM and 1520 +/- 57.4 micromol/min/mg, respectively (mycothiol concentration, 2.5 microM). Previous studies had shown that mycothiol played roles in detoxification of oxidative chemicals and antibiotics in streptomycetes and mycobacteria. To our knowledge, this is the first demonstration that mycothiol is essential for growth of C. glutamicum with gentisate or 3-hydroxybenzoate as carbon sources and the first characterization of a mycothiol-dependent maleylpyruvate isomerase.  相似文献   

7.
Chromosomal mutants of Alcaligenes eutrophus unable to grow with molecular hydrogen as the energy source also failed to grow with nitrate as the terminal electron acceptor or as a nitrogen source. The mutants (Hno) (i) formed neither soluble nor particulate hydrogenase antigens, (ii) expressed only about 50% the wild type level of ribulosebisphosphate carboxylase activity, and (iii) transported nickel, an essential constituent of active hydrogenase, at a significantly lower rate than wild type cells. Moreover, the mutants grew very slowly with urea as nitrogen source and did not express urease. Growth on formamide was also affected and formamidase activity was induced to only a very low level. Growth of the Hno mutants on succinate, glutamate, fumarate, and malate was significantly slower than wild type, and a reduced rate of succinate incorporation into the mutant cells was demonstrated. The highly pleiotropic phenotype of Hno mutants is indicative of a chromosomal gene with a considerable physiological importance. It affected the expression of both chromosomal and megaplasmid encoded systems of energy, carbon, and nitrogen metabolism. Thus, the hno mutation restricts the metabolic versatility but does not affect the basic metabolic functions of the organism.  相似文献   

8.
9.
The open reading frames sll1625 and sll0823, which have significant sequence similarity to genes coding for the FeS subunits of succinate dehydrogenase and fumarate reductase, were deleted singly and in combination in the cyanobacterium Synechocystis sp. strain PCC 6803. When the organic acid content in the Deltasll1625 and Deltasll0823 strains was analyzed, a 100-fold decrease in succinate and fumarate concentrations was observed relative to the wild type. A similar analysis for the Deltasll1625 Deltasll0823 strain revealed that 17% of the wild-type succinate levels remained, while only 1 to 2% of the wild-type fumarate levels were present. Addition of 2-oxoglutarate to the growth media of the double mutant strain prior to analysis of organic acids in cells caused succinate to accumulate. This indicates that succinate dehydrogenase activity had been blocked by the deletions and that 2-oxoglutarate can be converted to succinate in vivo in this organism, even though a traditional 2-oxoglutarate dehydrogenase is lacking. In addition, reduction of the thylakoid plastoquinone pool in darkness in the presence of KCN was up to fivefold slower in the mutants than in the wild type. Moreover, in vitro succinate dehydrogenase activity observed in wild-type membranes is absent from those isolated from the double mutant and reduced in those from the single mutants, further indicating that the sll1625 and sll0823 open reading frames encode subunits of succinate dehydrogenase complexes that are active in the thylakoid membrane of the cyanobacterium.  相似文献   

10.
Anaerobically, Escherichia coli cannot grow using either glycerol or citrate as sole carbon and energy source. However, it has been reported that a mixture of glycerol and citrate will support growth. We have found that wild-type strains of E. coli K-12 do not grow on glycerol plus citrate anaerobically. However, growth eventually occurs due to the frequent appearance of mutants. We found that such Cit+ mutants were defective in anaerobic respiration with nitrate or trimethylamine-N-oxide and were chlorate resistant (i.e. molybdenum cofactor deficient). Conversely, well characterized mutants in any of chlA, B, D, E, G and N were also able to use citrate anaerobically. No anaerobic growth differences between wild type and chl mutants were observed either with fermentable sugars or with glycerol plus fumarate or glycerol plus tartrate. Citrate lyase was induced anaerobically by citrate and repressed by glucose in both wild type strains and chl mutants. Furthermore, levels of citrate lyase, fumarate reductase, malate dehydrogenase, fumarase and alcohol dehydrogenase were similar in both types of strains under anaerobic conditions. It is conceivable that a functioning molybdenum cofactor prevents use of citrate by keeping citrate lyase in the inactive form.  相似文献   

