首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
For staining in toto, planarians are fixed in a mixture of 10 ml of commercial formalin, 45 ml of 95% ethanol and 2 ml of glacial acetic acid. After treatment with 70% ethanol 3-10 days, they are washed in distilled water and immersed in 10% CuSO4. 5H2O for 3 hr at 50° C, transferred without washing to 1% AgNO3 for 1.0-1.5 hr at 50° C; and then developed in: 10 ml of 1% pyrogallol, 100 ml of 56% ethanol and 1 ml of 0.2% nitric acid. Gold toning, 5% Na2S2O3 and dehydration follow as usual. For staining sections, material is fixed in the same fixative, embedded in paraffin and sectioned at 10 μ. After bringing sections to water, they are immersed in 20% CuSO4. 5H2O for 48 hr at 37° C; then rinsed briefly in distilled water and placed in 7% AgNO3 for 24 hr at 37° C. They are washed briefly in distilled water and reduced in: hydroquincne, 1 gm; Na2SO3, 5 gm and distilled water 100 ml. Gold toning, followed by 5% Na2S2O3 and dehydration completes the process. Any counterstaining may follow.  相似文献   

2.
Pieces of fresh nervous tissue 3-5 mm thick are put into a mixture of: 6% K2Cr2O7, 40 ml; 5% KClO3, 20 ml; 20% chloral hydrate, 30 ml; and concentrated formalin (38% HCHO), 10 ml; allowed to fix 3 days, with a daily change of fluid; transferred to 3% K2Cr2O7 for 3 days, with twice daily changes; then to 1% AgNO3 for 3 days at 20-25° C. Frozen sections are cut, dehydrated, cleared and mounted in Permount with a cover glass. The method gives good results for microglia and oligodendroglia in addition to the usual staining of nerve cells and their processes.  相似文献   

3.
Specimens of brain or spinal cord fixed in formalin, Cajal's formol-bromide, or Koenig, Groat and Windle's formalin-acacia can be used to stain oligodendrocytes in frozen, in paraffin, or in celloidin sections. The sections are soaked 3-5 min in 0.02% acetic acid, pH 3.4, then rinsed 2-3 sec in 3% H2O2 and transferred to a silver bath prepared as follows: Mix equal parts of 10% AgNO3 and 10% Na2WO4, and dissolve the precipitate with concentrated NH4OH; avoid an excess of ammonia. Silver at room temperature for 15-20 sec, develop in 1% formalin, dehydrate, and mount. For embedded material, prepare a mixture consisting of 1 part of 10% aqueous Aerosol MA and 4 parts of 10% Aerosol OT in 95% alcohol. Add 5 drops of this mixture to each 50 ml of dilute acetic acid and 3% H2O2; 5 drops to each 20 ml of the silver bath.  相似文献   

4.
Brains of rat with surgical lesions 3-5 days old are fixed in 10% neutralized formalin (excess of CaCO3), 20 μ serial frozen sections cut therefrom and kept in neutralized formalin for an additional 24-48 hr. The sections are soaked in distilled water 12-24 hr, transferred to 50% alcohol containing 0.75 ml of concentrated NH4OH (sp. gr. 0.91) per 100 ml 12-24 hr, placed in distilled water 2-3 hr and then in silver-pyridine solution (AgNO3 3% aq., 20 ml; pyridine, 1 ml) for 48 hr. Test sections are transferred directly to each one of 3 ammoniated silver-solutions, pH 12.8, 13.0 and 13.2, made as follows: To 200 ml of solution 1 (silver nitrate, 6.4 gm; alcohol 96%, 220 ml; NH4OH (sp. gr. 0.91), 28 ml and distilled water, 440 ml) is added respectively 8-12 ml, 12-16 ml and 16-20 ml of solution 2 (2% NaOH) to give the pH desired. The test sections are studied and the optimal ammoniated silver solution chosen. Two baths of ammoniated silver are used, the section placed with continuous agitation into the first bath for 30 sec and the second bath for 60 sec. The sections are then transferred directly into a reducing bath (formalin 10%, 2ml; alcohol 96%, 5 ml; citric acid 1%, 1.5 ml and distilled water, 4.5 ml) for 2 min and from there to 5% Na2S2O3 for 1 min, rinsed in 3 changes of distilled water, dehydrated and mounted.  相似文献   

5.
A method for impregnating oligodendroglia in nervous tissue (monkey) fixed and preserved in formalin for many years is described. This tissue is reconditioned by placing 12 to 30μ frozen sections of it in concentrated ammonia (sp. gr. 0.90) and by washing them slowly for 24 hours with a 1 mm. stream of water. The fluid is then poured off the sections; the jar is refilled with concentrated ammonia; and washing is repeated for another 24 hours. The sections are then plunged into concentrated ammonia for 7 minutes.

