首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crown rot (CR), caused by various Fusarium species, is a chronic wheat disease in Australia. As part of our objective of improving the efficiency of breeding CR resistant wheat varieties, we have been searching for novel sources of resistance. This paper reports on the genetic control of one of these newly identified resistant genotypes, ‘CSCR6’. A population derived from a cross between CSCR6 and an Australian variety ‘Lang’ was analyzed using two Fusarium isolates belonging to two different species, one Fusarium pseudograminearum and the other Fusarium graminearum. The two isolates detected QTL with the same chromosomal locations and comparable magnitudes, indicating that CR resistance is not species-specific. The resistant allele of one of the QTL was derived from ‘CSCR6’. This QTL, designated as Qcrs.cpi-3B, was located on the long arm of chromosome 3B and explains up to 48.8% of the phenotypic variance based on interval mapping analysis. Another QTL, with resistant allele from the variety ‘Lang’, was located on chromosome 4B. This QTL explained up to 22.8% of the phenotypic variance. A strong interaction between Qcsr.cpi-3B and Qcsr.cpi-4B was detected, reducing the maximum effect of Qcrs.cpi-3B to 43.1%. The effects of Qcrs.cpi-3B were further validated in four additional populations and the presence of this single QTL reduced CR severity by up to 42.1%. The fact that significant effects of Qcrs.cpi-3B were detected across all trials with different genetic backgrounds and with the use of isolates belonging to two different Fusarium species make it an ideal target for breeding programs as well as for further characterization of the gene(s) involved in its resistance.  相似文献   

2.
Fusarium crown rot (FCR), caused by various Fusarium species, is a destructive disease of cereal crops in semiarid regions worldwide. As part of our contribution to the development of Fusarium resistant cultivars, we identified several novel sources of resistance by systematically assessing barley genotypes representing different geographical origins and plant types. One of these sources of resistance was investigated in this study by generating and analysing two populations of recombinant inbred lines. A major locus conferring FCR resistance, designated as Qcrs.cpi-4H, was detected in one of the populations (mapping population) and the effects of the QTL was confirmed in the other population. The QTL was mapped to the distal end of chromosome arm 4HL and it is effective against both of the Fusarium isolates tested, one F. pseudograminearum and the other F. graminearum. The QTL explains up to 45.3% of the phenotypic variance. As distinct from an earlier report which demonstrated co-locations of loci conferring FCR resistance and plant height in barley, a correlation between these two traits was not detected in the mapping population. However, as observed in a screen of random genotypes, an association between FCR resistance and plant growth rate was detected and a QTL controlling the latter was detected near the Qcrs.cpi-4H locus in the mapping population. Existing data indicate that, although growth rate may affect FCR resistance, different genes at this locus are likely involved in controlling these two traits.  相似文献   

3.
Fusarium crown rot (FCR) is a serious cereal disease in semi-arid regions worldwide. In assisting the effort of breeding cultivars with enhanced resistance, we identified several barley genotypes with high levels of FCR resistance. One of these genotypes, AWCS079 which is a barley landrace originating from Japan, was investigated by developing and assessing three populations of recombinant inbred lines. Two QTL, one located on the long arm of chromosome 1H (designated as Qcrs.cpi-1H) and the other on 3HL (designated as Qcrs.cpi-3H), were found to be responsible for the FCR resistance of this genotype. Qcrs.cpi-1H is novel as no other FCR loci have been reported on this chromosome arm. Qcrs.cpi-3H co-located with a reduced height (Rht) locus and the effectiveness of the former was significantly affected by the latter. The total phenotypic variance explained by these two QTL was over 60 %. Significant effects were detected for each of the QTL in each of the three populations assessed. The existence of these loci with major effects should not only facilitate breeding and exploitation of FCR-resistant barley cultivars but also their further characterization based on fine mapping and map-based gene cloning.  相似文献   

