共查询到20条相似文献,搜索用时 15 毫秒
1.
Wanchun Yang Dejiang Pang Mina Chen Chongyangzi Du Lanlan Jia Luoling Wang Yunling He Wanxiang Jiang Liping Luo Zongyan Yu Mengqian Mao Qiuyun Yuan Ping Tang Xiaoqiang Xia Yiyuan Cui Bo Jing Alexander Platero Yanhui Liu Bo Xiao 《Developmental cell》2021,56(6):811-825.e6
- Download : Download high-res image (157KB)
- Download : Download full-size image
2.
Felitsyn N McLeod C Shroads AL Stacpoole PW Notterpek L 《Journal of neurochemistry》2008,106(5):2068-2079
Delta-aminolevulinic acid (δ-ALA) is a heme precursor implicated in neurological complications associated with porphyria and tyrosinemia type I. Delta-ALA is also elevated in the urine of animals and patients treated with the investigational drug dichloroacetate (DCA). We postulated that δ-ALA may be responsible, in part, for the peripheral neuropathy observed in subjects receiving DCA. To test this hypothesis, myelinating cocultures of Schwann cells and sensory neurons were exposed to δ-ALA (0.1–1 mM) and analyzed for the expression of neural proteins and lipids and markers of oxidative stress. Exposure of myelinating samples to δ-ALA is associated with a pronounced reduction in the levels of myelin-associated lipids and proteins, including myelin protein zero and peripheral myelin protein 22. We also observed an increase in protein carbonylation and the formation of hydroxynonenal and malondialdehyde after treatment with δ-ALA. Studies of isolated Schwann cells and neurons indicate that glial cells are more vulnerable to this pro-oxidant than neurons, based on a selective decrease in the expression of mitochondrial respiratory chain proteins in glial, but not in neuronal, cells. These results suggest that the neuropathic effects of δ-ALA are attributable, at least in part, to its pro-oxidant properties which damage myelinating Schwann cells. 相似文献
3.
Ming Liu Pei Li Yuanyuan Jia Qingjun Cui Kexin Zhang Jingjing Jiang 《International journal of biological sciences》2022,18(8):3435
Peripheral nerve injury (PNI) may lead to disability and neuropathic pain, which constitutes a substantial economic burden to patients and society. It was found that the peripheral nervous system (PNS) has the ability to regenerate after injury due to a permissive microenvironment mainly provided by Schwann cells (SCs) and the intrinsic growth capacity of neurons; however, the results of injury repair are not always satisfactory. Effective, long-distance axon regeneration after PNI is achieved by precise regulation of gene expression. Numerous studies have shown that in the process of peripheral nerve damage and repair, differential expression of non-coding RNAs (ncRNAs) significantly affects axon regeneration, especially expression of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). In the present article, we review the cellular and molecular mechanisms of axon regeneration after PNI, and analyze the roles of these ncRNAs in nerve repair. In addition, we discuss the characteristics and functions of these ncRNAs. Finally, we provide a thorough perspective on the functional mechanisms of ncRNAs in nervous injury repair, and explore the potential these ncRNAs offer as targets of nerve injury treatment. 相似文献
4.
《Cell cycle (Georgetown, Tex.)》2013,12(6):1108-1117
We have recently proposed a new model of cancer metabolism to explain the role of aerobic glycolysis and L-lactate production in fueling tumor growth and metastasis. In this model, cancer cells secrete hydrogen peroxide (H2O2), initiating oxidative stress and aerobic glycolysis in the tumor stroma. This, in turn, drives L-lactate secretion from cancer-associated fibroblasts. Secreted L-lactate then fuels oxidative mitochondrial metabolism (OXPHOS) in epithelial cancer cells, by acting as a paracrine onco-metabolite. We have previously termed this type of two-compartment tumor metabolism the “Reverse Warburg Effect,” as aerobic glycolysis takes place in stromal fibroblasts, rather than epithelial cancer cells. Here, we used MCT4 immuno-staining of human breast cancer tissue microarrays (TMAs; > 180 triple-negative patients) to directly assess the prognostic value of the “Reverse Warburg Effect.” MCT4 expression is a functional marker of hypoxia, oxidative stress, aerobic glycolysis, and L-lactate efflux. Remarkably, high stromal MCT4 levels (score = 2) were specifically associated with decreased overall survival (< 18% survival at 10 y post-diagnosis). In contrast, patients with absent stromal MCT4 expression (score = 0), had 10-y survival rates of ~97% (p-value < 10?32). High stromal levels of MCT4 were strictly correlated with a loss of stromal Cav-1 (p-value < 10?14), a known marker of early tumor recurrence and metastasis. In fact, the combined use of stromal Cav-1 and stromal MCT4 allowed us to more precisely identify high-risk triple-negative breast cancer patients, consistent with the goal of individualized risk-assessment and personalized cancer treatment. However, epithelial MCT4 staining had no prognostic value, indicating that the “conventional” Warburg effect does not predict clinical outcome. Thus, the “Reverse Warburg Effect” or “parasitic” energy-transfer is a key determinant of poor overall patient survival. As MCT4 is a druggable-target, MCT4 inhibitors should be developed for the treatment of aggressive breast cancers, and possibly other types of human cancers. Similarly, we discuss how stromal MCT4 could be used as a biomarker for identifying high-risk cancer patients that could likely benefit from treatment with FDA-approved drugs or existing MCT-inhibitors (such as, AR-C155858, AR-C117977, and AZD-3965). 相似文献
5.