After treatment in ammonia, the sections are incubated for one hour at 38oC. in Globus' 5% hydrobromic acid solution. They are washed again, in distilled water, and then impregnated in a “medium” strength ammoniacal silver carbonate solution (5 ml. of 10% AgNO3 added to 15 ml. of 5% Na2CO3. The precipitate is dissolved in concentrated ammonia and diluted to SO ml. with distilled water). Impregnation is followed by reduction in 1% formalin without agitation; fixation in 5% Na2S2O3; dehydration, and mounting in clarite.

Typical oligodendroglia (Fig. 1) were made visible by use of the method outlined in this paper.  相似文献   

6.
A rapid, reliable silver impregnation method is described for nervous tissue fixed in formol-saline, Bouin or Sum. Sections are impregnated for 10-15 minutes at room temperature or 37 C in a solution containing 0.5 g Protargol-S, 0.005-0.01 g allantoin, 1 ml of 1% Cu[NO2]2, 1 ml of 1% AgNO3. and 1-2 drops of 30% H2O2 in 100 ml distilled water. Thereafter the dons arc reduced in a hydroquinone-formalin solution. This is followed by gold toning and subsequent reduction and mounting. Alternatively. following the first reduction, the silver image can be intensified by placing sections in a silver-allantoin bath which is followed by reduction and mounting. This method is very reliable and selective, making it suitable for general routine and research use.  相似文献   

7.
Thallium can be histochemically localized in formalin-fixed, paraffin-processed tissues by treating sections, after passing them through xylene and graded alcohols to water, with gaseous H2S for 15 min and with 20% ammonium sulfide saturated with powdered selenium for 10 min. Sections are then washed, treated 10 min with 20% H2O2, and incubated in darkness for 20-30 min in the following mixture: 25% gum acacia, 10 ml; 2% hydroquinone in 5% citric acid, 1 ml; and 10% AgNO3, 0.1 ml. Tissues and cells, which contain thallium, are demonstrated by small black granules of silver.  相似文献   

8.
Extensive experimentation with protargol staining of neurons in celloidin and frozen sections of organs has resulted in the following technic: Fix tissue in 10% aqueous formalin. Cut celloidin sections IS to 25 μ, frozen sections 25 to 40 μ. Place sections for 24 hours in 50% alcohol to which 1% by volume of NH4OH has been added. Transfer the sections directly into a 1% aqueous solution of protargol, containing 0.2 to 0.3 g. of electrolytic copper foil which has been coated with a 0.5% solution of celloidin, and allow to stand for 6 to 8 hours at 37° C. Caution: In this and the succeeding step the sections must not be allowed to come in contact with the copper. From aqueous protargol, place the sections for 24 to 48 hours at 37° C. directly into a pyridinated solution of alcoholic protargol (1.0% aqueous solution protargol, 50 ml.; 95% alcohol, 50 ml.; pyridine, 0.5 to 2.0 ml.), containing 0.2 to 0.3 g. of coated copper. Rinse briefly in 50% alcohol and reduce 10 min. in an alkaline hydroquinone reducer (H3BO3, 1.4 g.; Na2SO3, anhydrous, 2.0 g.; hydroquinone, 0.3 g.; distilled water, 85 cc; acetone, 15 ml.). Wash thoroly in water and tone for 10 min. in 0.2% aqueous gold chloride, acidified with acetic acid. Wash in distilled water and reduce for 1 to 3 min. in 2% aqueous oxalic acid. Quickly rinse in distilled water and treat the sections 3 to 5 min. with 5% aqueous Na2S2O3+5H2O. Wash in water and stain overnight in Einarson's gallocyanin. Wash thoroly in water and place in 5% aqueous phosphotungstic acid for 30 min. From phosphotungstic acid transfer directly to a dilution (stock solution, 20 ml.; distilled water, 30 ml.) of the following stock staining solution: anilin blue, 0.01 g.; fast green FCF, 0.5 g.; orange G, 2.0 g.; distilled water, 92.0 ml.; glacial acetic acid, 8 ml.) and stain for 1 hour. Differentiate with 70% and 95% alcohol; pass the sections thru butyl alcohol and cedar oil; mount.  相似文献   