4.
Crown rot (CR) is one of the most destructive diseases of barley and wheat. Fusarium species causing CR survive in crop residue and a growing acceptance of stubble retention practices has exacerbated disease severity and yield loss. Growing resistant cultivars has long been recognised as the most effective way to reduce CR damage but these are not available in barley. In a routine screening of germplasm, a barley landrace from China gave the best CR resistance among the genotypes tested. Using a doubled haploid population derived from this landrace crossed to Franklin, we demonstrate that the CR resistance of TX9425 was conditioned by a major QTL. The QTL, designated as Qcrs.cpi-3H, was mapped near the centromere on the long arm of chromosome 3H. Its effect is highly significant, accounting for up to 63.3% of the phenotypic variation with a LOD value of 14.8. The location of Qcrs.cpi-3H was coincident with a major QTL conferring plant height (PH) and the effect of PH on CR reaction was also highly significant. When the effect of PH was accounted for by covariance analysis, the Qcrs.cpi-3H QTL remained highly significant, accounting for over 40% of the phenotypic variation. The existence of such a major QTL implies that breeding barley cultivars with enhanced CR resistance should be feasible.  相似文献   

5.
We report the fine mapping of the previously described quantitative trait loci (QTL) for grain weight QTgw.ipk-7D associated with microsatellite marker Xgwm1002-7D by using introgression lines (ILs) carrying introgressions of the synthetic wheat W-7984 in the genetic background of the German winter wheat variety ‘Prinz’. The BC4F3 ILs had a 10% increased thousand grain weight compared to the control group and the recurrent parent ‘Prinz’, and 84.7% of the phenotypic variance could be explained by the segregation of marker Xgwm1002-7D, suggesting the presence of a gene modulating grain weight, which was preliminarily designated gw1. It was possible to delimit the QTL QTgw.ipk-7D to the interval Xgwm295–Xgwm1002, which is located in the most telomeric bin 7DS4-0.61-1.00 in the physical map of wheat chromosome arm 7DS. Furthermore, our data suggest the presence of a novel plant height-reducing locus Rht on chromosome arm 7DS of ‘Prinz’. Larger grain and increased plant height may reflect the pleiotropic action of one gene or may be caused by two linked genes. In general, our data support the concept of using nearly isogenic ILs for validating and dissecting QTLs into single Mendelian genes and open the gateway for map-based cloning of a grain-weight QTL in wheat.  相似文献   

6.
7.
Verticillium wilt (VW) caused by Verticillium dahliae Kleb is one of the most destructive diseases of cotton. Development and use of a VW resistant variety is the most practical and effective way to manage this disease. Identification of highly resistant genes/QTL and the underlining genetic architecture is a prerequisite for developing a VW resistant variety. A major QTL qVW-c6-1 conferring resistance to the defoliating isolate V991 was identified on chromosome 6 in LHB22×JM11 F2∶3 population inoculated and grown in a greenhouse. This QTL was further validated in the LHB22×NNG F2∶3 population that was evaluated in an artificial disease nursery of V991 for two years and in its subsequent F4 population grown in a field severely infested by V991. The allele conferring resistance within the QTL qVW-c6-1 region originated from parent LHB22 and could explain 23.1–27.1% of phenotypic variation. Another resistance QTL qVW-c21-1 originated from the susceptible parent JM11 was mapped on chromosome 21, explaining 14.44% of phenotypic variation. The resistance QTL reported herein provides a useful tool for breeding a cotton variety with enhanced resistance to VW.  相似文献   

8.
Fusarium crown rot (FCR) has become one of the most damaging cereal diseases in semi-arid regions worldwide. Targeting three large-effect QTL (located on the chromosome arm 3BL, 5DS and 2DL, respectively), we investigated the feasibility of enhancing FCR resistance by gene pyramiding. Significant effects were detected for each of the three QTL in both populations assessed. Lines with any combination of two resistant alleles gave significantly better resistance than those with a single resistant allele only and those without any allele, and lines possessing all three resistant alleles showed the best resistance. These results demonstrated that gene pyramiding can be an effective approach in improving FCR resistance. Those lines with resistant alleles from all three QTL could be valuable genetic stocks for breeding programs.  相似文献   