《Cell reports》2020,30(6):1798-1810.e4
- Download : Download high-res image (225KB)
- Download : Download full-size image
6.
《Cell metabolism》2022,34(8):1137-1150.e6
- Download : Download high-res image (98KB)
- Download : Download full-size image
7.
Verónica S. Martínez Stefanie Dietmair Lake‐Ee Quek Mark P. Hodson Peter Gray Lars K. Nielsen 《Biotechnology and bioengineering》2013,110(2):660-666
Mammalian cell cultures typically exhibit an energy inefficient phenotype characterized by the consumption of large quantities of glucose and the concomitant production of large quantities of lactate. Under certain conditions, mammalian cells can switch to a more energy efficient state during which lactate is consumed. Using a metabolic model derived from a mouse genome scale model we performed flux balance analysis of Chinese hamster ovary cells before and after a metabolic switch from lactate production (in the presence of glucose) to lactate consumption (after glucose depletion). Despite a residual degree of freedom after accounting for measurements, the calculated flux ranges and associated errors were narrow enough to enable investigation of metabolic changes across the metabolic switch. Surprisingly, the fluxes through the lower part of the TCA cycle from oxoglutarate to malate were very similar (around 60 µmol/gDW/h) for both phases. A detailed analysis of the energy metabolism showed that cells consuming lactate have an energy efficiency (total ATP produced per total C‐mol substrate consumed) six times greater than lactate producing cells. Biotechnol. Bioeng. 2013; 110: 660–666. © 2012 Wiley Periodicals, Inc. 相似文献
8.
Touboul D Brunelle A Halgand F De La Porte S Laprévote O 《Journal of lipid research》2005,46(7):1388-1395
Imaging with time-of-flight secondary ion mass spectrometry (TOF-SIMS) has expanded very rapidly with the development of gold cluster ion sources (Au(3+)). It is now possible to acquire ion density maps (ion images) on a tissue section without any treatment and with a lateral resolution of few micrometers. In this article, we have taken advantage of this technique to study the degeneration/regeneration process in muscles of a Duchenne muscular dystrophy model mouse. Specific distribution of different lipid classes (fatty acids, triglycerides, phospholipids, tocopherol, coenzyme Q9, and cholesterol) allows us to distinguish three different regions on a mouse leg section: one is destroyed, another is degenerating (oxidative stress and deregulation of the phosphoinositol cycle), and the last one is stable. TOF-SIMS imaging shows the ability to localize directly on a tissue section a great number of lipid compounds that reflect the state of the cellular metabolism. 相似文献
9.
10.
Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy. 相似文献
11.
《Autophagy》2013,9(10):1692-1701
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy. 相似文献
12.
