首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The AAA-ATPase p97/Cdc48 functions in different cellular pathways using distinct sets of adapters and other cofactors. Together with its adaptor Ufd1-Npl4, it extracts ubiquitylated substrates from the membrane for subsequent delivery to the proteasome during ER-associated degradation. Together with its adaptor p47, on the other hand, it regulates several membrane fusion events, including reassembly of Golgi cisternae after mitosis. The finding of a ubiquitin-binding domain in p47 raises the question as to whether the ubiquitin-proteasome system is also involved in membrane fusion events. Here, we show that p97-p47-mediated reassembly of Golgi cisternae requires ubiquitin, but is not dependent on proteasome-mediated proteolysis. Instead, it requires the deubiquitinating activity of one of its cofactors, VCIP135, which reverses a ubiquitylation event that occurs during mitotic disassembly. Together, these data reveal a cycle of ubiquitylation and deubiquitination that regulates Golgi membrane dynamics during mitosis. Furthermore, they represent the first evidence for a proteasome-independent function of p97/Cdc48.  相似文献   

2.
The AAA protein p97 requires adaptor-like cofactors for its numerous cellular functions. In this issue of Developmental Cell, Uchiyama et al. (2006) identify p37 as a p97 adaptor that is required constitutively for ER and Golgi membrane fusion, analogous to the mitotic membrane fusion role of the adaptor p47. Their study suggests that related p97 adaptors involved in similar cellular pathways can be subject to differential regulation.  相似文献   

3.
The hexameric AAA ATPase p97 is involved in several human proteinopathies and mediates ubiquitin-dependent protein degradation among other essential cellular processes. Via its N-terminal domain (N domain), p97 interacts with multiple regulatory cofactors including the UFD1/NPL4 heterodimer and members of the "ubiquitin regulatory X" (UBX) domain protein family; however, the principles governing cofactor selectivity remain to be deciphered. Our crystal structure of the FAS-associated factor 1 (FAF1)UBX domain in complex with the p97N domain reveals that the signature Phe-Pro-Arg motif known to be crucial for interactions of UBX domains with p97 adopts a cis-proline configuration, in contrast to a cis-trans mixture we derive for the isolated FAF1UBX domain. Biochemical studies confirm that binding critically depends on a proline at this position. Furthermore, we observe that the UBX proteins FAF1 and UBXD7 only bind to p97-UFD1/NPL4, but not free p97, thus demonstrating for the first time a hierarchy in p97-cofactor interactions.  相似文献   

4.
《Autophagy》2013,9(9):1091-1092
Specific p97 inhibitors are valuable research tools to carry out mechanistic and cellular investigations of p97 biology. p97 is an abundant, ubiquitin-selective chaperone that has multiple functions and is essential for life. Therefore, genetic methods that require long incubations like siRNA or expression of dominant-negative p97 mutants are likely to generate complicated outcomes due to secondary consequences that arise upon slow depletion of p97 activity. We recently identified a small molecule p97 inhibitor, N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ), and documented its effects on blocking autophagic degradation of LC3-II and proteasomal degradation of a p97-dependent ubiquitin-proteasome system (UPS) substrate. What distinguishes DBeQ from conventional proteasome inhibitors is that DBeQ affects both the UPS and autophagic protein degradation pathways and rapidly activates cell death. Whether DBeQ activates autophagic and/or apoptotic cell death will require further work to evaluate its detailed mechanism of action. An exciting goal for the future will be to generate p97 inhibitors that affect one or the other pathway. We propose that generation of ‘separation of function’ inhibitors will be a challenging adventure for chemical biologists but will yield extremely powerful tools to study p97 and enable evaluation of the therapeutic potential of targeting distinct p97 complexes.  相似文献   

5.
Chou TF  Deshaies RJ 《Autophagy》2011,7(9):1091-1092
Specific p97 inhibitors are valuable research tools to carry out mechanistic and cellular investigations of p97 biology. p97 is an abundant, ubiquitin-selective chaperone that has multiple functions and is essential for life. Therefore, genetic methods that require long incubations like siRNA or expression of dominant-negative p97 mutants are likely to generate complicated outcomes due to secondary consequences that arise upon slow depletion of p97 activity. We recently identified a small molecule p97 inhibitor, N ( 2) ,N ( 4) -dibenzylquinazoline-2,4-diamine (DBeQ), and documented its effects on blocking autophagic degradation of LC3-II and proteasomal degradation of a p97-dependent ubiquitin-proteasome system (UPS) substrate. What distinguishes DBeQ from conventional proteasome inhibitors is that DBeQ affects both the UPS and autophagic protein degradation pathways and rapidly activates cell death. Whether DBeQ activates autophagic and/or apoptotic cell death will require further work to evaluate its detailed mechanism of action. An exciting goal for the future will be to generate p97 inhibitors that affect one or the other pathway. We propose that generation of 'separation of function' inhibitors will be a challenging adventure for chemical biologists but will yield extremely powerful tools to study p97 and enable evaluation of the therapeutic potential of targeting distinct p97 complexes.  相似文献   