9.
Tan spot, caused by Pyrenophora tritici-repentis (Ptr), is an economically important foliar disease in the major wheat growing areas of the world. Multiple races of the pathogen have been characterized based on their ability to cause necrosis and/or chlorosis in differential wheat lines. Isolates of race 5 cause chlorosis only, and they produce a host-selective toxin designated Ptr ToxB that induces chlorosis when infiltrated into sensitive genotypes. The international Triticeae mapping initiative (ITMI) mapping population was used to identify genomic regions harboring QTLs for resistance to fungal inoculations of Ptr race 5 and to determine the chromosomal location of the gene conditioning sensitivity to Ptr ToxB. The toxin-insensitivity gene, which we are designating tsc2, mapped to the distal tip of the short arm of chromosome 2B. This gene was responsible for the effects of a major QTL associated with resistance to the race 5 fungus and accounted for 69% of the phenotypic variation. Additional minor QTLs were identified on the short arm of 2A, the long arm of 4A, and on the long arm of chromosome 2B. Together, the major QTL on 2BS identified by tsc2 and the QTL on 4AL explained 73% of the total phenotypic variation for resistance to Ptr race 5. The results of this research indicate that Ptr ToxB is a major virulence factor, and the markers closely linked to tsc2 and the 4A QTL should be useful for introgression of resistance into adapted germplasm.  相似文献   

10.
In the progeny of a cross between the common wheat cultivar Tähti and Triticum militinae, a member of the timopheevii group of tetraploid wheats, several hybrid lines were selected that are characterized by improved seedling and adult plant resistance (APR) to powdery mildew. An F2 single-seed descendant mapping population segregating for seedling resistance and APR to powdery mildew was analysed for the identification of quantitative trait loci (QTL). The main QTL responsible for APR was detected on the long arm of chromosome 4A tightly linked to the Xgwm160 locus on a T. militinae translocation explaining up to 54% of phenotypic variance. The same translocation influenced seedling resistance to powdery mildew upon inoculation of plants with a synthetic population of Blumeria graminis DC. f. sp. tritici, and explained 28–33% of the phenotypic variance.  相似文献   

11.
Stripe rust resistance in the German winter wheat cv. Alcedo has been described as durable, the resistance having remained effective when grown extensively in Germany and Eastern Europe between 1975 and 1989. Genetic characterisation of field resistance in a cross between Alcedo and the stripe rust susceptible UK winter wheat cv. Brigadier identified two major QTL in Alcedo located on the long arms of chromosomes 2D (QPst.jic-2D) and 4B (QPst.jic-4B). Stripe rust resistance was evaluated by measuring the extent of fungal growth, percentage infection (Pi) and the necrotic/chlorotic response of the plant to infection, infection type (IT). Both QPst.jic-2D and QPst.jic-4B contributed significantly to the reduction in stripe rust infection (Pi), with QPst.jic-2D explaining up to 36.20% and QPst.jic-4B 28.90% of the phenotypic variation measured for Pi. Both QTL were identified by the IT phenotypic scores, with QPst.jic-2D in particular being associated with a strong necrotic phenotype (low IT), QPst.jic-2D explaining up to 53.10% of IT phenotypic variation and QPst.jic-4B 22.30%. In addition, two small effect QTL for field stripe rust resistance were identified in Brigadier, QPst.jic-1B on the long arm of chromosome 1B and QPst.jic-5A on the short arm of chromosome 5A. The influence of QPst.jic-1B was primarily seen with the Pi phenotype, contributing up to 13.10% of the explained phenotypic variation. QPst.jic-5A was only detected using an approximate multiple-QTL model and selecting markers linked to the major effect QTL, QPst.jic-2D and QPst.jic-4B as co-factors. Seedling stripe rust resistance was also mapped in the cross, which confirmed the location of Yr17 from Brigadier to the short arm of chromosome 2A. A seedling expressed QTL was also located in Alcedo that mapped to the same location as the field stripe rust resistance QPst.jic-2D.  相似文献   