Magdalene K. Montgomery Brenna Osborne Simon H. J. Brown Lewin Small Todd W. Mitchell Gregory J. Cooney Nigel Turner 《Journal of lipid research》2013,54(12):3322-3333
Dietary intake of long-chain fatty acids (LCFAs) plays a causative role in insulin resistance and risk of diabetes. Whereas LCFAs promote lipid accumulation and insulin resistance, diets rich in medium-chain fatty acids (MCFAs) have been associated with increased oxidative metabolism and reduced adiposity, with few deleterious effects on insulin action. The molecular mechanisms underlying these differences between dietary fat subtypes are poorly understood. To investigate this further, we treated C2C12 myotubes with various LCFAs (16:0, 18:1n9, and 18:2n6) and MCFAs (10:0 and 12:0), as well as fed mice diets rich in LCFAs or MCFAs, and investigated fatty acid-induced changes in mitochondrial metabolism and oxidative stress. MCFA-treated cells displayed less lipid accumulation, increased mitochondrial oxidative capacity, and less oxidative stress than LCFA-treated cells. These changes were associated with improved insulin action in MCFA-treated myotubes. MCFA-fed mice exhibited increased energy expenditure, reduced adiposity, and better glucose tolerance compared with LCFA-fed mice. Dietary MCFAs increased respiration in isolated mitochondria, with a simultaneous reduction in reactive oxygen species generation, and subsequently low oxidative damage. Collectively our findings indicate that in contrast to LCFAs, MCFAs increase the intrinsic respiratory capacity of mitochondria without increasing oxidative stress. These effects potentially contribute to the beneficial metabolic actions of dietary MCFAs. 相似文献
13.
Huibin Tang Ken Inoki Susan V. Brooks Hideki Okazawa Myung Lee Junying Wang Michael Kim Catherine L. Kennedy Peter C. D. Macpherson Xuhuai Ji Sabrina Van Roekel Danielle A. Fraga Kun Wang Jinguo Zhu Yoyo Wang Zelton D. Sharp Richard A. Miller Thomas A. Rando Daniel Goldman Kun‐Liang Guan Joseph B. Shrager 《Aging cell》2019,18(3)
14.
Altered arachidonic acid biosynthesis and antioxidant protection mechanisms in Schwann cells grown in elevated glucose 总被引:1,自引:0,他引:1
In cultured Schwann cells, elevated glucose induces alterations in arachidonic acid metabolism that cause a decrease in the content of glycerophospholipid arachidonoyl-containing molecular species (ACMS). This could result from decreased de novo arachidonic acid biosynthesis, or increased arachidonic acid release from phospholipids. Incorporation of radioactive 8,11,14-eicosatrienoic acid into ACMS was lower for cells grown in 30 mm versus 5 mm glucose, consistent with a decrease in delta5 desaturase activity. However, neither basal arachidonic acid release from prelabeled cells nor stimulated generation of arachidonic acid in the presence of the reacylation inhibitor, thimerosal, the phosphotyrosine phosphatase inhibitor, bipyridyl peroxovanadium, or both together, were altered by varying the glucose concentrations, indicating that arachidonic acid turnover did not contribute to ACMS depletion. Free cytosolic NAD+ /NADH decreased, whereas NADP+ /NADPH remained unchanged for cells grown in elevated glucose, implying that decreased desaturase activity is a result of metabolic changes other than cofactor availability. Schwann cells in elevated glucose were susceptible to oxidative stress, as shown by increased malondialdehyde, depleted glutathione levels, and reduced cytosolic superoxide dismutase activity. Glutathione-altering compounds had no effect on ACMS levels, in contrast to N -acetylcysteine and alpha-lipoic acid, which partly corrected ACMS depletion in phosphatidylcholine. These findings suggest that in the Schwann cell cultures, a high glucose level elicits oxidative stress and weakens antioxidant protection mechanisms which could decrease arachidonic acid biosynthesis and that this deficit can be partly corrected by treatment with exogenous antioxidants. 相似文献
15.
Nicolas G. Bazan Jorgelina M. Calandria Charles N. Serhan 《Journal of lipid research》2010,51(8):2018-2031
Retinal degenerative diseases result in retinal pigment epithelial (RPE) and photoreceptor cell loss. These cells are continuously exposed to the environment (light) and to potentially pro-oxidative conditions, as the retina''s oxygen consumption is very high. There is also a high flux of docosahexaenoic acid (DHA), a PUFA that moves through the blood stream toward photoreceptors and between them and RPE cells. Photoreceptor outer segment shedding and phagocytosis intermittently renews photoreceptor membranes. DHA is converted through 15-lipoxygenase-1 into neuroprotectin D1 (NPD1), a potent mediator that evokes counteracting cell-protective, anti-inflammatory, pro-survival repair signaling, including the induction of anti-apoptotic proteins and inhibition of pro-apoptotic proteins. Thus, NPD1 triggers activation of signaling pathway/s that modulate/s pro-apoptotic signals, promoting cell survival. This review provides an overview of DHA in photoreceptors and describes the ability of RPE cells to synthesize NPD1 from DHA. It also describes the role of neurotrophins as agonists of NPD1 synthesis and how photoreceptor phagocytosis induces refractoriness to oxidative stress in RPE cells, with concomitant NPD1 synthesis. 相似文献
16.