9.
Consistency in staining with an alum hematoxylin is possible by the routine use of fresh staining solutions. A modification of Cole's hematoxylin is so easily prepared that fresh staining solutions present no problem. The staining solution consists of 100 ml 1.2% aqueous KA1(SO4)2 .12 H2O, 1 ml 10% alcoholic hematoxylin and 2 ml 1% iodine. Mix, place in paraffin oven overnight and stain sections 5 minutes. The three solutions can be kept as stock solutions for years.  相似文献   

10.
Frozen sections of formalin-fixed brains containing lesions were mounted on slides that had been coated first with albumen-glycerol (1:1) then 4% gelatin and blotted. The slides were placed in formaldehyde vapor at 56° C for 40-60 min, washed, and stored (optional) in 10% formalin-saline. The staining technic was as follows: after washing, soak 30-40 min in 0.5% phosphomolybdic acid, rinse; put in 0.05% potassium permanganate 9-16 min (usually 12 min); decolorize in a 1:1 mixture of 1% hydroquinone and 1% oxalic acid; wash thoroughly; soak in 1.5% AgNO3 at about 20° C for 25-35 min; rinse; put into an ammino-silver solution (4.5% AgNO3, 20 ml; pure ethanol, 10 ml; ammonia, sp. gr. 0.880, 2.4 ml; 2.5% NaOH, 1 ml) for 1-2 min; reduce in acidified formalin (distilled water, 400 ml; pure ethanol, 45 ml; 1 % citric acid, 13.5 ml; 10% formalin, 13.5 ml) for 1-3 min; wash; dehydrate through ascending grades of alcohol, including absolute; coat with 0.5% collodion, allow to dry slightly and harden in absolute alcohol-chloroform (2:1); rehydrate and put into 1% Na2S2O3 for 1 min; dehydrate and cover.  相似文献   

11.
The epoxy resin was removed from semithin (1 μm) sections by immersing them for 30 sec in sodium methoxide (Mayor et al., J. Biophys. Biochem. Cytol., 9: 909-10, 1961) and then processed as follows: (1) left for 1-3 hr at 60 C in a mixture of formalin, 25 ml; glacial acetic acid, 5 ml; CrO3, 3 gm; and distilled water, 75 ml: (2) oxidized 10 min in a 1:1:6 v/v mixture of 2.5% KMnO4, 5% H2SO4 and distilled water: (3) bleached in 1% oxalic acid, and (4) stained for 15 min in aldehyde fuchsin, 0.125% in 70% alcohol, or in a 1% aqueous solution of toluidine blue. The neurosecretory material is selectively stained.  相似文献   

12.
TO enable staining of insoluble calcium salts with glyoxal bis(2-hydroxyanil) (GBHA), the original solution containing 2 ml of 0.4% GBHA in absolute ethanol, and 0.3 ml of aqueous 5% NaOH, and limited to staining only soluble calcium salts, was modified as follows: 1, 2 ml of 0.4% GBHA in absolute ethanol in 0.6 ml of 10% aqueous NaOH; 11, 0.1 gm GBHA in 2 ml of 3.4% NaOH in 75% ethanol. To prevent diffusion and loss of calcium, the tissues were processed by the freeze-substitution or freeze-dry method and sections stained without removing the paraffin. Modification I is effective only when 1 or 2 drops placed on the section are evaporated gradually to dryness, concentrating the GBHA and NaOH on the insoluble calcium salts. Modification II is effective when dried or poured on the the section and allowed to stain for 5 min. The stained slides are immersed for 15 min in 90% ethanol saturated with KCN and Na2CO3 for specificity to calcium; rinsed and counterstained in 95% ethanol containing 0.1% each of fast green FCF and methylene blue; rinsed and dehydrated in ethanol; deparaffinized and cleared in xylene; and mounted in neutral synthetic resin. Although the modified methods tested on models failed to stain reagent grade CaCO3 and Ca3(PO4)2 crystals completely, apatite in developing vertebrae and calcified plaques in soft tissues were stained intensely red. The distribution of gross deposits of insoluble calcium salt in tissue sections corresponded with that shown in adjacent sections by the alizarin red S, ferrocyanide, and von Kossa methods. The modified GBHA method revealed smaller quantities of insoluble as well as soluble calcium salts discretely within cells where the other methods failed; also, calcium in cytoplasm of hypertrophied cartilage cells of developing vertebrae, and in cytoplasm of renal tubular cells of magnesium-deficient rats, not described previously, was demonstrated.  相似文献   