12.
Seedlings of 62 Australian barley cultivars and two exotic barley genotypes were assessed for resistance to a variant of Puccinia striiformis, referred to as “Barley Grass Stripe Rust” (BGYR), first detected in Australia in 1998, which is capable of infecting wild Hordeum species and some genotypes of cultivated barley. Fifty-three out of 62 cultivated barley cultivars tested were resistant to the pathogen. Genetic analyses of seedling resistance to BGYR in six Australian barley cultivars and one Algerian barley landrace indicated that they carried either one or two major resistance genes to the pathogen. A single recessive seedling resistance gene, rpsSa3771, identified in Sahara 3771, was located on the long arm of chromosome 1 (7 H), flanked by the restriction fragment length polymorphism (RFLP) markers Xwg420 and Xcdo347 at genetic distances of 12.8 and 21.9 cM, respectively. Mapping resistance to BGYR at adult plant growth stages using the doubled haploid (DH) population Clipper × Sahara 3771 identified two major quantitative trait loci (QTL), one on the long arm of chromosome 3 (3 H) and the second on the long arm of chromosome 1 (7 H), accounting for 26 % and 18 % of the total phenotypic variation, respectively. The QTL located on chromosome 7HL corresponded to seedling resistance gene rpsSa3771 and the second QTL was concluded to correspond to a single APR gene, designated rpsCl, contributed by cultivar Clipper.  相似文献   

13.
The inheritance of resistance to white tip disease (WTDR) in rice (Oryza sativa L.) was analyzed with an artificial inoculation test in a segregating population derived from the cross between Tetep, a highly resistant variety that was identified in a previous study, and a susceptible cultivar. Three resistance-associated traits, including the number of Aphelenchoides besseyi (A. besseyi) individuals in 100 grains (NA), the loss rate of panicle weight (LRPW) and the loss rate of the total grains per panicle (LRGPP) were analyzed for the detection of the quantitative trait locus (QTL) in the population after construction of a genetic map. Six QTLs distributed on chromosomes 3, 5 and 9 were mapped. qNA3 and qNA9, conferring reproduction number of A. besseyi in the panicle, accounted for 16.91% and 12.54% of the total phenotypic variance, respectively. qDRPW5a and qDRPW5b, associated with yield loss, were located at two adjacent marker intervals on chromosome 5 and explained 14.15% and 14.59% of the total phenotypic variation and possessed LOD values of 3.40 and 3.39, respectively. qDRPW9 was considered as a minor QTL and only explained 1.02% of the phenotypic variation. qLRGPP5 contributed to the loss in the number of grains and explained 10.91% of the phenotypic variation. This study provides useful information for the breeding of resistant cultivars against white tip disease in rice.  相似文献   

14.
Brown planthopper (BPH) is one of the most destructive insect pests of rice. Wild species of rice are a valuable source of resistance genes for developing resistant cultivars. A molecular marker-based genetic analysis of BPH resistance was conducted using an F2 population derived from a cross between an introgression line, ‘IR71033-121-15’, from Oryza minuta (Accession number 101141) and a susceptible Korean japonica variety, ‘Junambyeo’. Resistance to BPH (biotype 1) was evaluated using 190 F3 families. Two major quantitative trait loci (QTLs) and two significant digenic epistatic interactions between marker intervals were identified for BPH resistance. One QTL was mapped to 193.4-kb region located on the short arm of chromosome 4, and the other QTL was mapped to a 194.0-kb region on the long arm of chromosome 12. The two QTLs additively increased the resistance to BPH. Markers co-segregating with the two resistance QTLs were developed at each locus. Comparing the physical map positions of the two QTLs with previously reported BPH resistance genes, we conclude that these major QTLs are new BPH resistance loci and have designated them as Bph20(t) on chromosome 4 and Bph21(t) on chromosome 12. This is the first report of BPH resistance genes from the wild species O. minuta. These two new genes and markers reported here will be useful to rice breeding programs interested in new sources of BPH resistance.  相似文献   

15.
Fusarium head blight (FHB, scab) is a fungal disease of wheat and other small cereals that is found in both temperate and semi-tropical regions. FHB causes severe yield and quality losses, but the most-serious concern is the possible mycotoxin contamination of cereal food and feed. Breeding for FHB resistance by conventional selection is feasible, but tedious and expensive. This study was conducted to identify and map DNA markers associated with FHB resistance genes in wheat. A population of 364 F1-derived doubled-haploid (DH) lines from the cross ’CM-82036’ (resistant)/’Remus’ (susceptible) was evaluated for Type II resistance (spread within the spike) during 2 years under field conditions. Marker analysis was performed on 239 randomly chosen DH lines. Different marker types were applied, with an emphasis on AFLP and SSR markers. Analysis of variance, as well as simple and composite interval mapping, were applied. Three genomic regions were found significantly associated with FHB resistance. The most-prominent effect was detected on the short arm of chromosome 3B, explaining up to 60% of the phenotypic variance for Type II FHB resistance. A further QTL was located on chromosome 5A and a third one on 1B. The QTL regions on 3B and 5A were tagged with flanking SSR markers, the 1B QTL was found associated with the high-molecular-weight glutenin locus. These results indicate that FHB resistance is under control of a few major QTLs operating together with unknown numbers of minor genes. Marker-assisted selection for these major QTLs involved in FHB resistance appears feasible and should accelerate the development of resistant and agronomically improved wheat cultivars. Received: 25 January 2001 / Accepted: 18 February 2001  相似文献   