Susana González-Reyes Marisol Orozco-Ibarra Silvia Guzmán-Beltrán Eduardo Molina-Jijón Lourdes Massieu 《Free radical research》2013,47(3):214-223
Heme oxygenase (HO) catalyses the breakdown of heme to iron, carbon monoxide and biliverdin, the latter being further reduced to bilirubin. A protective role of the inducible isoform, HO-1, has been described in pathological conditions associated with the production of reactive oxygen species (ROS). The aim of this study was to investigate the role of HO-1 in the neurotoxicity induced by iodoacetate (IAA) in primary cultures of cerebellar granule neurons (CGNs). IAA, an inhibitor of the glycolysis pathway, reduces cell survival, increases ROS production and enhances HO-1 expression in CGNs. Furthermore, the induction of HO-1 expression by cobalt protoporphyrin (CoPP) prevented cell death and ROS production induced by IAA, whereas the inhibition of HO activity with tin mesoporphyrin exacerbated the IAA-induced neurotoxicity. The protective effect elicited by CoPP was reproduced by bilirubin addition, suggesting that this molecule may be involved in the protective effect of HO-1 induction in this experimental model. 相似文献
17.
Previous reports have demonstrated the presence of functional thromboxane A2 (TP) receptors in astrocytes and oligodendrocytes. In these experiments, the presence and function of TP receptors in primary rat Schwann cells (rSC) and a neurofibrosarcoma-derived human Schwann cell line (T265) was investigated. Immunocytochemical and immunoblot analyses using polyclonal anti-TP receptor antibodies demonstrate that both cell types express TP receptors. Treatment with the stable thromboxane A2 mimetic U46619 (10 microM) did not stimulate intracellular calcium mobilization in rSC, whereas T265 cells demonstrated a calcium response that was inhibited by prior treatment with TP receptor antagonists. U46619 also stimulated CREB phosphorylation on Ser133 in T265 cells and, to a lesser extent, in rSC. To identify potential mechanisms of CREB phosphorylation in rSC, we monitored intracellular cAMP levels following U46619 stimulation. Elevated levels of cAMP were detected in both rSC (20-fold) and T265 (15-fold) cells. These results demonstrate that TP receptor activation specifically stimulates CREB phosphorylation in T265 cells, possibly by a calcium- and/or cAMP-dependent mechanism. In contrast, TP receptor activation in rSC stimulates increases in cAMP and CREB phosphorylation but does not elicit changes in intracellular calcium. 相似文献
18.
已知神经生长因子 (nerve growth factor, NGF) 对糖尿病外周神经病变 (diabetic peripheral neuropathy, DPN) 患者具有良好的治疗效果,内质网应激 (endoplasmic reticulum stress, ERS) 在调控DPN 的发生发展方面扮演着重要的角色。然而,二者间的关系未知。本研究以30 mmol/L的高糖处理RSC-96大鼠雪旺细胞 (RSC96 Schwann cells, SCs),模拟DPN患者外周神经的内环境。研究结果证实,在高糖条件下,NGF通过抑制SCs内 ERS的过度激活进而保护SCs的存活且这种抑制作用依靠P13K/AKT/GSK-3β和ERK1/2两条信号通路的调节实现。MTT检测细胞的存活率,结果显示高糖环境培养的SCs在24 h发生最佳程度的抑制,且此时间点加入的NGF浓度为50 ng/mL 时,其存活率最高。Western 印迹检测ERS和相关蛋白质的表达揭示,高糖能够过度激活SCs内ERS蛋白 (GRP-78、ATF-6、ATF-4、XBP-1、CHOP),给予 50 ng/mL的NGF处理后,ERS蛋白的表达水平大幅下调并接近正常,且此时p-AKT、p-ERK1/2、p-GSK3β蛋白的检测水平明显升高。流式细胞术检测细胞凋亡显示,NGF能显著抑制SCs的早期凋亡。上述结果证明,高糖诱导SCs的凋亡增加是由于自身的ERS被过度激活,NGF可通过调节P13K/AKT/GSK-3β和ERK1/2两条信号通路来抑制ERS的过度激活,达到保护SCs存活的目的。此机制为临床治疗 DPN 提供新的理论基础。 相似文献
19.