6.
7.
The AAA protein p97 is a central component in the ubiquitin-proteasome system, in which it is thought to act as a molecular chaperone, guiding protein substrates to the 26S proteasome for degradation. This function is dependent on association with cofactors that are specific to the different biological pathways p97 participates in. The UBX-protein family (ubiquitin regulatory X) constitutes the largest known group of p97 cofactors. We propose that the regulation of p97 by UBX-proteins utilizes conserved structural features of this family. Firstly, they act as scaffolding subunits in p97-containing multiprotein complexes, by providing additional interaction motifs. Secondly, they provide regulation of multiprotein complex assembly and we suggest two possible models for p97 substrate recruitment in the UPS pathway. Lastly, they impose constraints on p97 and its interaction with substrates and further cofactors. These features allow the regulation, within the UPS, of the competitive interactions on p97, a regulation that is crucial to allow the diverse functionality of p97.  相似文献   

8.
含缬酪肽蛋白(VCP)即p97,是一种广泛存在的膜结合糖蛋白,在细胞活性中有着广泛的功能,作为类似分子伴侣在内质网相关蛋白降解及细胞周期调控中起重要作用。在这些细胞过程中,p97与其辅因子UFD1-NPL4结合,把多泛素化错误折叠的蛋白通过蛋白酶进行降解。新近研究发现,p97能够独立于UFD1-NPL4,参与细胞质内运输和自噬。有趣的是,这些途径通过溶酶体也能够使蛋白降解。我们就近年来VCP/p97在细胞内吞作用和自噬中的作用进行综述。  相似文献   

9.
UBX domain is a general p97/VCP-binding module found in an increasing number of proteins including FAF1, p47, SAKS1 and UBXD7. FAF1, a multi-functional tumor suppressor protein, binds to the N domain of p97/VCP through its C-terminal UBX domain and thereby inhibits the proteasomal protein degradation in which p97/VCP acts as a co-chaperone. Here we report the crystal structure of human FAF1 UBX domain at 2.9 Å resolution. It reveals that the conserved FP sequence in the p97/VCP-binding region adopts a rarely observed cis-Pro touch-turn structure. We call it an FcisP touch-turn motif and suggest that it is the conserved structural element of the UBX domain. Four FAF1 UBX molecules in an asymmetric unit of the crystal show two different conformations of the FcisP touch-turn motif. The phenyl ring of F619 in the motif stacks partly over cis-Pro620 in one conformation, whereas it is swung out from cis-P620, in the other conformation, and forms hydrophobic contacts with the residues of the neighboring molecule. In addition, the entire FcisP touch-turn motif is pulled out in the second conformation by about 2 Å in comparison to the first conformation. Those conformational differences observed in the p97/VCP-binding motif caused by the interaction with neighboring molecules presumably represent the conformational change of the UBX domain on its binding to the N domain of p97/VCP.  相似文献   

10.
Detailed structural insights into the p97-Npl4-Ufd1 interface   总被引:1,自引:0,他引:1  
The AAA ATPase, p97, achieves its versatility through binding to a wide range of cofactor proteins that adapt it to different cellular functions. The heterodimer UN (comprising Ufd1 and Npl4) is an adaptor complex that recruits p97 for numerous tasks, many of which involve the ubiquitin pathway. Insights into the structural specificity of p97 for its UN adaptor are currently negligible. Here, we present the solution structure of the Npl4 "ubiquitin-like" domain (UBD), which adopts a beta-grasp fold with a 3(10) helical insert. Moreover we performed a chemical shift perturbation analysis of its binding surface with the p97 N domain. We assigned the backbone amides of the p97 N domain and probed both its reciprocal binding surface with Npl4 UBD and its interaction with the p97-binding region of Ufd1. NMR data recorded on a 400-kDa full-length UN-hexamer p97 complex reveals an identical mode of interaction. We calculated a structural model for the p97 N-Npl4 UBD complex, and a comparison with the p97-p47 adaptor complex reveals subtle differences in p97 adaptor recognition and specificity.  相似文献   

11.
The AAA ATPase p97/VCP is involved in many cellular events including ubiquitin-dependent processes and membrane fusion. In the latter, the p97 adaptor protein p47 is of central importance. In order to provide insight into the molecular basis of p97 adaptor binding, we have determined the crystal structure of p97 ND1 domains complexed with p47 C-terminal domain at 2.9 A resolution. The structure reveals that the p47 ubiquitin regulatory X domain (UBX) domain interacts with the p97 N domain via a loop (S3/S4) that is highly conserved in UBX domains, but is absent in ubiquitin, which inserts into a hydrophobic pocket between the two p97 N subdomains. Deletion of this loop and point mutations in the loop significantly reduce p97 binding. This hydrophobic binding site is distinct from the predicted adaptor-binding site for the p97/VCP homologue N-ethylmaleimide sensitive factor (NSF). Together, our data suggest that UBX domains may act as general p97/VCP/CDC48 binding modules and that adaptor binding for NSF and p97 might involve different binding sites. We also propose a classification for ubiquitin-like domains containing or lacking a longer S3/S4 loop.  相似文献   