16.
Soil-borne wheat mosaic virus (SBWMV) is considered to be one of the most important diseases in winter wheat regions of the central and southeastern United States. Utilization of resistant cultivars is the most efficient and environmentally friendly means of control. To identify potential quantitative trait loci (QTL) or effective gene(s) for SBWMV resistance, two independent recombinant inbred line populations, Pioneer 26R61/AGS 2000 (PR61/A2000, 178 lines) and AGS 2020/LA 95135 (A2020/LA, 130 lines), were developed. Pioneer 26R61 and AGS 2020 were resistant to SBWMV, and AGS 2000 and LA 95135 were susceptible. Based on the whole genome genotyping for the PR61/A2000 population and targeted mapping of chromosome 5D for the A2020/LA, the same major QTL QSbm.uga-5DL was identified in all environments with highly significant LOD values, explaining up to 62 and 65?% of the total phenotypic variation in the PR61/A2000 and A2020/LA populations, respectively. The location of the resistance QTL coincided with previously published SBCMV resistance genes Sbm1, Sbm Claire and Sbm Tremie on the long arm of chromosome 5D. A conserved locus was therefore proposed for conditioning SBWMV/SBCMV resistance in common wheat. Validation of the QTL using the flanking markers Xbarc177 and Xbarc161 in three cultivars and three elite lines with Pioneer 26R61 in their pedigrees indicated that the markers were suitable for marker-assisted selection.  相似文献   

17.
Powdery mildew (PM) is a very important disease of cucumber (Cucumis sativus L.). Resistant cultivars have been deployed in production for a long time, but the genetic mechanisms of PM resistance in cucumber are not well understood. A 3-year QTL mapping study of PM resistance was conducted with 132 F2:3 families derived from two cucumber inbred lines WI 2757 (resistant) and True Lemon (susceptible). A genetic map covering 610.4 cM in seven linkage groups was developed with 240 SSR marker loci. Multiple QTL mapping analysis of molecular marker data and disease index of the hypocotyl, cotyledon and true leaf for responses to PM inoculation identified six genomic regions in four chromosomes harboring QTL for PM resistance in WI 2757. Among the six QTL, pm1.1 and pm1.2 in chromosome 1 conferred leaf resistance. Minor QTL pm3.1 (chromosome 3) and pm4.1 (chromosome 4) contributed to disease susceptibility. The two major QTL, pm5.1 and pm5.2 were located in an interval of ~40 cM in chromosome 5 with each explaining 21.0–74.5 % phenotypic variations. Data presented herein support two recessively inherited, linked major QTL in chromosome 5 plus minor QTL in other chromosomes that control the PM resistance in WI 2757. The QTL pm5.2 for hypocotyl resistance plays the most important role in host resistance. Multiple observations in the same year revealed the importance of scoring time in the detection of PM resistance QTL. Results of this study provided new insights into phenotypic and genetic mechanisms of powdery mildew resistance in cucumber.  相似文献   