Ming‐Chin Lu Tung‐Yuan Lai Jin‐Ming Hwang Hsien‐Te Chen Sheng‐Huang Chang Fuu‐Jen Tsai Hwai‐Lee Wang Chien‐Chung Lin Wei‐Wen Kuo Chih‐Yang Huang 《Cell biochemistry and function》2009,27(4):186-192
The aim of the present study is to evaluate the proliferation‐ and migration‐enhancing effects of ginseng and its component, ginsenoside (Rg1) on RSC96 Schwann cells. We investigated the molecular signaling pathways, which include: (1) survival signaling, IGFs‐IGFIR‐Akt‐Bcl2 and proliferative signaling, cell cycle factors and mitogen‐activated protein kinase (MAPK) pathways, (2) migrating and anti‐scar signaling, FGF‐2‐uPA‐MMPs.We treated RSC96 cells with different concentrations (100, 200, 300, 400, 500 µg ml?1) of ginseng and its constituent, Rg1 (5, 10, 15, 20, 25 µg ml?1). We observed a proliferative effect in a dose‐dependent manner by PCNA western blotting assay, MTT assay, and wound healing test. Furthermore, we also found in the results of western blotting assay, ginseng and Rg1 enhance protein expression of IGF‐I pathway regulators, cell cycle controlling proteins, and MAPK signaling pathways to promote the cell proliferation. In addition, ginseng and Rg1 also stimulated the FGF‐2‐uPA‐MMP 9 migrating pathway to enhance the migration of RSC96 Schwann cells. Using MAPK chemical inhibitors, U0126, SB203580, and SP600125, the proliferative effects of ginseng and Rg1 on RSC96 cells were identified to be MAPK signaling‐dependent. On the basis of the results, applying appropriate doses of ginseng and Rg1 with biomedical materials would be a potential approach for enhancing neuron regeneration. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
Shan Shao Tao Qin Weikun Qian Yangyang Yue Ying Xiao Xuqi Li Dong Zhang Zheng Wang Qingyong Ma Jianjun Lei 《Journal of cellular and molecular medicine》2020,24(16):9397-9408
Caveolin‐1 (Cav‐1) is the principal structural component of caveolae, and its dysregulation occurs in cancer. However, the role of Cav‐1 in pancreatic cancer (PDAC) tumorigenesis and metabolism is largely unknown. In this study, we aimed to investigate the effect of pancreatic stellate cell (PSC) Cav‐1 on PDAC metabolism and aggression. We found that Cav‐1 is expressed at low levels in PDAC stroma and that the loss of stromal Cav‐1 is associated with poor survival. In PSCs, knockdown of Cav‐1 promoted the production of reactive oxygen species (ROS), while ROS production further reduced the expression of Cav‐1. Positive feedback occurs in Cav‐1‐ROS signalling in PSCs, which promotes PDAC growth and induces stroma‐tumour metabolic coupling in PDAC. In PSCs, positive feedback in Cav‐1‐ROS signalling induced a shift in energy metabolism to glycolysis, with up‐regulated expression of glycolytic enzymes (hexokinase 2 (HK‐2), 6‐phosphofructokinase (PFKP) and pyruvate kinase isozyme type M2 (PKM2)) and transporter (Glut1) expression and down‐regulated expression of oxidative phosphorylation (OXPHOS) enzymes (translocase of outer mitochondrial membrane 20 (TOMM20) and NAD(P)H dehydrogenase [quinone] 1 (NQO1)). These events resulted in high levels of glycolysis products such as lactate, which was secreted by up‐regulated monocarboxylate transporter 4 (MCT4) in PSCs. Simultaneously, PDAC cells took up these glycolysis products (lactate) through up‐regulated MCT1 to undergo OXPHOS, with down‐regulated expression of glycolytic enzymes (HK‐2, PFKP and PKM2) and up‐regulated expression of OXPHOS enzymes (TOMM20 and NQO1). Interrupting the metabolic coupling between the stroma and tumour cells may be an effective method for tumour therapy. 相似文献