13.
This rapid spectrophotometric method for determining the OsO4 concentration in fixative and stock solutions is based on the reduction of OsO4 by acidified KI to the blue species of OsI6 =, which is then determined at 649 mµ. The salt K2OsI6 has been isolated from the reaction mixture and characterized. Method: A I ml aliquot of the solution, containing up to 3% OsO4, is diluted to 100 ml with distilled water. To 1 ml of the diluted solution is added, in order: distilled water, 2 ml; 1 M HCI, 1 ml; and 1 M KI, 1 ml. Optical density at 649 mµ is read from 10-120 min thereafter. OsO4 concentration is calculated from the measured molecular extinction coefficient of OsI6 =, 4400 liter/mole cm.  相似文献   

14.
Celloidin sections from formalin-fixed brain and spinal cord of primates are stored in 70% alcohol after cutting, soaked in 2% pyridine in 50% alcohol for 6-8 hr at 37 C, and transferred to 1% concentrated NH4OH in 50% alcohol 15-18 hr at 20-25 C. After washing and flattening, the sections are transferred to 1% silver protein solution containing 30 ml of 0.2 M H3BO3/100 ml. Impregnation is accomplished in 50 ml screw-top jars, 50 mm in diameter, which are filled to a depth of 35 mm, and have 1 gm of copper foil, 0.002 inch thick added. The foil is folded in loose accordion-fashion, pierced and threaded, cleaned in 5% HNO3, rinsed in distilled water, and suspended in the solution just above the sections by fastening the thread to the jar lid. The sections are impregnated for 24 hr at 37 C, rinsed in distilled water, reduced in a solution of 5% Na2SO3 and 1% hydroquinone for 10 min, washed in distilled water and toned in 0.2% gold chloride for 5 min. After rinsing in distilled water, the sections are transferred to 1% oxalic acid for 45-60 sec, washed in distilled water and placed in 5% Na2S2O3 for 5 min. Sections are then washed, dehydrated to 95% alcohol, cleared in terpineol, followed by 3 changes in xylene, and mounted.  相似文献   

15.
A silver staining method for paraffin sections of material fixed in HgCl2, sat. aq., with 5% acetic acid is as follows. Process the sections through the usual sequence of reagents, and including I-KI in 70% alcohol, thiosulfate (5% aq.), washing and back to 70% alcohol containing 5% of NH4OH (conc. aq.). After 3 minutes in the ammoniated alcohol, wash through tap water and 2 changes of distilled water and silver 5-10 minutes at 25°C. in 15% AgNO3 aq. to which 0.02 ml. of pyridine per 100 ml. has been added. Blot the slide, but not the section and do not rinse. Reduce at 45°C. in 0.1% pyrogallol in 55% alcohol, then rinse in 55% alcohol and wash in water. The remainder of the process consists of gold toning, intensifying in oxalic acid, fixing in 5% Na2S2O3, washing, dehydrating, clearing and covering. When the specimen contains much smooth muscle, the I-KI solution is acidified before use by adding 2 ml. of 1N nitric acid per 100 ml., and the sections treated for 3 minutes instead of the usual 2 minutes. Formalin should not be added to sublimate-acetic, but specimens that do not contain strongly argyrophilic nonneural tissue may be fixed in formalin or, preferably, Bouin's fluid. Sections of tissue after the latter type of fixation will not require the I-KI and thiosulfate but can go from 95% alcohol to the ammoniated alcohol. The advantages of fixing in HgCl2-acetic acid are suppression of the staining of connective tissue and intensifying the staining of nerve fibers.  相似文献   