11.
Wild-type strains of Escherichia coli K-12 cannot grow in media with gamma-aminobutyrate (GABA) as the sole source of carbon or nitrogen. Mutants were isolated which could utilize GABA as the sole source of nitrogen. These mutants were found to have six- to ninefold higher activities of gamma-aminobutyrate-alpha-ketoglutarate transaminase (EC 2.6.1.19) and succinate semialdehyde dehydrogenase (EC 1.2.1.16) than those of the wild-type parent strains. Secondary mutants derived from these GABA-nitrogen-utilizing strains were able to grow on GABA as the sole source of carbon and nitrogen. They also grew faster on a variety of other carbon and nitrogen sources, and their growth was more strongly inhibited by different metabolic inhibitors than was that of the parent strains. The nature of the two mutations and the possible genes involved are discussed. A scheme of the pathway for GABA breakdown in E. coli K-12 is presented.  相似文献   

12.
13.
Strain DCB-1 is an obligately anaerobic bacterium which carries out the reductive dehalogenation of halobenzoates and was previously known to grow only on pyruvate plus 20% ruminal fluid. When various electron acceptors were supplied, thiosulfate and sulfite were found to stimulate growth. Sulfide was produced from thiosulfate. Cytochrome c and desulfoviridin were detected. The mol% G+C was 49 (at the thermal denaturation temperature). Of 55 carbon sources tested, only pyruvate supported growth as the sole carbon source in mineral medium. Lactate, acetate, L- and D-malate, glycerol, and L- and D-arabinose stimulated growth when supplemented with 10% ruminal fluid and 20 mM thiosulfate. In mineral medium, pyruvate was converted to acetate and lactate, with small amounts of succinate and fumarate accumulating transiently. During growth with thiosulfate, all of these products accumulated transiently. Addition of excess hydrogen to pyruvate-grown cultures resulted in diversion of carbon to formate, lactate, and butyrate, which caused a decrease in cell yield. We conclude that strain DCB-1 is a new type of sulfidogenic bacterium.  相似文献   

14.
Strain DCB-1 is an obligately anaerobic bacterium which carries out the reductive dehalogenation of halobenzoates and was previously known to grow only on pyruvate plus 20% ruminal fluid. When various electron acceptors were supplied, thiosulfate and sulfite were found to stimulate growth. Sulfide was produced from thiosulfate. Cytochrome c and desulfoviridin were detected. The mol% G+C was 49 (at the thermal denaturation temperature). Of 55 carbon sources tested, only pyruvate supported growth as the sole carbon source in mineral medium. Lactate, acetate, L- and D-malate, glycerol, and L- and D-arabinose stimulated growth when supplemented with 10% ruminal fluid and 20 mM thiosulfate. In mineral medium, pyruvate was converted to acetate and lactate, with small amounts of succinate and fumarate accumulating transiently. During growth with thiosulfate, all of these products accumulated transiently. Addition of excess hydrogen to pyruvate-grown cultures resulted in diversion of carbon to formate, lactate, and butyrate, which caused a decrease in cell yield. We conclude that strain DCB-1 is a new type of sulfidogenic bacterium.  相似文献   

15.
The role of the dicarboxylic acid transport (dct) system in the Rhizobium meliloti-Alfalfa symbiosis was investigated. Mutants of R. meliloti CM2 unable to grow on medium containing succinate as the sole carbon source were isolated following chemical and transposon mutagenesis. These mutants were also unable to utilize malate or fumarate as the sole source of carbon. Transport studies with 14C-labelled succinate showed that the mutants were specifically defective in succinate transport. Revertants of both chemical and transposon mutants were obtained at a frequency of 10-5–10-6. The R. meliloti dct mutants were able to nodulate Alfalfa plants but the nodules formed were unable to fix nitrogen. Revertants of the mutants were fully effective on plants. The mutants unable to transport succinate were used to isolate dct genes from a R. meliloti gene bank. Two plasmids containing a common 26.5 Mdal insert were found to complement some of the mutants. The presence of this DNA insert in the complementing mutant strains restored their effectivenss of plants. This DNA fragment encoding succinate transport function(s) was used to produce genetically engineered R. meliloti strains with an increased rate of succinate uptake.Abbreviation dct dicarboxylic acid transport  相似文献   

16.
Bacterial strain VKM B-2445 is characterized by ethylenediaminetetraacetate (EDTA) requirement for cell growth. This strain could not grow on glucose and organic acids as the sole sources of carbon and energy, but it was able to metabolize these substrates added to EDTA medium. EDTA initiated assimilation of glucose, succinate, fumarate, malate, and citrate and supplied nitrogen for the biomass production from these substrates. Utilization of primarily nongrowth substrates by strain VKM B-2445 started when EDTA was exhausted or at least considerably degraded.  相似文献   