12.
The chaperone-related p97 protein plays a central role in various cellular processes involving the ubiquitin-proteasome system. The diverse functions of p97 are controlled by a large number of cofactors that recruit specific substrates or influence their ubiquitylation state. Many cofactors bind through a UBX or PUB domain, two major p97 binding modules. However, the recently identified UBXD1 cofactor possesses both domains. To elucidate the molecular basis underlying the interaction between UBXD1 and p97, we analyzed the contribution of both domains to p97 binding biochemically and in living cells. The PUB domain mediated robust binding to the carboxy-terminus of p97, while the UBX domain did not contribute to p97 binding. Importantly, we identified an additional p97 binding site in UBXD1 that competed with the p47 cofactor for binding to the N domain of p97. This novel, bipartite binding mode suggests that UBXD1 could be an efficient regulator of p97 cofactor interactions.  相似文献   

13.
AAA ATPases play central roles in cellular activities. The ATPase p97, a prototype of this superfamily, participates in organelle membrane fusion. Cryoelectron microscopy and single-particle analysis revealed that a major conformational change of p97 during the ATPase cycle occurred upon nucleotide binding and not during hydrolysis as previously hypothesized. Furthermore, our study indicates that six p47 adaptor molecules bind to the periphery of the ring-shaped p97 hexamer. Taken together, these results provide a revised model of how this and possibly other AAA ATPases can translate nucleotide binding into conformational changes of associated binding partners.  相似文献   

14.
p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.  相似文献   

15.
The AAA ATPase p97 is a ubiquitin-selective molecular machine involved in multiple cellular processes, including protein degradation through the ubiquitin-proteasome system and homotypic membrane fusion. Specific p97 functions are mediated by a variety of cofactors, among them peptide N-glycanase, an enzyme that removes glycans from misfolded glycoproteins. Here we report the three-dimensional structure of the aminoterminal PUB domain of human peptide N-glycanase. We demonstrate that the PUB domain is a novel p97 binding module interacting with the D1 and/or D2 ATPase domains of p97 and identify an evolutionary conserved surface patch required for p97 binding. Furthermore, we show that the PUB and UBX domains do not bind to p97 in a mutually exclusive manner. Our results suggest that PUB domain-containing proteins constitute a widespread family of diverse p97 cofactors.  相似文献   

16.
Missense mutations that occur at the interface between two functional domains in the AAA protein p97 lead to suboptimal performance in its enzymatic activity and impaired intracellular functions, causing human disorders such as inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). Much progress has been made in characterizing these mutants at cellular, sub-cellular and molecular levels, gaining a substantial understanding of the involvement of p97 in various cellular pathways. At the tissue level, patient biopsies revealed co-localization of p97 with pathologic proteineous inclusions and rimmed vacuoles, which can be reproduced in various cellular and animal models of IBMPFD. At the subcellular level, alterations in p97's ability to bind various adaptor proteins have been demonstrated for some but not all binding partners. Biochemical and biophysical characterizations of pathogenic p97 revealed altered nucleotide binding properties in the D1-domains compared to the wild type. Structural studies showed that mutant p97 are capable of undergoing a uniform transition in the N-domain from a Down- to an Up-conformation in the presence of ATPγS, while in the wild-type p97, this conformational change can only be demonstrated in solutions but not in crystals. These structural and biochemical analyses of IBMPFD mutants shed new light into the mechanism of p97 function.  相似文献   

17.
18.
19.
p97ATPase‐mediated membrane fusion is required for the biogenesis of the Golgi complex. p97 and its cofactor p47 function in soluble N‐ethylmaleimide‐sensitive factor (NSF) attachment protein receptor (SNARE) priming, but the tethering complex for p97/p47‐mediated membrane fusion remains unknown. In this study, we identified formiminotransferase cyclodeaminase (FTCD) as a novel p47‐binding protein. FTCD mainly localizes to the Golgi complex and binds to either p47 or p97 via its association with their polyglutamate motifs. FTCD functions in p97/p47‐mediated Golgi reassembly at mitosis in vivo and in vitro via its binding to p47 and to p97. We also showed that FTCD, p47, and p97 form a big FTCD‐p97/p47‐FTCD tethering complex. In vivo tethering assay revealed that FTCD that was designed to localize to mitochondria caused mitochondria aggregation at mitosis by forming a complex with endogenous p97 and p47, which support a role for FTCD in tethering biological membranes in cooperation with the p97/p47 complex. Therefore, FTCD is thought to act as a tethering factor by forming the FTCD‐p97/p47‐FTCD complex in p97/p47‐mediated Golgi membrane fusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号