16.
Tissues were fixed at 20° C for 1 hr in 1% OsO4, buffered at pH 7.4 with veronal-acetate (Palade's fixative), soaked 5 min in the same buffer without OsO4, then dehydrated in buffer-acetone mixtures of 30, 50, 75 and 90% acetone content, and finally in anhydrous acetone. Infiltration was accomplished through Vestopal-W-acetone mixtures of 1:3, 1:1, 3:1 to undiluted Vestopal. After polymerisation at 60° C for 24 hr, 1-2 μ sections were cut, dried on slides without adhesive, and stained by any of the following methods. (1) Mayer's acid hemalum: Flood the slides with the staining solution and allow to stand at 20°C for 2-3 hr while the water of the solution evaporates; wash in distilled water, 2 min; differentiate in 1% HCl; rinse 1-2 sec in 10% NH,OH. (2) Iron-trioxyhematein (of Hansen): Apply the staining solution as in method 1; wash 3-5 min in 5% acetic acid; restain for 1-12 hr by flooding with a mixture consisting of staining solution, 2 parts, and 1 part of a 1:1 mixture of 2% acetic acid and 2% H2SO4 (observe under microscope for staining intensity); wash 2 min in distilled water and 1 hr in tap water. (3) Iron-hematoxylin (Heidenhain): Mordant 6 hr in 2.5% iron-alum solution; wash 1 min in distilled water; stain in 1% or 0.5% ripened hematoxylin for 3-12 br; differentiate 8 min in 2.5%, and 15 min in 1% iron-alum solution; wash 1 hr in tap water. (4) Aceto-carmine (Schneider): Stain 12-24 hr; wash 0.5-1.0 min in distilled water. (5) Picrofuchsin: Stain 24-48 hr in 1% acid fuchsin dissolved in saturated aqueous picric acid; differentiate for only 1-2 sec in 96% ethanol. (6) Modified Giemsa: Mix 640 ml of a solution of 9.08 gm KH2PO4 in 1000 ml of distilled water and 360 ml of a solution of 11.88 gm Na2HPO4-2H2O in 1000 ml of distilled water. Soak sections in this buffer, 12 hr. Dissolve 1.0 gm of azur I in 125 ml of boiling distilled water; add 0.5 gm of methylene blue; filter and add hot distilled water until a volume of 250 ml is reached (solution “AM”). Dissolve 1.5 gm of eosin, yellowish, in 250 ml of hot distilled water; filter (solution “E”). Mix 1.5 ml of “AM” in 100 ml of buffer with 3 ml of “E” in 100 ml of buffer. Stain 12-24 hr. Differentiate 3 sec in 25 ml methyl benzoate in 75 ml dioxane; 3 sec in 35 ml methyl benzoate in 65 ml acetone; 3 sec in 30 ml acetone in 70 ml methyl benzoate; and 3 sec in 5 ml acetone in 95 ml methyl benzoate. Dehydrated sections may be covered in a neutral synthetic resin (Caedax was used).  相似文献   

17.
Fresh tissue slices were fixed in 5% formalin containing 0.9% NaCl for 10-20 min and frozen sections therefrom floated for 3 hr at 37°C on an incubating mixture made as follows. Sodium pyrophosphate (Na4P2O7-12H2O), 1.088 gm was dissolved in 20-30 ml of distilled water and to this was added ferric chloride (FeCl3-6H2O), 0.61 gm dissolved in 10-15 ml of water. The precipitate was just dissolved by cautiously adding 5-10% aqueous Na2CO3 solution and the pH adjusted to 7.2 with 1N HCl. The volume was made up to 100 ml and 0.9 gm of NaCl added. Before use, 1 ml of 10% Mg(NO3) was added. After incubation, sections were washed 10-15 min in 0.9% NaCl, then mounted on glass slides and air-dried. When dry, the slides were immersed in 0.9% NaCl containing 0.2-0.5% ammonium sulfide for 2-3 min, then dehydrated rapidly through graded alcohols, cleared, and covered in balsam. Sites of pyrophosphatase activity stained in various shades of green. Acid pyrophosphatase also was histochemically demonstrated by the same principle, excepting that the substrate solution was adjusted to pH 3.7-4.0 with acetate buffer. The pattern of distribution of pyrophosphatase and glycerophosphatase was almost identical.  相似文献   