18.
Fusarium crown rot (FCR), caused by Fusarium pseudograminearum and F. culmorum, reduces wheat (Triticum aestivum L.) yields in the Pacific Northwest (PNW) of the US by as much as 35%. Resistance to FCR has not yet been discovered in currently grown PNW wheat cultivars. Several significant quantitative trait loci (QTL) for FCR resistance have been documented on chromosomes 1A, 1D, 2B, 3B, and 4B in resistant Australian cultivars. Our objective was to identify QTL and tightly linked SSR markers for FCR resistance in the partially resistant Australian spring wheat cultivar Sunco using PNW isolates of F. pseudograminerarum in greenhouse and field based screening nurseries. A second objective was to compare heritabilities of FCR resistance in multiple types of disease assaying environments (seedling, terrace, and field) using multiple disease rating methods. Two recombinant inbred line (RIL) mapping populations were derived from crosses between Sunco and PNW spring wheat cultivars Macon and Otis. The Sunco/Macon population comprised 219 F(6):F(7) lines and the Sunco/Otis population comprised 151 F(5):F(6) lines. Plants were inoculated with a single PNW F. pseudograminearum isolate (006-13) in growth room (seedling), outdoor terrace (adult) and field (adult) assays conducted from 2008 through 2010. Crown and lower stem tissues of seedling and adult plants were rated for disease severity on several different scales, but mainly on a numeric scale from 0 to 10 where 0?=?no discoloration and 10?=?severe disease. Significant QTL were identified on chromosomes 2B, 3B, 4B, 4D, and 7A with LOD scores ranging from 3 to 22. The most significant and consistent QTL across screening environments was located on chromosome 3BL, inherited from the PNW cultivars Macon and Otis, with maximum LOD scores of 22 and 9 explaining 36 and 23% of the variation, respectively for the Sunco/Macon and Sunco/Otis populations. The SSR markers Xgwm247 and Xgwm299 flank these QTL and are being validated for use in marker-assisted selection for FCR resistance. This is the first report of QTL associated with FCR resistance in the US.  相似文献   

19.
Bacterial seedling rot (BSR), a destructive disease of rice (Oryza sativa L.), is caused by the bacterial pathogen Burkholderia glumae. To identify QTLs for resistance to BSR, we conducted a QTL analysis using chromosome segment substitution lines (CSSLs) derived from a cross between Nona Bokra (resistant) and Koshihikari (susceptible). Comparison of the levels of BSR in the CSSLs and their recurrent parent, Koshihikari, revealed that a region on chromosome 10 was associated with resistance. Further genetic analyses using an F5 population derived from a cross between a resistant CSSL and Koshihikari confirmed that a QTL for BSR resistance was located on the short arm of chromosome 10. The Nona Bokra allele was associated with resistance to BSR. Substitution mapping in the Koshihikari genetic background demonstrated that the QTL, here designated as qRBS1 (quantitative trait locus for RESISTANCE TO BACTERIAL SEEDLING ROT 1), was located in a 393-kb interval (based on the Nipponbare reference genome sequence) defined by simple sequence repeat markers RM24930 and RM24944.  相似文献   

20.
The lack of resistant source has greatly restrained resistance breeding of rapeseed (Brassica napus, AACC) against Sclerotinia sclerotiorum which causes severe yield losses in rapeseed production all over the world. Recently, several wild Brassica oleracea accessions (CC) with high level of resistance have been identified (Mei et al. in Euphytica 177:393–400, 2011), bringing a new hope to improve Sclerotinia resistance of rapeseed. To map quantitative trait loci (QTL) for Sclerotinia resistance from wild B. oleracea, an F2 population consisting of 149 genotypes, with several clones of each genotypes, was developed from one F1 individual derived from the cross between a resistant accession of wild B. oleracea (B. incana) and a susceptible accession of cultivated B. oleracea var. alboglabra. The F2 population was evaluated for Sclerotinia reaction in 2009 and 2010 under controlled condition. Significant differences among genotypes and high heritability for leaf and stem reaction indicated that genetic components accounted for a large portion of the phenotypic variance. A total of 12 QTL for leaf resistance and six QTL for stem resistance were identified in 2 years, each explaining 2.2–28.4 % of the phenotypic variation. The combined effect of alleles from wild B. oleracea reduced the relative susceptibility by 22.5 % in leaves and 15 % in stems on average over 2 years. A 12.8-cM genetic region on chromosome C09 of B. oleracea consisting of two major QTL intervals for both leaf and stem resistance was assigned into a 2.7-Mb genomic region on chromosome A09 of B. rapa, harboring about 30 putative resistance-related genes. Significant negative corrections were found between flowering time and relative susceptibility of leaf and stem. The association of flowering time with Sclerotinia resistance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号