17.
Two mutants defective in succinate utilization were isolated by NTG mutagenesis of the effective wild typeRhizobium meliloti strain S14. The mutants used carbon sources in a fashion similar to strain S14, but they were not able to grow on succinate, fumarate or malate. The mutants nodulated alfalfa plants but did not exhibit any nitrogenase activity. The mutants oxidized glucose and fructose, but were not able to oxidize organic acids. Cultured free-living bacteria of strain S14 appeared to have an inducible C4-dicarboxylic acid uptake system and a constitutive glucose uptake system. When S14 cells were grown on glucose in the presence of 5mM or more succinate or malate, the rate of glucose-dependent O2 consumption significantly decreased suggesting the presence of a catabolite repression like phenomenom. Contribution no. 301, Station de Recherches, Agriculture Canada.  相似文献   

18.
Mutants of Alcaligenes eutrophus were isolated on the basis of their inability to grow on succinate as the sole source of carbon and energy. The mutants also failed to grow on other gluconeogenic substrates, including pyruvate, acetate, and citrate. Simultaneously, they had lost their capability for autotrophic growth. The mutants grew, but slower than the wild type, on fructose or gluconate. Growth retardation on gluconate was more pronounced. The mutants lacked phosphoglycerate mutase activity, and spontaneous revertants of normal growth phenotype had regained the activity. The physiological characteristics of the mutants indicate the role of phosphoglycerate mutase in heterotrophic and autotrophic carbon metabolism of A. eutrophus. Although the enzyme is necessary for gluconeogenesis during heterotrophic growth on three- or four-carbon substrates, its glycolytic function is not essential for the catabolism of fructose or gluconate via the Entner-Doudoroff pathway. The enzyme is required during autotrophic growth as a catalyst in the biosynthetic route leading from glycerate 3-phosphate to pyruvate. It is suggested that the mutants accomplish the complete degradation of fructose and gluconate mutase lesion. The catabolically produced triose phosphates are converted to fructose 6-phosphate which is rechanneled into the Entner-Doudoroff pathway. This carbon recycling mechanism operates less effectively in mutant cells growing on gluconate.  相似文献   

19.
The genetic determinants for lactose utilization from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 and galactose utilization from Lactococcus lactis subsp. cremoris MG 1363 were heterologously expressed in the lysine-overproducing strain Corynebacterium glutamicum ATCC 21253. The C. glutamicum strains expressing the lactose permease and beta-galactosidase genes of L. delbrueckii subsp. bulgaricus exhibited beta-galactosidase activity in excess of 1000 Miller units/ml of cells and were able to grow in medium in which lactose was the sole carbon source. Similarly, C. glutamicum strains containing the lactococcal aldose-1-epimerase, galactokinase, UDP-glucose-1-P-uridylyltransferase, and UDP-galactose-4-epimerase genes in association with the lactose permease and beta-galactosidase genes exhibited beta-galactosidase levels in excess of 730 Miller units/ml of cells and were able to grow in medium in which galactose was the sole carbon source. When grown in whey-based medium, the engineered C. glutamicum strain produced lysine at concentrations of up to 2 mg/ml, which represented a 10-fold increase over the results obtained with the lactose- and galactose-negative control, C. glutamicum 21253. Despite their increased catabolic flexibility, however, the modified corynebacteria exhibited slower growth rates and plasmid instability.  相似文献   

20.
The pyruvate kinase gene pyk from Corynebacterium glutamicum was cloned by applying a combination of PCR, site-specific mutagenesis, and complementation. A 126-bp DNA fragment central to the C. glutamicum pyk gene was amplified from genomic DNA by PCR with degenerate oligonucleotides as primers. The cloned DNA fragment was used to inactivate the pyk gene in C. glutamicum by marker rescue mutagenesis via homologous recombination. The C. glutamicum pyk mutant obtained was unable to grow on minimal medium containing ribose as the sole carbon source. Complementation of this phenotype by a gene library resulted in the isolation of a 2.8-kb PstI-BamHI genomic DNA fragment harboring the C. glutamicum pyk gene. Multiple copies of plasmid-borne pyk caused a 20-fold increase of pyruvate kinase activity in C. glutamicum cell extracts. By using large internal fragments of the cloned C. glutamicum gene, pyk mutant derivatives of the lysine production strain Corynebacterium lactofermentum 21799 were generated by marker rescue mutagenesis. As determined in shake flask fermentations, lysine production in pyk mutants was 40% lower than that in the pyk+ parent strain, indicating that pyruvate kinase is essential for high-level lysine production. This finding questions an earlier hypothesis postulating that redirection of carbon flow at the phosphoenol pyruvate branch point of glycolysis through elimination of pyruvate kinase activity results in an increase of lysine production in C. glutamicum and its close relatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号