18.
The staining time for mammalian skeletal muscle fixed in neutral phosphate-buffered formalin was shortened from 12-24 hr to 10-30 min. The permanganate-oxalate sequence was omitted although oxidation by periodic acid or with iodine was found to be necessary. The material was embedded in paraffin and cut 6 μ or less. Deparaffinized sections were treated with 1% alcoholic iodine for 10 rain followed by 5% Na2S2O3 for 2 min and placed in an oven at 60 C for 10-30 min to stain in a preheated mixture of 50 ml of ripened Mallory's phosphotungstic acid-hematoxylin and 1 ml of 2% phosphomolybdic acid. Experiments with fixation showed that the staining procedure followed Zenker's fluid successfully but not Bouin's fluid. Oxidation by KMnO4 was effective only after Zenker fixation; oxidation by CrO3 was unsuccessful.  相似文献   

19.
Since Pearse in 1957 introduced chromoxane cyanine R as a dual nuclear and cytoplasmic stain there have appeared numerous procedures for use of this dye. These have differed widely, sharing in common mainly the implication that each is best. A defendable procedure has been developed on an experimental basis and is reported here. Four stock solutions are needs. (1) a 0.2% solution of chromoxane cyanine R in 0.5% aqueous H2SO4 (v/v); boil this solution for 5 min, (2) 10% FeCl3 in 3% HCI, (3) 1% aqueous NH4OH, and (4) 1% HCI in 70% ethanol. The staining solution: 40 ml of dye solution, 2 ml of FeCl3 solution, 8 ml H2O. Dewax and hydrate sections and stain for 10 min. If a myelin sheath stain is desired differentiate for 1 min in solution (3). For a nuclear stain differentiate for 1 min in solution (4). The nuclear stain when counterstained with eosin closely resembles the routine hematoxylin and win. Histochemical tee show that the functional pup for myelin staining contains nitrogen, and probably hydrogen bonding is involved. The nuclear stain involves a different functional group and possibly neither electrostatic nor hydrogen bonding.  相似文献   

20.
Immerse pieces of brain tissue 4 wk in solutions A and B, mixed just before use: A. K2Cr2O7, 1 gm; HgCl2, 1 gm; boiling distilled water, 85 ml. Boil A for 15 min, cool to 2 C and add: B. K2CrO4, 0.8 gm; Na2WO4, 0.5 gm; distilled water, 20 ml. Rinse in water and immerse 24 hr in LiOH, 0.5 gm; KNO3, 15 gm; distilled water, 100 ml. Wash 24 hr in several changes of 0.2% acetic acid and then for 2 hr in tap water. Dehydrate and embed in celloidin. Process a 60 μ section through 70 and 95% ethanol, a 3:1 mixture of absolute ethanol and chloroform, and toluene. Immerse it for 5 min in a solution containing methyl benzoate, 25 ml; benzyl alcohol, 100 ml; chloroform, 75 ml. Orient the section on a chemically clean slide and let air-dry 5-10 min. Process through toluene, 3:1 ethanol-chloroform and 95% ethanol. Place the section for 5-60 min at 60 C in a solution made up of: Luxol fast blue G (Matheson, Coleman and Bell), 1 gm; 95% ethanol, 1000 ml; 10% acetic acid, 5 ml. Hydrate to water and immerse in 0.05% Li2CO3 for 3-4 min. Differentiate in 70% ethanol and place in water. Immerse for 5-15 min in a mixture of two solutions: A. cresylechtviolet (Otto C. Watzka, Montreal), 2 gm; 1 M acetic acid, 185 ml; B. 1 M sodium acetate, 15 ml; distilled water, 400 ml; absolute ethanol, 200 ml. Dehydrate to 3:1 ethanol-chloroform. Clear in toluene and apply a coverslip. The technique produces fast Golgi-Cox impregnated neurons against a background of counterstained myelinated fibers. Patterns of the myelinated fibers can be used to localize impregnated neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号